//===- Reader.cpp - Code to read bytecode files ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Bytecode/Reader.h // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // // TODO: Allow passing in an option to ignore the symbol table // //===----------------------------------------------------------------------===// #include "AnalyzerInternals.h" #include "llvm/Module.h" #include "llvm/Bytecode/Format.h" #include "Support/StringExtras.h" #include #include using namespace llvm; #define PARSE_ERROR(inserters) \ { \ std::ostringstream errormsg; \ errormsg << inserters; \ if ( ! handler->handleError( errormsg.str() ) ) \ throw std::string(errormsg.str()); \ } const Type *AbstractBytecodeParser::getType(unsigned ID) { //cerr << "Looking up Type ID: " << ID << "\n"; if (ID < Type::FirstDerivedTyID) if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID)) return T; // Asked for a primitive type... // Otherwise, derived types need offset... ID -= Type::FirstDerivedTyID; if (!CompactionTypeTable.empty()) { if (ID >= CompactionTypeTable.size()) PARSE_ERROR("Type ID out of range for compaction table!"); return CompactionTypeTable[ID]; } // Is it a module-level type? if (ID < ModuleTypes.size()) return ModuleTypes[ID].get(); // Nope, is it a function-level type? ID -= ModuleTypes.size(); if (ID < FunctionTypes.size()) return FunctionTypes[ID].get(); PARSE_ERROR("Illegal type reference!"); return Type::VoidTy; } bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf, std::vector &Operands) { Operands.clear(); unsigned iType = 0; unsigned Opcode = 0; unsigned Op = read(Buf, EndBuf); // bits Instruction format: Common to all formats // -------------------------- // 01-00: Opcode type, fixed to 1. // 07-02: Opcode Opcode = (Op >> 2) & 63; Operands.resize((Op >> 0) & 03); switch (Operands.size()) { case 1: // bits Instruction format: // -------------------------- // 19-08: Resulting type plane // 31-20: Operand #1 (if set to (2^12-1), then zero operands) // iType = (Op >> 8) & 4095; Operands[0] = (Op >> 20) & 4095; if (Operands[0] == 4095) // Handle special encoding for 0 operands... Operands.resize(0); break; case 2: // bits Instruction format: // -------------------------- // 15-08: Resulting type plane // 23-16: Operand #1 // 31-24: Operand #2 // iType = (Op >> 8) & 255; Operands[0] = (Op >> 16) & 255; Operands[1] = (Op >> 24) & 255; break; case 3: // bits Instruction format: // -------------------------- // 13-08: Resulting type plane // 19-14: Operand #1 // 25-20: Operand #2 // 31-26: Operand #3 // iType = (Op >> 8) & 63; Operands[0] = (Op >> 14) & 63; Operands[1] = (Op >> 20) & 63; Operands[2] = (Op >> 26) & 63; break; case 0: Buf -= 4; // Hrm, try this again... Opcode = read_vbr_uint(Buf, EndBuf); Opcode >>= 2; iType = read_vbr_uint(Buf, EndBuf); unsigned NumOperands = read_vbr_uint(Buf, EndBuf); Operands.resize(NumOperands); if (NumOperands == 0) PARSE_ERROR("Zero-argument instruction found; this is invalid."); for (unsigned i = 0; i != NumOperands; ++i) Operands[i] = read_vbr_uint(Buf, EndBuf); align32(Buf, EndBuf); break; } return handler->handleInstruction(Opcode, getType(iType), Operands); } /// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one /// basicblock at a time. This method reads in one of the basicblock packets. void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf, BufPtr EndBuf, unsigned BlockNo) { handler->handleBasicBlockBegin( BlockNo ); std::vector Args; bool is_terminating = false; while (Buf < EndBuf) is_terminating = ParseInstruction(Buf, EndBuf, Args); if ( ! is_terminating ) PARSE_ERROR( "Failed to recognize instruction as terminating at end of block"); handler->handleBasicBlockEnd( BlockNo ); } /// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the /// body of a function. In post 1.0 bytecode files, we no longer emit basic /// block individually, in order to avoid per-basic-block