//===- llvm/unittests/IR/DominatorTreeTest.cpp - Constants unit tests -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PostDominators.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; /// Build the dominator tree for the function and run the Test. static void runWithDomTree(Module &M, StringRef FuncName, function_ref *PDT)> Test) { auto *F = M.getFunction(FuncName); ASSERT_NE(F, nullptr) << "Could not find " << FuncName; // Compute the dominator tree for the function. DominatorTree DT(*F); DominatorTreeBase PDT(/*isPostDom*/ true); PDT.recalculate(*F); Test(*F, &DT, &PDT); } static std::unique_ptr makeLLVMModule(LLVMContext &Context, StringRef ModuleStr) { SMDiagnostic Err; std::unique_ptr M = parseAssemblyString(ModuleStr, Err, Context); assert(M && "Bad assembly?"); return M; } TEST(DominatorTree, Unreachable) { StringRef ModuleString = "declare i32 @g()\n" "define void @f(i32 %x) personality i32 ()* @g {\n" "bb0:\n" " %y1 = add i32 %x, 1\n" " %y2 = add i32 %x, 1\n" " %y3 = invoke i32 @g() to label %bb1 unwind label %bb2\n" "bb1:\n" " %y4 = add i32 %x, 1\n" " br label %bb4\n" "bb2:\n" " %y5 = landingpad i32\n" " cleanup\n" " br label %bb4\n" "bb3:\n" " %y6 = add i32 %x, 1\n" " %y7 = add i32 %x, 1\n" " ret void\n" "bb4:\n" " %y8 = phi i32 [0, %bb2], [%y4, %bb1]\n" " %y9 = phi i32 [0, %bb2], [%y4, %bb1]\n" " ret void\n" "}\n"; // Parse the module. LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleString); runWithDomTree( *M, "f", [&](Function &F, DominatorTree *DT, DominatorTreeBase *PDT) { Function::iterator FI = F.begin(); BasicBlock *BB0 = &*FI++; BasicBlock::iterator BBI = BB0->begin(); Instruction *Y1 = &*BBI++; Instruction *Y2 = &*BBI++; Instruction *Y3 = &*BBI++; BasicBlock *BB1 = &*FI++; BBI = BB1->begin(); Instruction *Y4 = &*BBI++; BasicBlock *BB2 = &*FI++; BBI = BB2->begin(); Instruction *Y5 = &*BBI++; BasicBlock *BB3 = &*FI++; BBI = BB3->begin(); Instruction *Y6 = &*BBI++; Instruction *Y7 = &*BBI++; BasicBlock *BB4 = &*FI++; BBI = BB4->begin(); Instruction *Y8 = &*BBI++; Instruction *Y9 = &*BBI++; // Reachability EXPECT_TRUE(DT->isReachableFromEntry(BB0)); EXPECT_TRUE(DT->isReachableFromEntry(BB1)); EXPECT_TRUE(DT->isReachableFromEntry(BB2)); EXPECT_FALSE(DT->isReachableFromEntry(BB3)); EXPECT_TRUE(DT->isReachableFromEntry(BB4)); // BB dominance EXPECT_TRUE(DT->dominates(BB0, BB0)); EXPECT_TRUE(DT->dominates(BB0, BB1)); EXPECT_TRUE(DT->dominates(BB0, BB2)); EXPECT_TRUE(DT->dominates(BB0, BB3)); EXPECT_TRUE(DT->dominates(BB0, BB4)); EXPECT_FALSE(DT->dominates(BB1, BB0)); EXPECT_TRUE(DT->dominates(BB1, BB1)); EXPECT_FALSE(DT->dominates(BB1, BB2)); EXPECT_TRUE(DT->dominates(BB1, BB3)); EXPECT_FALSE(DT->dominates(BB1, BB4)); EXPECT_FALSE(DT->dominates(BB2, BB0)); EXPECT_FALSE(DT->dominates(BB2, BB1)); EXPECT_TRUE(DT->dominates(BB2, BB2)); EXPECT_TRUE(DT->dominates(BB2, BB3)); EXPECT_FALSE(DT->dominates(BB2, BB4)); EXPECT_FALSE(DT->dominates(BB3, BB0)); EXPECT_FALSE(DT->dominates(BB3, BB1)); EXPECT_FALSE(DT->dominates(BB3, BB2)); EXPECT_TRUE(DT->dominates(BB3, BB3)); EXPECT_FALSE(DT->dominates(BB3, BB4)); // BB