//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/BasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrDesc.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Assembly/Writer.h" #include using namespace llvm; MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), AddressTaken(false) { Insts.Parent = this; } MachineBasicBlock::~MachineBasicBlock() { LeakDetector::removeGarbageObject(this); } raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { MBB.print(OS); return OS; } /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the /// parent pointer of the MBB, the MBB numbering, and any instructions in the /// MBB to be on the right operand list for registers. /// /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it /// gets the next available unique MBB number. If it is removed from a /// MachineFunction, it goes back to being #-1. void ilist_traits::addNodeToList(MachineBasicBlock *N) { MachineFunction &MF = *N->getParent(); N->Number = MF.addToMBBNumbering(N); // Make sure the instructions have their operands in the reginfo lists. MachineRegisterInfo &RegInfo = MF.getRegInfo(); for (MachineBasicBlock::iterator I = N->begin(), E = N->end(); I != E; ++I) I->AddRegOperandsToUseLists(RegInfo); LeakDetector::removeGarbageObject(N); } void ilist_traits::removeNodeFromList(MachineBasicBlock *N) { N->getParent()->removeFromMBBNumbering(N->Number); N->Number = -1; LeakDetector::addGarbageObject(N); } /// addNodeToList (MI) - When we add an instruction to a basic block /// list, we update its parent pointer and add its operands from reg use/def /// lists if appropriate. void ilist_traits::addNodeToList(MachineInstr *N) { assert(N->getParent() == 0 && "machine instruction already in a basic block"); N->setParent(Parent); // Add the instruction's register operands to their corresponding // use/def lists. MachineFunction *MF = Parent->getParent(); N->AddRegOperandsToUseLists(MF->getRegInfo()); LeakDetector::removeGarbageObject(N); } /// removeNodeFromList (MI) - When we remove an instruction from a basic block /// list, we update its parent pointer and remove its operands from reg use/def /// lists if appropriate. void ilist_traits::removeNodeFromList(MachineInstr *N) { assert(N->getParent() != 0 && "machine instruction not in a basic block"); // Remove from the use/def lists. N->RemoveRegOperandsFromUseLists(); N->setParent(0); LeakDetector::addGarbageObject(N); } /// transferNodesFromList (MI) - When moving a range of instructions from one /// MBB list to another, we need to update the parent pointers and the use/def /// lists. void ilist_traits:: transferNodesFromList(ilist_traits &fromList, MachineBasicBlock::iterator first, MachineBasicBlock::iterator last) { assert(Parent->getParent() == fromList.Parent->getParent() && "MachineInstr parent mismatch!"); // Splice within the same MBB -> no change. if (Parent == fromList.Parent) return; // If splicing between two blocks within the same function, just update the // parent pointers. for (; first != last; ++first) first->setParent(Parent); } void ilist_traits::deleteNode(MachineInstr* MI) { assert(!MI->getParent() && "MI is still in a block!"); Parent->getParent()->DeleteMachineInstr(MI); } MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { iterator I = end(); while (I != begin() && (--I)->getDesc().isTerminator()) ; /*noop */ if (I != end() && !I->getDesc().isTerminator()) ++I; return I; } /// isOnlyReachableViaFallthough - Return true if this basic block has /// exactly one predecessor and the control transfer mechanism between /// the predecessor and this block is a fall-through. bool MachineBasicBlock::isOnlyReachableByFallthrough() const { // If this is a landing pad, it isn't a fall through. If it has no preds, // then nothing falls through to it. if (isLandingPad() || pred_empty()) return false; // If there isn't exactly one predecessor, it can't be a fall through. const_pred_iterator PI = pred_begin(), PI2 = PI; ++PI2; if (PI2 != pred_end()) return false; // The predecessor has to be immediately before this block. const MachineBasicBlock *Pred = *PI; if (!Pred->isLayoutSuccessor(this)) return false; // If the block is completely empty, then it definitely does fall through. if (Pred->empty()) return true; // Otherwise, check the last instruction. const MachineInstr &LastInst = Pred->back(); return !LastInst.getDesc().isBarrier(); } void MachineBasicBlock::dump() const { print(dbgs()); } static inline void OutputReg(raw_ostream &os, unsigned RegNo, const TargetRegisterInfo *TRI = 0) { if (RegNo != 0 && TargetRegisterInfo::isPhysicalRegister(RegNo)) { if (TRI) os << " %" << TRI->get(RegNo).Name; else os << " %physreg" << RegNo; } else os << " %reg" << RegNo; } StringRef MachineBasicBlock::getName() const { if (const BasicBlock *LBB = getBasicBlock()) return LBB->getName(); else return "(null)"; } void MachineBasicBlock::print(raw_ostream &OS) const { const MachineFunction *MF = getParent(); if (!MF) { OS << "Can't print out MachineBasicBlock because parent MachineFunction" << " is null\n"; return; } if (Alignment) { OS << "Alignment " << Alignment << "\n"; } OS << "BB#" << getNumber() << ": "; const char *Comma = ""; if (const BasicBlock *LBB = getBasicBlock()) { OS << Comma << "derived from LLVM BB "; WriteAsOperand(OS, LBB, /*PrintType=*/false); Comma = ", "; } if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } OS << '\n'; const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); if (!livein_empty()) { OS << " Live Ins:"; for (const_livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) OutputReg(OS, *I, TRI); OS << '\n'; } // Print the preds of this block according to the CFG. if (!pred_empty()) { OS << " Predecessors according to CFG:"; for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) OS << " BB#" << (*PI)->getNumber(); OS << '\n'; } for (const_iterator I = begin(); I != end(); ++I) { OS << '\t'; I->print(OS, &getParent()->getTarget()); } // Print the successors of this block according to the CFG. if (!succ_empty()) { OS << " Successors according to CFG:"; for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) OS << " BB#" << (*SI)->getNumber(); OS << '\n'; } } void MachineBasicBlock::removeLiveIn(unsigned Reg) { livein_iterator I = std::find(livein_begin(), livein_end(), Reg); assert(I != livein_end() && "Not a live in!"); LiveIns.erase(I); } bool MachineBasicBlock::isLiveIn(unsigned Reg) const { const_livein_iterator I = std::find(livein_begin(), livein_end(), Reg); return I != livein_end(); } void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { getParent()->splice(NewAfter, this); } void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { MachineFunction::iterator BBI = NewBefore; getParent()->splice(++BBI, this); } void MachineBasicBlock::updateTerminator() { const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); // A block with no successors has no concerns with fall-through edges. if (this->succ_empty()) return; MachineBasicBlock *TBB = 0, *FBB = 0; SmallVector Cond; bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); (void) B; assert(!B && "UpdateTerminators requires analyzable predecessors!"); if (Cond.empty()) { if (TBB) { // The block has an unconditional branch. If its successor is now // its layout successor, delete the branch. if (isLayoutSuccessor(TBB)) TII->RemoveBranch(*this); } else { // The block has an unconditional fallthrough. If its successor is not // its layout successor, insert a branch. TBB = *succ_begin(); if (!isLayoutSuccessor(TBB)) TII->InsertBranch(*this, TBB, 0, Cond); } } else { if (FBB) { // The block has a non-fallthrough conditional branch. If one of its // successors is its layout successor, rewrite it to a fallthrough // conditional branch. if (isLayoutSuccessor(TBB)) { if (TII->ReverseBranchCondition(Cond)) return; TII->RemoveBranch(*this); TII->InsertBranch(*this, FBB, 0, Cond); } else if (isLayoutSuccessor(FBB)) { TII->RemoveBranch(*this); TII->InsertBranch(*this, TBB, 0, Cond); } } else { // The block has a fallthrough conditional branch. MachineBasicBlock *MBBA = *succ_begin(); MachineBasicBlock *MBBB = *llvm::next(succ_begin()); if (MBBA == TBB) std::swap(MBBB, MBBA); if (isLayoutSuccessor(TBB)) { if (TII->ReverseBranchCondition(Cond)) { // We can't reverse the condition, add an unconditional branch. Cond.clear(); TII->InsertBranch(*this, MBBA, 0, Cond); return; } TII->RemoveBranch(*this); TII->InsertBranch(*this, MBBA, 0, Cond); } else if (!isLayoutSuccessor(MBBA)) { TII->RemoveBranch(*this); TII->InsertBranch(*this, TBB, MBBA, Cond); } } } } void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ) { Successors.push_back(succ); succ->addPredecessor(this); } void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { succ->removePredecessor(this); succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); assert(I != Successors.end() && "Not a current successor!"); Successors.erase(I); } MachineBasicBlock::succ_iterator MachineBasicBlock::removeSuccessor(succ_iterator I) { assert(I != Successors.end() && "Not a current successor!"); (*I)->removePredecessor(this); return Successors.erase(I); } void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { Predecessors.push_back(pred); } void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { std::vector::iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); Predecessors.erase(I); } void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { if (this == fromMBB) return; for (MachineBasicBlock::succ_iterator I = fromMBB->succ_begin(), E = fromMBB->succ_end(); I != E; ++I) addSuccessor(*I); while (!fromMBB->succ_empty()) fromMBB->removeSuccessor(fromMBB->succ_begin()); } bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { std::vector::const_iterator I = std::find(Successors.begin(), Successors.end(), MBB); return I != Successors.end(); } bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { MachineFunction::const_iterator I(this); return llvm::next(I) == MachineFunction::const_iterator(MBB); } bool MachineBasicBlock::canFallThrough() { MachineFunction::iterator Fallthrough = this; ++Fallthrough; // If FallthroughBlock is off the end of the function, it can't fall through. if (Fallthrough == getParent()->end()) return false; // If FallthroughBlock isn't a