overhead. unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf, BufPtr EndBuf) { unsigned BlockNo = 0; std::vector Args; while (Buf < EndBuf) { handler->handleBasicBlockBegin( BlockNo ); // Read instructions into this basic block until we get to a terminator bool is_terminating = false; while (Buf < EndBuf && !is_terminating ) is_terminating = ParseInstruction(Buf, EndBuf, Args ) ; if (!is_terminating) PARSE_ERROR( "Non-terminated basic block found!"); handler->handleBasicBlockEnd( BlockNo ); ++BlockNo; } return BlockNo; } void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) { handler->handleSymbolTableBegin(); while (Buf < EndBuf) { // Symtab block header: [num entries][type id number] unsigned NumEntries = read_vbr_uint(Buf, EndBuf); unsigned Typ = read_vbr_uint(Buf, EndBuf); const Type *Ty = getType(Typ); handler->handleSymbolTablePlane( Typ, NumEntries, Ty ); for (unsigned i = 0; i != NumEntries; ++i) { // Symtab entry: [def slot #][name] unsigned slot = read_vbr_uint(Buf, EndBuf); std::string Name = read_str(Buf, EndBuf); if (Typ == Type::TypeTyID) handler->handleSymbolTableType( i, slot, Name ); else handler->handleSymbolTableValue( i, slot, Name ); } } if (Buf > EndBuf) PARSE_ERROR("Tried to read past end of buffer while reading symbol table."); handler->handleSymbolTableEnd(); } void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) { if (FunctionSignatureList.empty()) throw std::string("FunctionSignatureList empty!"); const Type *FType = FunctionSignatureList.back(); FunctionSignatureList.pop_back(); // Save the information for future reading of the function LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf); // Pretend we've `parsed' this function Buf = EndBuf; } void AbstractBytecodeParser::ParseNextFunction(Type* FType) { // Find {start, end} pointers and slot in the map. If not there, we're done. LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(FType); // Make sure we found it if ( Fi == LazyFunctionLoadMap.end() ) { PARSE_ERROR("Unrecognized function of type " << FType->getDescription()); return; } BufPtr Buf = Fi->second.Buf; BufPtr EndBuf = Fi->second.EndBuf; assert(Fi->first == FType); LazyFunctionLoadMap.erase(Fi); this->ParseFunctionBody( FType, Buf, EndBuf ); } void AbstractBytecodeParser::ParseFunctionBody(const Type* FType, BufPtr &Buf, BufPtr EndBuf ) { GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; unsigned LinkageType = read_vbr_uint(Buf, EndBuf); switch (LinkageType) { case 0: Linkage = GlobalValue::ExternalLinkage; break; case 1: Linkage = GlobalValue::WeakLinkage; break; case 2: Linkage = GlobalValue::AppendingLinkage; break; case 3: Linkage = GlobalValue::InternalLinkage; break; case 4: Linkage = GlobalValue::LinkOnceLinkage; break; default: PARSE_ERROR("Invalid linkage type for Function."); Linkage = GlobalValue::InternalLinkage; break; } handler->handleFunctionBegin(FType,Linkage); // Keep track of how many basic blocks we have read in... unsigned BlockNum = 0; bool InsertedArguments = false; while (Buf < EndBuf) { unsigned Type, Size; BufPtr OldBuf = Buf; readBlock(Buf, EndBuf, Type, Size); switch (Type) { case BytecodeFormat::ConstantPool: ParseConstantPool(Buf, Buf+Size, FunctionTypes ); break; case BytecodeFormat::CompactionTable: ParseCompactionTable(Buf, Buf+Size); break; case BytecodeFormat::BasicBlock: ParseBasicBlock(Buf, Buf+Size, BlockNum++); break; case BytecodeFormat::InstructionList: if (BlockNum) PARSE_ERROR("InstructionList must come before basic blocks!"); BlockNum = ParseInstructionList(Buf, Buf+Size); break; case BytecodeFormat::SymbolTable: ParseSymbolTable(Buf, Buf+Size ); break; default: Buf += Size; if (OldBuf > Buf) PARSE_ERROR("Wrapped around reading bytecode"); break; } // Malformed bc file if read past end of block. align32(Buf, EndBuf); } handler->handleFunctionEnd(FType); // Clear out function-level types... FunctionTypes.clear(); CompactionTypeTable.clear(); } void