proper dominance EXPECT_FALSE(DT->properlyDominates(BB0, BB0)); EXPECT_TRUE(DT->properlyDominates(BB0, BB1)); EXPECT_TRUE(DT->properlyDominates(BB0, BB2)); EXPECT_TRUE(DT->properlyDominates(BB0, BB3)); EXPECT_FALSE(DT->properlyDominates(BB1, BB0)); EXPECT_FALSE(DT->properlyDominates(BB1, BB1)); EXPECT_FALSE(DT->properlyDominates(BB1, BB2)); EXPECT_TRUE(DT->properlyDominates(BB1, BB3)); EXPECT_FALSE(DT->properlyDominates(BB2, BB0)); EXPECT_FALSE(DT->properlyDominates(BB2, BB1)); EXPECT_FALSE(DT->properlyDominates(BB2, BB2)); EXPECT_TRUE(DT->properlyDominates(BB2, BB3)); EXPECT_FALSE(DT->properlyDominates(BB3, BB0)); EXPECT_FALSE(DT->properlyDominates(BB3, BB1)); EXPECT_FALSE(DT->properlyDominates(BB3, BB2)); EXPECT_FALSE(DT->properlyDominates(BB3, BB3)); // Instruction dominance in the same reachable BB EXPECT_FALSE(DT->dominates(Y1, Y1)); EXPECT_TRUE(DT->dominates(Y1, Y2)); EXPECT_FALSE(DT->dominates(Y2, Y1)); EXPECT_FALSE(DT->dominates(Y2, Y2)); // Instruction dominance in the same unreachable BB EXPECT_TRUE(DT->dominates(Y6, Y6)); EXPECT_TRUE(DT->dominates(Y6, Y7)); EXPECT_TRUE(DT->dominates(Y7, Y6)); EXPECT_TRUE(DT->dominates(Y7, Y7)); // Invoke EXPECT_TRUE(DT->dominates(Y3, Y4)); EXPECT_FALSE(DT->dominates(Y3, Y5)); // Phi EXPECT_TRUE(DT->dominates(Y2, Y9)); EXPECT_FALSE(DT->dominates(Y3, Y9)); EXPECT_FALSE(DT->dominates(Y8, Y9)); // Anything dominates unreachable EXPECT_TRUE(DT->dominates(Y1, Y6)); EXPECT_TRUE(DT->dominates(Y3, Y6)); // Unreachable doesn't dominate reachable EXPECT_FALSE(DT->dominates(Y6, Y1)); // Instruction, BB dominance EXPECT_FALSE(DT->dominates(Y1, BB0)); EXPECT_TRUE(DT->dominates(Y1, BB1)); EXPECT_TRUE(DT->dominates(Y1, BB2)); EXPECT_TRUE(DT->dominates(Y1, BB3)); EXPECT_TRUE(DT->dominates(Y1, BB4)); EXPECT_FALSE(DT->dominates(Y3, BB0)); EXPECT_TRUE(DT->dominates(Y3, BB1)); EXPECT_FALSE(DT->dominates(Y3, BB2)); EXPECT_TRUE(DT->dominates(Y3, BB3)); EXPECT_FALSE(DT->dominates(Y3, BB4)); EXPECT_TRUE(DT->dominates(Y6, BB3)); // Post dominance. EXPECT_TRUE(PDT->dominates(BB0, BB0)); EXPECT_FALSE(PDT->dominates(BB1, BB0)); EXPECT_FALSE(PDT->dominates(BB2, BB0)); EXPECT_FALSE(PDT->dominates(BB3, BB0)); EXPECT_TRUE(PDT->dominates(BB4, BB1)); // Dominance descendants. SmallVector DominatedBBs, PostDominatedBBs; DT->getDescendants(BB0, DominatedBBs); PDT->getDescendants(BB0, PostDominatedBBs); EXPECT_EQ(DominatedBBs.size(), 4UL); EXPECT_EQ(PostDominatedBBs.size(), 1UL); // BB3 is unreachable. It should have no dominators nor postdominators. DominatedBBs.clear(); PostDominatedBBs.clear(); DT->getDescendants(BB3, DominatedBBs); DT->getDescendants(BB3, PostDominatedBBs); EXPECT_EQ(DominatedBBs.size(), 0UL); EXPECT_EQ(PostDominatedBBs.size(), 0UL); // Check DFS Numbers before DT->updateDFSNumbers(); EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL); EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 