//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm-c/Transforms/PassManagerBuilder.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/Passes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Verifier.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; static cl::opt RunLoopVectorization("vectorize-loops", cl::Hidden, cl::desc("Run the Loop vectorization passes")); static cl::opt RunSLPVectorization("vectorize-slp", cl::Hidden, cl::desc("Run the SLP vectorization passes")); static cl::opt RunBBVectorization("vectorize-slp-aggressive", cl::Hidden, cl::desc("Run the BB vectorization passes")); static cl::opt UseGVNAfterVectorization("use-gvn-after-vectorization", cl::init(false), cl::Hidden, cl::desc("Run GVN instead of Early CSE after vectorization passes")); static cl::opt ExtraVectorizerPasses( "extra-vectorizer-passes", cl::init(false), cl::Hidden, cl::desc("Run cleanup optimization passes after vectorization.")); static cl::opt UseNewSROA("use-new-sroa", cl::init(true), cl::Hidden, cl::desc("Enable the new, experimental SROA pass")); static cl::opt RunLoopRerolling("reroll-loops", cl::Hidden, cl::desc("Run the loop rerolling pass")); static cl::opt RunLoadCombine("combine-loads", cl::init(false), cl::Hidden, cl::desc("Run the load combining pass")); static cl::opt RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization", cl::init(true), cl::Hidden, cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop " "vectorizer instead of before")); static cl::opt UseCFLAA("use-cfl-aa", cl::init(false), cl::Hidden, cl::desc("Enable the new, experimental CFL alias analysis")); static cl::opt EnableMLSM("mlsm", cl::init(true), cl::Hidden, cl::desc("Enable motion of merged load and store")); PassManagerBuilder::PassManagerBuilder() { OptLevel = 2; SizeLevel = 0; LibraryInfo = nullptr; Inliner = nullptr; DisableTailCalls = false; DisableUnitAtATime = false; DisableUnrollLoops = false; BBVectorize = RunBBVectorization; SLPVectorize = RunSLPVectorization; LoopVectorize = RunLoopVectorization; RerollLoops = RunLoopRerolling; LoadCombine = RunLoadCombine; DisableGVNLoadPRE = false; VerifyInput = false; VerifyOutput = false; StripDebug = false; MergeFunctions = false; } PassManagerBuilder::~PassManagerBuilder() { delete LibraryInfo; delete Inliner; } /// Set of global extensions, automatically added as part of the standard set. static ManagedStatic, 8> > GlobalExtensions; void PassManagerBuilder::addGlobalExtension( PassManagerBuilder::ExtensionPointTy Ty, PassManagerBuilder::ExtensionFn Fn) { GlobalExtensions->push_back(std::make_pair(Ty, Fn)); } void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { Extensions.push_back(std::make_pair(Ty, Fn)); } void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, legacy::PassManagerBase &PM) const { for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i) if ((*GlobalExtensions)[i].first == ETy) (*GlobalExtensions)[i].second(*this, PM); for (unsigned i = 0, e = Extensions.size(); i != e; ++i) if (Extensions[i].first == ETy) Extensions[i].second(*this, PM); } void PassManagerBuilder::addInitialAliasAnalysisPasses( legacy::PassManagerBase &PM) const { // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. if (UseCFLAA) PM.add(createCFLAliasAnalysisPass()); PM.add(createTypeBasedAliasAnalysisPass()); PM.add(createScopedNoAliasAAPass()); PM.add(createBasicAliasAnalysisPass()); } void PassManagerBuilder::populateFunctionPassManager( legacy::FunctionPassManager &FPM) { addExtensionsToPM(EP_EarlyAsPossible, FPM); // Add LibraryInfo if we have some. if (LibraryInfo) FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (OptLevel == 0) return; addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); if (UseNewSROA) FPM.add(createSROAPass()); else FPM.add(createScalarReplAggregatesPass()); FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (!GlobalExtensions->empty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createGlobalOptimizerPass()); // Optimize out global vars MPM.add(createDeadArgEliminationPass()); // Dead argument elimination MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } if (!DisableUnitAtATime) MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args // Start of function pass. // Break up aggregate allocas, using SSAUpdater. if (UseNewSROA) MPM.add(createSROAPass(/*RequiresDomTree*/ false)); else MPM.add(createScalarReplAggregatesPass(-1, false)); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's addExtensionsToPM(EP_Peephole, MPM); if (!DisableTailCalls) MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (!DisableUnrollLoops) MPM.add(createSimpleLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) { if (EnableMLSM) MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass()); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); if (!RunSLPAfterLoopVectorization) { if (SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } if (LoadCombine) MPM.add(createLoadCombinePass()); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Clean up after everything. addExtensionsToPM(EP_Peephole, MPM); // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. if (ExtraVectorizerPasses) MPM.add(createLoopRotatePass()); MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. MPM.add(createInstructionCombiningPass()); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createInstructionCombiningPass()); MPM.add(createLICMPass()); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); } if (RunSLPAfterLoopVectorization) { if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); // Unroll small loops // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } } if (MergeFunctions) MPM.add(createMergeFunctionsPass()); addExtensionsToPM(EP_OptimizerLast, MPM); } void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas if (UseNewSROA) PM.add(createSROAPass()); else PM.add(createScalarReplAggregatesPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createFunctionAttrsPass()); // Add nocapture. PM.add(createGlobalsModRefPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. if (EnableMLSM) PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); PM.add(createLoopVectorizePass(true, LoopVectorize)); // More scalar chains could be vectorized due to more alias information if (RunSLPAfterLoopVectorization) if (SLPVectorize) PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); if (LoadCombine) PM.add(createLoadCombinePass()); // Cleanup and simplify the code after the scalar optimizations. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Lower bitset metadata to bitsets. PM.add(createLowerBitSetsPass()); // Delete basic blocks, which optimization passes may have killed. PM.add(createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions. PM.add(createGlobalDCEPass()); // FIXME: this is profitable (for compiler time) to do at -O0 too, but // currently it damages debug info. if (MergeFunctions) PM.add(createMergeFunctionsPass()); } void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { if (LibraryInfo) PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); if (VerifyInput) PM.add(createVerifierPass()); if (StripDebug) PM.add(createStripSymbolsPass(true)); if (VerifyInput) PM.add(createDebugInfoVerifierPass()); if (OptLevel != 0) addLTOOptimizationPasses(PM); if (VerifyOutput) { PM.add(createVerifierPass()); PM.add(createDebugInfoVerifierPass()); } } inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { return reinterpret_cast(P); } inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { return reinterpret_cast(P); } LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { PassManagerBuilder *PMB = new PassManagerBuilder(); return wrap(PMB); } void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { PassManagerBuilder *Builder = unwrap(PMB); delete Builder; } void LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, unsigned OptLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->OptLevel = OptLevel; } void LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, unsigned SizeLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->SizeLevel = SizeLevel; } void LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnitAtATime = Value; } void LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnrollLoops = Value; } void LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { // NOTE: The simplify-libcalls pass has been removed. } void LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, unsigned Threshold) { PassManagerBuilder *Builder = unwrap(PMB); Builder->Inliner = createFunctionInliningPass(Threshold); } void LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::FunctionPassManager *FPM = unwrap(PM); Builder->populateFunctionPassManager(*FPM); } void LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *MPM = unwrap(PM); Builder->populateModulePassManager(*MPM); } void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM, LLVMBool Internalize, LLVMBool RunInliner) { PassManagerBuilder *Builder = unwrap(PMB); legacy::PassManagerBase *LPM = unwrap(PM); // A small backwards compatibility hack. populateLTOPassManager used to take // an RunInliner option. if (RunInliner && !Builder->Inliner) Builder->Inliner = createFunctionInliningPass(); Builder->populateLTOPassManager(*LPM); }