AbstractBytecodeParser::ParseAllFunctionBodies() { LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin(); LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end(); while ( Fi != Fe ) { const Type* FType = Fi->first; this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf); } } void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) { handler->handleCompactionTableBegin(); while (Buf != End) { unsigned NumEntries = read_vbr_uint(Buf, End); unsigned Ty; if ((NumEntries & 3) == 3) { NumEntries >>= 2; Ty = read_vbr_uint(Buf, End); } else { Ty = NumEntries >> 2; NumEntries &= 3; } handler->handleCompactionTablePlane( Ty, NumEntries ); if (Ty == Type::TypeTyID) { for (unsigned i = 0; i != NumEntries; ++i) { unsigned TypeSlot = read_vbr_uint(Buf,End); const Type *Typ = getGlobalTableType(TypeSlot); handler->handleCompactionTableType( i, TypeSlot, Typ ); } } else { const Type *Typ = getType(Ty); // Push the implicit zero for (unsigned i = 0; i != NumEntries; ++i) { unsigned ValSlot = read_vbr_uint(Buf, End); handler->handleCompactionTableValue( i, ValSlot, Typ ); } } } handler->handleCompactionTableEnd(); } const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf, const unsigned char *EndBuf) { unsigned PrimType = read_vbr_uint(Buf, EndBuf); const Type *Val = 0; if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) return Val; switch (PrimType) { case Type::FunctionTyID: { const Type *RetType = getType(read_vbr_uint(Buf, EndBuf)); unsigned NumParams = read_vbr_uint(Buf, EndBuf); std::vector Params; while (NumParams--) Params.push_back(getType(read_vbr_uint(Buf, EndBuf))); bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); Type* result = FunctionType::get(RetType, Params, isVarArg); handler->handleType( result ); return result; } case Type::ArrayTyID: { unsigned ElTyp = read_vbr_uint(Buf, EndBuf); const Type *ElementType = getType(ElTyp); unsigned NumElements = read_vbr_uint(Buf, EndBuf); BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" << NumElements << "\n"); Type* result = ArrayType::get(ElementType, NumElements); handler->handleType( result ); return result; } case Type::StructTyID: { std::vector Elements; unsigned Typ = read_vbr_uint(Buf, EndBuf); while (Typ) { // List is terminated by void/0 typeid Elements.push_back(getType(Typ)); Typ = read_vbr_uint(Buf, EndBuf); } Type* result = StructType::get(Elements); handler->handleType( result ); return result; } case Type::PointerTyID: { unsigned ElTyp = read_vbr_uint(Buf, EndBuf); BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n"); Type* result = PointerType::get(getType(ElTyp)); handler->handleType( result ); return result; } case Type::OpaqueTyID: { Type* result = OpaqueType::get(); handler->handleType( result ); return result; } default: PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n"); return Val; } } // ParseTypeConstants - We have to use this weird code to handle recursive // types. We know that recursive types will only reference the current slab of // values in the type plane, but they can forward reference types before they // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix // this ugly problem, we pessimistically insert an opaque type for each type we // are about to read. This means that forward references will resolve to // something and when we reread the type later, we can replace the opaque type // with a new resolved concrete type. // void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf, const unsigned char *EndBuf, TypeListTy &Tab, unsigned NumEntries) { assert(Tab.size() == 0 && "should not have read type constants in before!"); // Insert a bunch of opaque types to be resolved later... Tab.reserve(NumEntries); for (unsigned i = 0; i != NumEntries; ++i) Tab.push_back(OpaqueType::get()); // Loop through reading all of the types. Forward types will make use of the // opaque types just inserted. // for (unsigned i = 0; i != NumEntries; ++i) { const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); if (NewTy == 0) throw std::string("Couldn't parse type!"); BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << "' Replacing: " << OldTy << "\n"); // Don't insertValue the new type... instead we want to replace the opaque // type with the new concrete value... // // Refine the abstract type to the new type. This causes all uses of the // abstract type to use NewTy. This also will cause the opaque type to be // deleted... // cast(const_cast(OldTy))->refineAbstractTypeTo(NewTy); // This should have replace the old opaque type with the new type in the // value table... or with a preexisting type that was already in the system assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); } BCR_TRACE(5, "Resulting types:\n"); for (unsigned i = 0; i < NumEntries; ++i) { BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); } } void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned TypeID) { // We must check for a ConstantExpr before switching by type because // a ConstantExpr can be of any type, and has no explicit value. // // 0 if not expr; numArgs if is expr unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf); if (isExprNumArgs) { unsigned Opcode = read_vbr_uint(Buf, EndBuf); const Type* Typ = getType(TypeID); // FIXME: Encoding of constant exprs could be much more compact! std::vector > ArgVec; ArgVec.reserve(isExprNumArgs); // Read the slot number and types of each of the arguments for (unsigned i = 0; i != isExprNumArgs; ++i) { unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf); unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf); BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot) << "' slot: " << ArgValSlot << "\n"); // Get the arg value from its slot if it exists, otherwise a placeholder ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot)); } handler->handleConstantExpression( Opcode, Typ, ArgVec ); return; } // Ok, not an ConstantExpr. We now know how to read the given type... const Type *Ty = getType(TypeID); switch (Ty->getPrimitiveID()) { case Type::BoolTyID: { unsigned Val = read_vbr_uint(Buf, EndBuf); if (Val != 0 && Val != 1) PARSE_ERROR("Invalid boolean value read."); handler->handleConstantValue( ConstantBool::get(Val == 1)); break; } case Type::UByteTyID: // Unsigned integer types... case Type::UShortTyID: case Type::UIntTyID: { unsigned Val = read_vbr_uint(Buf, EndBuf); if (!ConstantUInt::isValueValidForType(Ty, Val)) throw std::string("Invalid unsigned byte/short/int read."); handler->handleConstantValue( ConstantUInt::get(Ty, Val) ); break; } case Type::ULongTyID: { handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) ); break; } case Type::SByteTyID: // Signed integer types... case Type::ShortTyID: case Type::IntTyID: { case Type::LongTyID: int64_t Val = read_vbr_int64(Buf, EndBuf); if (!ConstantSInt::isValueValidForType(Ty, Val)) throw std::string("Invalid signed byte/short/int/long read."); handler->handleConstantValue( ConstantSInt::get(Ty, Val) ); break; } case Type::FloatTyID: { float F; input_data(Buf, EndBuf, &F, &F+1); handler->handleConstantValue( ConstantFP::get(Ty, F) ); break; } case Type::DoubleTyID: { double Val; input_data(Buf, EndBuf, &Val, &Val+1); handler->handleConstantValue( ConstantFP::get(Ty, Val) ); break; } case Type::TypeTyID: PARSE_ERROR("Type constants shouldn't live in constant table!"); break; case Type::ArrayTyID: { const ArrayType *AT = cast(Ty); unsigned NumElements = AT->getNumElements(); std::vector Elements; Elements.reserve(NumElements); while (NumElements--) // Read all of the elements of the constant. Elements.push_back(read_vbr_uint(Buf, EndBuf)); handler->handleConstantArray( AT, Elements ); break; } case Type::StructTyID: { const StructType *ST = cast(Ty); std::vector Elements; Elements.reserve(ST->getNumElements()); for (unsigned i = 0; i != ST->getNumElements(); ++i) Elements.push_back(read_vbr_uint(Buf, EndBuf)); handler->handleConstantStruct( ST, Elements ); } case Type::PointerTyID: { // ConstantPointerRef value... const PointerType *PT = cast(Ty); unsigned Slot = read_vbr_uint(Buf, EndBuf); handler->handleConstantPointer( PT, Slot ); } default: PARSE_ERROR("Don't know how to deserialize constant value of type '"+ Ty->getDescription()); } } void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf) { ParseConstantPool(Buf, EndBuf, ModuleTypes); } void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned NumEntries ){ for (; NumEntries; --NumEntries) { unsigned Typ = read_vbr_uint(Buf, EndBuf); const Type *Ty = getType(Typ); if (!isa(Ty)) throw std::string("String constant data invalid!"); const ArrayType *ATy = cast(Ty); if (ATy->getElementType() != Type::SByteTy && ATy->getElementType() != Type::UByteTy) throw std::string("String constant data invalid!"); // Read character data. The type tells us how long the string is. char Data[ATy->getNumElements()]; input_data(Buf, EndBuf, Data, Data+ATy->getNumElements()); std::vector Elements(ATy->getNumElements()); if (ATy->getElementType() == Type::SByteTy) for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]); else for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]); // Create the constant, inserting it as needed. ConstantArray *C = cast( ConstantArray::get(ATy, Elements) ); handler->handleConstantString( C ); } } void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf, TypeListTy &TypeTab) { while (Buf < EndBuf) { unsigned NumEntries = read_vbr_uint(Buf, EndBuf); unsigned Typ = read_vbr_uint(Buf, EndBuf); if (Typ == Type::TypeTyID) { ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries); } else if (Typ == Type::VoidTyID) { ParseStringConstants(Buf, EndBuf, NumEntries); } else { BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: " << NumEntries << "\n"); for (unsigned i = 0; i < NumEntries; ++i) { ParseConstantValue(Buf, EndBuf, Typ); } } } if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer."); } void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) { handler->handleModuleGlobalsBegin(); // Read global variables... unsigned VarType = read_vbr_uint(Buf, End); while (VarType != Type::VoidTyID) { // List is terminated by Void // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = // Linkage, bit4+ = slot# unsigned SlotNo = VarType >> 5; unsigned LinkageID = (VarType >> 2) & 7; bool isConstant = VarType & 1; bool hasInitializer = VarType & 2; GlobalValue::LinkageTypes Linkage; switch (LinkageID) { case 0: Linkage = GlobalValue::ExternalLinkage; break; case 1: Linkage = GlobalValue::WeakLinkage; break; case 2: Linkage = GlobalValue::AppendingLinkage; break; case 3: Linkage = GlobalValue::InternalLinkage; break; case 4: Linkage = GlobalValue::LinkOnceLinkage; break; default: PARSE_ERROR("Unknown linkage type: " << LinkageID); Linkage = GlobalValue::InternalLinkage; break; } const Type *Ty = getType(SlotNo); if ( !Ty ) { PARSE_ERROR("Global has no type! SlotNo=" << SlotNo); } if ( !isa(Ty)) { PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription()); } const Type *ElTy = cast(Ty)->getElementType(); // Create the global variable... if (hasInitializer) handler->handleGlobalVariable( ElTy, isConstant, Linkage ); else { unsigned initSlot = read_vbr_uint(Buf,End); handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot ); } // Get next item VarType = read_vbr_uint(Buf, End); } // Read the function objects for all of the functions that are coming unsigned FnSignature = read_vbr_uint(Buf, End); while (FnSignature != Type::VoidTyID) { // List is terminated by Void const Type *Ty = getType(FnSignature); if (!isa(Ty) || !isa(cast(Ty)->getElementType())) { PARSE_ERROR( "Function not a pointer to function type! Ty = " + Ty->getDescription()); // FIXME: what should Ty be if handler continues? } // We create functions by passing the