//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a simple loop vectorizer. We currently only support single block // loops. We have a very simple and restrictive legality check: we need to read // and write from disjoint memory locations. We still don't have a cost model. // This pass has three parts: // 1. The main loop pass that drives the different parts. // 2. LoopVectorizationLegality - A helper class that checks for the legality // of the vectorization. // 3. SingleBlockLoopVectorizer - A helper class that performs the actual // widening of instructions. // //===----------------------------------------------------------------------===// #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Value.h" #include "llvm/Function.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DataLayout.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; static cl::opt DefaultVectorizationFactor("default-loop-vectorize-width", cl::init(4), cl::Hidden, cl::desc("Set the default loop vectorization width")); namespace { /// Vectorize a simple loop. This class performs the widening of simple single /// basic block loops into vectors. It does not perform any /// vectorization-legality checks, and just does it. It widens the vectors /// to a given vectorization factor (VF). class SingleBlockLoopVectorizer { public: /// Ctor. SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li, LPPassManager *Lpm, unsigned VecWidth): Orig(OrigLoop), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth), Builder(0), Induction(0), OldInduction(0) { } ~SingleBlockLoopVectorizer() { delete Builder; } // Perform the actual loop widening (vectorization). void vectorize() { ///Create a new empty loop. Unlink the old loop and connect the new one. createEmptyLoop(); /// Widen each instruction in the old loop to a new one in the new loop. vectorizeLoop(); // register the new loop. cleanup(); } private: /// Create an empty loop, based on the loop ranges of the old loop. void createEmptyLoop(); /// Copy and widen the instructions from the old loop. void vectorizeLoop(); /// Insert the new loop to the loop hierarchy and pass manager. void cleanup(); /// This instruction is un-vectorizable. Implement it as a sequence /// of scalars. void scalarizeInstruction(Instruction *Instr); /// Create a broadcast instruction. This method generates a broadcast /// instruction (shuffle) for loop invariant values and for the induction /// value. If this is the induction variable then we extend it to N, N+1, ... /// this is needed because each iteration in the loop corresponds to a SIMD /// element. Value *getBroadcastInstrs(Value *V); /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 .. /// for each element in the vector. Starting from zero. Value *getConsecutiveVector(Value* Val); /// Check that the GEP operands are all uniform except for the last index /// which has to be the induction variable. bool isConsecutiveGep(GetElementPtrInst *Gep); /// When we go over instructions in the basic block we rely on previous /// values within the current basic block or on loop invariant values. /// When we widen (vectorize) values we place them in the map. If the values /// are not within the map, they have to be loop invariant, so we simply /// broadcast them into a vector. Value *getVectorValue(Value *V); typedef DenseMap ValueMap; /// The original loop. Loop *Orig; // Scev analysis to use. ScalarEvolution *SE; // Loop Info. LoopInfo *LI; // Loop Pass Manager; LPPassManager *LPM; // The vectorization factor to use. unsigned VF; // The builder that we use IRBuilder<> *Builder; // --- Vectorization state --- /// The new Induction variable which was added to the new block. PHINode *Induction; /// The induction variable of the old basic block. PHINode *OldInduction; // Maps scalars to widened vectors. ValueMap WidenMap; }; /// Perform the vectorization legality check. This class does not look at the /// profitability of vectorization, only the legality. At the moment the checks /// are very simple and focus on single basic block loops with a constant /// iteration count and no reductions. class LoopVectorizationLegality { public: LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl): TheLoop(Lp), SE(Se), DL(Dl) { } /// Returns the maximum vectorization factor that we *can* use to vectorize /// this loop. This does not mean that it is profitable to vectorize this /// loop, only that it is legal to do so. This may be a large number. We /// can vectorize to any SIMD width below this number. unsigned getLoopMaxVF(); private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count /// and we only need to check individual instructions. bool canVectorizeBlock(BasicBlock &BB); // Check if a pointer value is known to be disjoint. // Example: Alloca, Global, NoAlias. bool isKnownDisjoint(Value* Val); /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// DataLayout analysis. DataLayout *DL; }; struct LoopVectorize : public LoopPass { static char ID; // Pass identification, replacement for typeid LoopVectorize() : LoopPass(ID) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; LoopInfo *LI; virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { // Only vectorize innermost loops. if (!L->empty()) return false; SE = &getAnalysis(); DL = getAnalysisIfAvailable(); LI = &getAnalysis(); DEBUG(dbgs() << "LV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"); // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL); unsigned MaxVF = LVL.getLoopMaxVF(); // Check that we can vectorize using the chosen vectorization width. if (MaxVF < DefaultVectorizationFactor) { DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n"); return false; } DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n"); // If we decided that is is *legal* to vectorizer the loop. Do it. SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor); LB.vectorize(); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { LoopPass::getAnalysisUsage(AU); AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); } }; Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) { // Instructions that access the old induction variable // actually want to get the new one. if (V == OldInduction) V = Induction; // Create the types. LLVMContext &C = V->getContext(); Type *VTy = VectorType::get(V->getType(), VF); Type *I32 = IntegerType::getInt32Ty(C); Constant *Zero = ConstantInt::get(I32, 0); Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF)); Value *UndefVal = UndefValue::get(VTy); // Insert the value into a new vector. Value *SingleElem = Builder->CreateInsertElement(UndefVal, V, Zero); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder->CreateShuffleVector(SingleElem, UndefVal, Zeros, "broadcast"); // We are accessing the induction variable. Make sure to promote the // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes. if (V == Induction) return getConsecutiveVector(Shuf); return Shuf; } Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); unsigned VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (unsigned i = 0; i < VLen; ++i) Indices.push_back(ConstantInt::get(ITy, i)); // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); return Builder->CreateAdd(Val, Cv, "induction"); } bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) { if (!Gep) return false; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = Gep->getOperand(NumOperands - 1); // Check that all of the gep indices are uniform except for the last. for (unsigned i = 0; i < NumOperands - 1; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), Orig)) return false; // We can emit wide load/stores only of the last index is the induction // variable. const SCEV *Last = SE->getSCEV(LastIndex); if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return true; } return false; } Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) { // If we saved a vectorized copy of V, use it. ValueMap::iterator it = WidenMap.find(V); if (it != WidenMap.end()) return it->second; // Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); WidenMap[V] = B; return B; } void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getBroadcastInstrs(Induction)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && SrcInst->getParent() == Instr->getParent()) { assert(WidenMap.count(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap[SrcInst]); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. Params.push_back(SrcOp); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *VecResults = 0; // If we have a return value, create an empty vector. We place the scalarized // instructions in this vector. if (!IsVoidRetTy) VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF)); // For each scalar that we create. for (unsigned i = 0; i < VF; ++i) { Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instrucions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op]; // Param is a vector. Need to extract the right lane. if (Op->getType()->isVectorTy()) Op = Builder->CreateExtractElement(Op, Builder->getInt32(i)); Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder->Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults = Builder->CreateInsertElement(VecResults, Cloned, Builder->getInt32(i)); } if (!IsVoidRetTy) WidenMap[Instr] = VecResults; } void SingleBlockLoopVectorizer::createEmptyLoop() { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- vector loop bypass. / | / v | [ ] <-- vector pre header. | | | v | [ ] \ | [ ]_| <-- vector loop. | | \ v >[ ] <--- middle-block. / | / v | [ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. () \ | \ v >[ ] <-- exit block. ... */ // This is the original scalar-loop preheader. BasicBlock *BypassBlock = Orig->getLoopPreheader(); BasicBlock *ExitBlock = Orig->getExitBlock(); assert(ExitBlock && "Must have an exit block"); assert(Orig->getNumBlocks() == 1 && "Invalid loop"); assert(BypassBlock && "Invalid loop structure"); BasicBlock *VectorPH = BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.preheader"); // Find the induction variable. BasicBlock *OldBasicBlock = Orig->getHeader(); OldInduction = dyn_cast(OldBasicBlock->begin()); assert(OldInduction && "We must have a single phi node."); Type *IdxTy = OldInduction->getType(); // Use this IR builder to create the loop instructions (Phi, Br, Cmp) // inside the loop. Builder = new IRBuilder<>(VecBody); Builder->SetInsertPoint(VecBody->getFirstInsertionPt()); // Generate the induction variable. Induction = Builder->CreatePHI(IdxTy, 2, "index"); Constant *Zero = ConstantInt::get(IdxTy, 0); Constant *Step = ConstantInt::get(IdxTy, VF); // Find the loop boundaries. const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader()); assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); // Get the total trip count from the count by adding 1. ExitCount = SE->getAddExpr(ExitCount, SE->getConstant(ExitCount->getType(), 1)); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, "induction"); Instruction *Loc = BypassBlock->getTerminator(); // We may need to extend the index in case there is a type mismatch. // We know that the count starts at zero and does not overflow. // We are using Zext because it should be less expensive. if (ExitCount->getType() != Induction->getType()) ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy); // Count holds the overall loop count (N). Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc); // Now we need to generate the expression for N - (N % VF), which is // the part that the vectorized body will execute. Constant *CIVF = ConstantInt::get(IdxTy, VF); Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc); Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc); // Now, compare the new count to zero. If it is zero, jump to the scalar part. Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, CountRoundDown, ConstantInt::getNullValue(IdxTy), "cmp.zero", Loc); BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc); // Remove the old terminator. Loc->eraseFromParent(); // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); // Remove the old terminator. MiddleBlock->getTerminator()->eraseFromParent(); // Create i+1 and fill the PHINode. Value *NextIdx = Builder->CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(Zero, VectorPH); Induction->addIncoming(NextIdx, VecBody); // Create the compare. Value *ICmp = Builder->CreateICmpEQ(NextIdx, CountRoundDown); Builder->CreateCondBr(ICmp, MiddleBlock, VecBody); // Now we have two terminators. Remove the old one from the block. VecBody->getTerminator()->eraseFromParent(); // Fix the scalar body iteration count. unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH); OldInduction->setIncomingValue(BlockIdx, CountRoundDown); // Get ready to start creating new instructions into the vectorized body. Builder->SetInsertPoint(VecBody->getFirstInsertionPt()); // Register the new loop. Loop* Lp = new Loop(); LPM->insertLoop(Lp, Orig->getParentLoop()); Lp->addBasicBlockToLoop(VecBody, LI->getBase()); Loop *ParentLoop = Orig->getParentLoop(); if (ParentLoop) { ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); } } void SingleBlockLoopVectorizer::vectorizeLoop() { BasicBlock &BB = *Orig->getHeader(); // For each instruction in the old loop. for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { Instruction *Inst = it; switch (Inst->getOpcode()) { case Instruction::PHI: case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. BinaryOperator *BinOp = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Value *B = getVectorValue(Inst->getOperand(1)); // Use this vector value for all users of the original instruction. WidenMap[Inst] = Builder->CreateBinOp(BinOp->getOpcode(), A, B); break; } case Instruction::Select: { // Widen selects. Value *A = getVectorValue(Inst->getOperand(0)); Value *B = getVectorValue(Inst->getOperand(1)); Value *C = getVectorValue(Inst->getOperand(2)); WidenMap[Inst] = Builder->CreateSelect(A, B, C); break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (Inst->getOpcode() == Instruction::FCmp); CmpInst *Cmp = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Value *B = getVectorValue(Inst->getOperand(1)); if (FCmp) WidenMap[Inst] = Builder->CreateFCmp(Cmp->getPredicate(), A, B); else WidenMap[Inst] = Builder->CreateICmp(Cmp->getPredicate(), A, B); break; } case Instruction::Store: { // Attempt to issue a wide store. StoreInst *SI = dyn_cast(Inst); Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF); Value *Ptr = SI->getPointerOperand(); unsigned Alignment = SI->getAlignment(); GetElementPtrInst *Gep = dyn_cast(Ptr); // This store does not use GEPs. if (!isConsecutiveGep(Gep)) { scalarizeInstruction(Inst); break; } // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); unsigned NumOperands = Gep->getNumOperands(); Gep2->setOperand(NumOperands - 1, Induction); Ptr = Builder->Insert(Gep2); Ptr = Builder->CreateBitCast(Ptr, StTy->getPointerTo()); Value *Val = getVectorValue(SI->getValueOperand()); Builder->CreateStore(Val, Ptr)->setAlignment(Alignment); break; } case Instruction::Load: { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(Inst); Type *RetTy = VectorType::get(LI->getType(), VF); Value *Ptr = LI->getPointerOperand(); unsigned Alignment = LI->getAlignment(); GetElementPtrInst *Gep = dyn_cast(Ptr); // We don't have a gep. Scalarize the load. if (!isConsecutiveGep(Gep)) { scalarizeInstruction(Inst); break; } // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); unsigned NumOperands = Gep->getNumOperands(); Gep2->setOperand(NumOperands - 1, Induction); Ptr = Builder->Insert(Gep2); Ptr = Builder->CreateBitCast(Ptr, RetTy->getPointerTo()); LI = Builder->CreateLoad(Ptr); LI->setAlignment(Alignment); // Use this vector value for all users of the load. WidenMap[Inst] = LI; break; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { /// Vectorize bitcasts. CastInst *CI = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); WidenMap[Inst] = Builder->CreateCast(CI->getOpcode(), A, DestTy); break; } default: /// All other instructions are unsupported. Scalarize them. scalarizeInstruction(Inst); break; }// end