//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements an abstract sparse conditional propagation algorithm, // modeled after SCCP, but with a customizable lattice function. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sparseprop" #include "llvm/Analysis/SparsePropagation.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Support/Debug.h" using namespace llvm; //===----------------------------------------------------------------------===// // AbstractLatticeFunction Implementation //===----------------------------------------------------------------------===// AbstractLatticeFunction::~AbstractLatticeFunction() {} /// PrintValue - Render the specified lattice value to the specified stream. void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) { if (V == UndefVal) OS << "undefined"; else if (V == OverdefinedVal) OS << "overdefined"; else if (V == UntrackedVal) OS << "untracked"; else OS << "unknown lattice value"; } //===----------------------------------------------------------------------===// // SparseSolver Implementation //===----------------------------------------------------------------------===// /// getOrInitValueState - Return the LatticeVal object that corresponds to the /// value, initializing the value's state if it hasn't been entered into the /// map yet. This function is necessary because not all values should start /// out in the underdefined state... Arguments should be overdefined, and /// constants should be marked as constants. /// SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { DenseMap::iterator I = ValueState.find(V); if (I != ValueState.end()) return I->second; // Common case, in the map LatticeVal LV; if (LatticeFunc->IsUntrackedValue(V)) return LatticeFunc->getUntrackedVal(); else if (Constant *C = dyn_cast(V)) LV = LatticeFunc->ComputeConstant(C); else if (!isa(V)) // Non-instructions (e.g. formal arguments) are overdefined. LV = LatticeFunc->getOverdefinedVal(); else // All instructions are underdefined by default. LV = LatticeFunc->getUndefVal(); // If this value is untracked, don't add it to the map. if (LV == LatticeFunc->getUntrackedVal()) return LV; return ValueState[V] = LV; } /// UpdateState - When the state for some instruction is potentially updated, /// this function notices and adds I to the worklist if needed. void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { DenseMap::iterator I = ValueState.find(&Inst); if (I != ValueState.end() && I->second == V) return; // No change. // An update. Visit uses of I. ValueState[&Inst] = V; InstWorkList.push_back(&Inst); } /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; BBExecutable.insert(BB); // Basic block is executable! BBWorkList.push_back(BB); // Add the block to the work list! } /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable... void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return; // This edge is already known to be executable! if (BBExecutable.count(Dest)) { DOUT << "Marking Edge Executable: " << Source->getNameStart() << " -> " << Dest->getNameStart() << "\n"; // The destination is already executable, but we just made an edge // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. for (BasicBlock::iterator I = Dest->begin(); isa(I); ++I) visitPHINode(*cast(I)); } else { MarkBlockExecutable(Dest); } } /// getFeasibleSuccessors - Return a vector of booleans to indicate which /// successors are reachable from a given terminator instruction. void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl &Succs) { Succs.resize(TI.getNumSuccessors()); if (TI.getNumSuccessors() == 0) return; if (BranchInst *BI = dyn_cast(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } LatticeVal BCValue = getOrInitValueState(BI->getCondition()); if (BCValue == LatticeFunc->getOverdefinedVal() || BCValue == LatticeFunc->getUntrackedVal()) { // Overdefined condition variables can branch either way. Succs[0] = Succs[1] = true; return; } // If undefined, neither is feasible yet. if (BCValue == LatticeFunc->getUndefVal()) return; Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); if (C == 0 || !isa(C)) { // Non-constant values can go either way. Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way Succs[C == ConstantInt::getFalse()] = true; return; } if (isa(TI)) { // Invoke instructions successors are always executable. // TODO: Could ask the lattice function if the value can throw. Succs[0] = Succs[1] = true; return; } SwitchInst &SI = cast(TI); LatticeVal SCValue = getOrInitValueState(SI.getCondition()); if (SCValue == LatticeFunc->getOverdefinedVal() || SCValue == LatticeFunc->getUntrackedVal()) { // All destinations are executable! Succs.assign(TI.getNumSuccessors(), true); return; } // If undefined, neither is feasible yet. if (SCValue == LatticeFunc->getUndefVal()) return; Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); if (C == 0 || !isa(C)) { // All destinations are executable! Succs.assign(TI.getNumSuccessors(), true); return; } Succs[SI.findCaseValue(cast(C))] = true; } /// isEdgeFeasible - Return true if the control flow edge from the 'From' /// basic block to the 'To' basic block is currently feasible... bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { SmallVector SuccFeasible; TerminatorInst *TI = From->getTerminator(); getFeasibleSuccessors(*TI, SuccFeasible); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (TI->getSuccessor(i) == To && SuccFeasible[i]) return true; return false; } void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { SmallVector SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable... for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SparseSolver::visitPHINode(PHINode &PN) { LatticeVal PNIV = getOrInitValueState(&PN); LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); // If this value is already overdefined (common) just return. if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) return; // Quick exit // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) { UpdateState(PN, Overdefined); return; } // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the // transfer function to give us the merge of the incoming values. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { // If the edge is not yet known to be feasible, it doesn't impact the PHI. if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; // Merge in this value. LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); if (OpVal != PNIV) PNIV = LatticeFunc->MergeValues(PNIV, OpVal); if (PNIV == Overdefined) break; // Rest of input values don't matter. } // Update the PHI with the compute value, which is the merge of the inputs. UpdateState(PN, PNIV); } void SparseSolver::visitInst(Instruction &I) { // PHIs are handled by the propagation logic, they are never passed into the // transfer functions. if (PHINode *PN = dyn_cast(&I)) return visitPHINode(*PN); // Otherwise, ask the transfer function what the result is. If this is // something that we care about, remember it. LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); if (IV != LatticeFunc->getUntrackedVal()) UpdateState(I, IV); if (TerminatorInst *TI = dyn_cast(&I)) visitTerminatorInst(*TI); } void SparseSolver::Solve(Function &F) { MarkBlockExecutable(F.begin()); // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty()) { // Process the instruction work list. while (!InstWorkList.empty()) { Instruction *I = InstWorkList.back(); InstWorkList.pop_back(); DOUT << "\nPopped off I-WL: " << *I; // "I" got into the work list because it made a transition. See if any // users are both live and in need of updating. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *U = cast(*UI); if (BBExecutable.count(U->getParent())) // Inst is executable? visitInst(*U); } } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DOUT << "\nPopped off BBWL: " << *BB; // Notify all instructions in this basic block that they are newly // executable. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) visitInst(*I); } } } void SparseSolver::Print(Function &F, std::ostream &OS) { OS << "\nFUNCTION: " << F.getNameStr() << "\n"; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!BBExecutable.count(BB)) OS << "INFEASIBLE: "; OS << "\t"; if (BB->hasName()) OS << BB->getNameStr() << ":\n"; else OS << "; anon bb\n"; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { LatticeFunc->PrintValue(getLatticeState(I), OS); OS << *I; } OS << "\n"; } }