underlying FunctionType to create... Ty = cast(Ty)->getElementType(); // Save this for later so we know type of lazily instantiated functions FunctionSignatureList.push_back(Ty); handler->handleFunctionDeclaration(Ty); // Get Next function signature FnSignature = read_vbr_uint(Buf, End); } if (hasInconsistentModuleGlobalInfo) align32(Buf, End); // This is for future proofing... in the future extra fields may be added that // we don't understand, so we transparently ignore them. // Buf = End; handler->handleModuleGlobalsEnd(); } void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) { unsigned Version = read_vbr_uint(Buf, EndBuf); // Unpack version number: low four bits are for flags, top bits = version Module::Endianness Endianness; Module::PointerSize PointerSize; Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian; PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; bool hasNoEndianness = Version & 4; bool hasNoPointerSize = Version & 8; RevisionNum = Version >> 4; // Default values for the current bytecode version hasInconsistentModuleGlobalInfo = false; hasExplicitPrimitiveZeros = false; hasRestrictedGEPTypes = false; switch (RevisionNum) { case 0: // LLVM 1.0, 1.1 release version // Base LLVM 1.0 bytecode format. hasInconsistentModuleGlobalInfo = true; hasExplicitPrimitiveZeros = true; // FALL THROUGH case 1: // LLVM 1.2 release version // LLVM 1.2 added explicit support for emitting strings efficiently. // Also, it fixed the problem where the size of the ModuleGlobalInfo block // included the size for the alignment at the end, where the rest of the // blocks did not. // LLVM 1.2 and before required that GEP indices be ubyte constants for // structures and longs for sequential types. hasRestrictedGEPTypes = true; // FALL THROUGH case 2: // LLVM 1.3 release version break; default: PARSE_ERROR("Unknown bytecode version number: " << RevisionNum); } if (hasNoEndianness) Endianness = Module::AnyEndianness; if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; handler->handleVersionInfo(RevisionNum, Endianness, PointerSize ); } void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) { unsigned Type, Size; readBlock(Buf, EndBuf, Type, Size); if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) // Hrm, not a class? PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) << ", S: " << Size << " E: " << unsigned(intptr_t(EndBuf))); // Read into instance variables... ParseVersionInfo(Buf, EndBuf); align32(Buf, EndBuf); bool SeenModuleGlobalInfo = false; bool SeenGlobalTypePlane = false; while (Buf < EndBuf) { BufPtr OldBuf = Buf; readBlock(Buf, EndBuf, Type, Size); switch (Type) { case BytecodeFormat::GlobalTypePlane: if ( SeenGlobalTypePlane ) PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!"); ParseGlobalTypes(Buf, Buf+Size); SeenGlobalTypePlane = true; break; case BytecodeFormat::ModuleGlobalInfo: if ( SeenModuleGlobalInfo ) PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!"); ParseModuleGlobalInfo(Buf, Buf+Size); SeenModuleGlobalInfo = true; break; case BytecodeFormat::ConstantPool: ParseConstantPool(Buf, Buf+Size, ModuleTypes); break; case BytecodeFormat::Function: ParseFunctionLazily(Buf, Buf+Size); break; case BytecodeFormat::SymbolTable: ParseSymbolTable(Buf, Buf+Size ); break; default: Buf += Size; if (OldBuf > Buf) { PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" ); } break; } align32(Buf, EndBuf); } } void AbstractBytecodeParser::ParseBytecode( BufPtr Buf, unsigned Length, const std::string &ModuleID) { handler->handleStart(); unsigned char *EndBuf = (unsigned char*)(Buf + Length); // Read and check signature... unsigned Sig = read(Buf, EndBuf); if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) { PARSE_ERROR("Invalid bytecode signature: " << Sig); } handler->handleModuleBegin(ModuleID); this->ParseModule(Buf, EndBuf); handler->handleModuleEnd(ModuleID); handler->handleFinish(); } // vim: sw=2