of switch. }// end of for_each instr. } void SingleBlockLoopVectorizer::cleanup() { // The original basic block. SE->forgetLoop(Orig); } unsigned LoopVectorizationLegality::getLoopMaxVF() { if (!TheLoop->getLoopPreheader()) { assert(false && "No preheader!!"); DEBUG(dbgs() << "LV: Loop not normalized." << "\n"); return 1; } // We can only vectorize single basic block loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1) { DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n"); return 1; } // We need to have a loop header. BasicBlock *BB = TheLoop->getHeader(); DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n"); // Go over each instruction and look at memory deps. if (!canVectorizeBlock(*BB)) { DEBUG(dbgs() << "LV: Can't vectorize this loop header\n"); return 1; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getExitCount(TheLoop, BB); if (ExitCount == SE->getCouldNotCompute()) { DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return 1; } DEBUG(dbgs() << "LV: We can vectorize this loop!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return the // maximum SIMD size. return DefaultVectorizationFactor; } bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) { // Holds the read and write pointers that we find. typedef SmallVector ValueVector; ValueVector Reads; ValueVector Writes; unsigned NumPhis = 0; for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { Instruction *I = it; PHINode *Phi = dyn_cast(I); if (Phi) { NumPhis++; // We only look at integer phi nodes. if (!Phi->getType()->isIntegerTy()) { DEBUG(dbgs() << "LV: Found an non-int PHI.\n"); return false; } // If we found an induction variable. if (NumPhis > 1) { DEBUG(dbgs() << "LV: Found more than one PHI.\n"); return false; } // This should not happen because the loop should be normalized. if (Phi->getNumIncomingValues() != 2) { DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } // Check that the PHI is consecutive and starts at zero. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } const SCEV *Step = AR->getStepRecurrence(*SE); const SCEV *Start = AR->getStart(); if (!Step->isOne() || !Start->isZero()) { DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n"); return false; } } // If this is a load, record its pointer. If it is not a load, abort. // Notice that we don't handle function calls that read or write. if (I->mayReadFromMemory()) { LoadInst *Ld = dyn_cast(I); if (!Ld) return false; if (!Ld->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple load.\n"); return false; } GetUnderlyingObjects(Ld->getPointerOperand(), Reads, DL); } // Record store pointers. Abort on all other instructions that write to // memory. if (I->mayWriteToMemory()) { StoreInst *St = dyn_cast(I); if (!St) return false; if (!St->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple store.\n"); return false; } GetUnderlyingObjects(St->getPointerOperand(), Writes, DL); } // We still don't handle functions. CallInst *CI = dyn_cast(I); if (CI) { DEBUG(dbgs() << "LV: Found a call site:"<< CI->getCalledFunction()->getName() << "\n"); return false; } // We do not re-vectorize vectors. if (!VectorType::isValidElementType(I->getType()) && !I->getType()->isVoidTy()) { DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); return false; } //Check that all of the users of the loop are inside the BB. for (Value::use_iterator it = I->use_begin(), e = I->use_end(); it != e; ++it) { Instruction *U = cast(*it); BasicBlock *Parent = U->getParent(); if (Parent != &BB) { DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); return false; } } } // next instr. if (NumPhis != 1) { DEBUG(dbgs() << "LV: Did not find a Phi node.\n"); return false; } // Check that the underlying objects of the reads and writes are either // disjoint memory locations, or that they are no-alias arguments. ValueVector::iterator r, re, w, we; for (r = Reads.begin(), re = Reads.end(); r != re; ++r) { if (!isKnownDisjoint(*r)) { DEBUG(dbgs() << "LV: Found a bad read Ptr: "<< **r << "\n"); return false; } } for (w = Writes.begin(), we = Writes.end(); w != we; ++w) { if (!isKnownDisjoint(*w)) { DEBUG(dbgs() << "LV: Found a bad write Ptr: "<< **w << "\n"); return false; } } // Check that there are no multiple write locations to the same pointer. SmallPtrSet BasePointers; for (w = Writes.begin(), we = Writes.end(); w != we; ++w) { if (BasePointers.count(*w)) { DEBUG(dbgs() << "LV: Multiple writes to the same index :"<< **w << "\n"); return false; } BasePointers.insert(*w); } // Sort the writes vector so that we can use a binary search. std::sort(Writes.begin(), Writes.end()); // Check that the reads and the writes are disjoint. for (r = Reads.begin(), re = Reads.end(); r != re; ++r) { if (std::binary_search(Writes.begin(), Writes.end(), *r)) { DEBUG(dbgs() << "Vectorizer: Found a read/write ptr:"<< **r << "\n"); return false; } } // All is okay. return true; } /// Checks if the value is a Global variable or if it is an Arguments /// marked with the NoAlias attribute. bool LoopVectorizationLegality::isKnownDisjoint(Value* Val) { assert(Val && "Invalid value"); if (dyn_cast(Val)) return true; if (dyn_cast(Val)) return true; Argument *A = dyn_cast(Val); if (!A) return false; return A->hasNoAliasAttr(); } } // namespace char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass() { return new LoopVectorize(); } }