7UL); EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL); EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 2UL); EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 5UL); EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 6UL); EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 3UL); EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 4UL); // Reattach block 3 to block 1 and recalculate BB1->getTerminator()->eraseFromParent(); BranchInst::Create(BB4, BB3, ConstantInt::getTrue(F.getContext()), BB1); DT->recalculate(F); // Check DFS Numbers after DT->updateDFSNumbers(); EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL); EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 9UL); EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL); EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 4UL); EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 7UL); EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 8UL); EXPECT_EQ(DT->getNode(BB3)->getDFSNumIn(), 2UL); EXPECT_EQ(DT->getNode(BB3)->getDFSNumOut(), 3UL); EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 5UL); EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 6UL); // Change root node DT->verifyDomTree(); BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "new_entry", &F, BB0); BranchInst::Create(BB0, NewEntry); EXPECT_EQ(F.begin()->getName(), NewEntry->getName()); EXPECT_TRUE(&F.getEntryBlock() == NewEntry); DT->setNewRoot(NewEntry); DT->verifyDomTree(); }); } TEST(DominatorTree, NonUniqueEdges) { StringRef ModuleString = "define i32 @f(i32 %i, i32 *%p) {\n" "bb0:\n" " store i32 %i, i32 *%p\n" " switch i32 %i, label %bb2 [\n" " i32 0, label %bb1\n" " i32 1, label %bb1\n" " ]\n" " bb1:\n" " ret i32 1\n" " bb2:\n" " ret i32 4\n" "}\n"; // Parse the module. LLVMContext Context; std::unique_ptr M = makeLLVMModule(Context, ModuleString); runWithDomTree( *M, "f", [&](Function &F, DominatorTree *DT, DominatorTreeBase *PDT) { Function::iterator FI = F.begin(); BasicBlock *BB0 = &*FI++; BasicBlock *BB1 = &*FI++; BasicBlock *BB2 = &*FI++; const TerminatorInst *TI = BB0->getTerminator(); assert(TI->getNumSuccessors() == 3 && "Switch has three successors"); BasicBlockEdge Edge_BB0_BB2(BB0, TI->getSuccessor(0)); assert(Edge_BB0_BB2.getEnd() == BB2 && "Default label is the 1st successor"); BasicBlockEdge Edge_BB0_BB1_a(BB0, TI->getSuccessor(1)); assert(Edge_BB0_BB1_a.getEnd() == BB1 && "BB1 is the 2nd successor"); BasicBlockEdge Edge_BB0_BB1_b(BB0, TI->getSuccessor(2)); assert(Edge_BB0_BB1_b.getEnd() == BB1 && "BB1 is the 3rd successor"); EXPECT_TRUE(DT->dominates(Edge_BB0_BB2, BB2)); EXPECT_FALSE(DT->dominates(Edge_BB0_BB2, BB1)); EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB1)); EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB1)); EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB2)); EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB2)); }); }