successor, no fallthrough is possible. if (!isSuccessor(Fallthrough)) return false; // Analyze the branches, if any, at the end of the block. MachineBasicBlock *TBB = 0, *FBB = 0; SmallVector Cond; const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { // If we couldn't analyze the branch, examine the last instruction. // If the block doesn't end in a known control barrier, assume fallthrough // is possible. The isPredicable check is needed because this code can be // called during IfConversion, where an instruction which is normally a // Barrier is predicated and thus no longer an actual control barrier. This // is over-conservative though, because if an instruction isn't actually // predicated we could still treat it like a barrier. return empty() || !back().getDesc().isBarrier() || back().getDesc().isPredicable(); } // If there is no branch, control always falls through. if (TBB == 0) return true; // If there is some explicit branch to the fallthrough block, it can obviously // reach, even though the branch should get folded to fall through implicitly. if (MachineFunction::iterator(TBB) == Fallthrough || MachineFunction::iterator(FBB) == Fallthrough) return true; // If it's an unconditional branch to some block not the fall through, it // doesn't fall through. if (Cond.empty()) return false; // Otherwise, if it is conditional and has no explicit false block, it falls // through. return FBB == 0; } /// removeFromParent - This method unlinks 'this' from the containing function, /// and returns it, but does not delete it. MachineBasicBlock *MachineBasicBlock::removeFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->remove(this); return this; } /// eraseFromParent - This method unlinks 'this' from the containing function, /// and deletes it. void MachineBasicBlock::eraseFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->erase(this); } /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to /// 'Old', change the code and CFG so that it branches to 'New' instead. void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New) { assert(Old != New && "Cannot replace self with self!"); MachineBasicBlock::iterator I = end(); while (I != begin()) { --I; if (!I->getDesc().isTerminator()) break; // Scan the operands of this machine instruction, replacing any uses of Old // with New. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (I->getOperand(i).isMBB() && I->getOperand(i).getMBB() == Old) I->getOperand(i).setMBB(New); } // Update the successor information. removeSuccessor(Old); addSuccessor(New); } /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the /// CFG to be inserted. If we have proven that MBB can only branch to DestA and /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be /// null. /// /// Besides DestA and DestB, retain other edges leading to LandingPads /// (currently there can be only one; we don't check or require that here). /// Note it is possible that DestA and/or DestB are LandingPads. bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, MachineBasicBlock *DestB, bool isCond) { // The values of DestA and DestB frequently come from a call to the // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial // values from there. // // 1. If both DestA and DestB are null, then the block ends with no branches // (it falls through to its successor). // 2. If DestA is set, DestB is null, and isCond is false, then the block ends // with only an unconditional branch. // 3. If DestA is set, DestB is null, and isCond is true, then the block ends // with a conditional branch that falls through to a successor (DestB). // 4. If DestA and DestB is set and isCond is true, then the block ends with a // conditional branch followed by an unconditional branch. DestA is the // 'true' destination and DestB is the 'false' destination. bool MadeChange = false; bool AddedFallThrough = false; MachineFunction::iterator FallThru = llvm::next(MachineFunction::iterator(this)); if (isCond) { // If this block ends with a conditional branch that falls through to its // successor, set DestB as the successor. if (DestB == 0 && FallThru != getParent()->end()) { DestB = FallThru; AddedFallThrough = true; } } else { // If this is an unconditional branch with no explicit dest, it must just be // a fallthrough into DestA. if (DestA == 0 && FallThru != getParent()->end()) { DestA = FallThru; AddedFallThrough = true; } } MachineBasicBlock::succ_iterator SI = succ_begin(); MachineBasicBlock *OrigDestA = DestA, *OrigDestB = DestB; while (SI != succ_end()) { const MachineBasicBlock *MBB = *SI; if (MBB == DestA) { DestA = 0; ++SI; } else if (MBB == DestB) { DestB = 0; ++SI; } else if (MBB->isLandingPad() && MBB != OrigDestA && MBB != OrigDestB) { ++SI; } else { // Otherwise, this is a superfluous edge, remove it. SI = removeSuccessor(SI); MadeChange = true; } } if (!AddedFallThrough) assert(DestA == 0 && DestB == 0 && "MachineCFG is missing edges!"); else if (isCond) assert(DestA == 0 && "MachineCFG is missing edges!"); return MadeChange; } void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB, bool t) { OS << "BB#" << MBB->getNumber(); }