//===-- llvm/MC/WinCOFFObjectWriter.cpp -------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains an implementation of a Win32 COFF object file writer. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCWinCOFFObjectWriter.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TimeValue.h" #include using namespace llvm; #define DEBUG_TYPE "WinCOFFObjectWriter" namespace { typedef SmallString name; enum AuxiliaryType { ATFunctionDefinition, ATbfAndefSymbol, ATWeakExternal, ATFile, ATSectionDefinition }; struct AuxSymbol { AuxiliaryType AuxType; COFF::Auxiliary Aux; }; class COFFSymbol; class COFFSection; class COFFSymbol { public: COFF::symbol Data; typedef SmallVector AuxiliarySymbols; name Name; int Index; AuxiliarySymbols Aux; COFFSymbol *Other; COFFSection *Section; int Relocations; MCSymbolData const *MCData; COFFSymbol(StringRef name); size_t size() const; void set_name_offset(uint32_t Offset); bool should_keep() const; }; // This class contains staging data for a COFF relocation entry. struct COFFRelocation { COFF::relocation Data; COFFSymbol *Symb; COFFRelocation() : Symb(nullptr) {} static size_t size() { return COFF::RelocationSize; } }; typedef std::vector relocations; class COFFSection { public: COFF::section Header; std::string Name; int Number; MCSectionData const *MCData; COFFSymbol *Symbol; relocations Relocations; COFFSection(StringRef name); static size_t size(); }; // This class holds the COFF string table. class StringTable { typedef StringMap map; map Map; void update_length(); public: std::vector Data; StringTable(); size_t size() const; size_t insert(StringRef String); }; class WinCOFFObjectWriter : public MCObjectWriter { public: typedef std::vector> symbols; typedef std::vector> sections; typedef DenseMap symbol_map; typedef DenseMap section_map; std::unique_ptr TargetObjectWriter; // Root level file contents. COFF::header Header; sections Sections; symbols Symbols; StringTable Strings; // Maps used during object file creation. section_map SectionMap; symbol_map SymbolMap; WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_ostream &OS); COFFSymbol *createSymbol(StringRef Name); COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol * Symbol); COFFSection *createSection(StringRef Name); template object_t *createCOFFEntity(StringRef Name, list_t &List); void DefineSection(MCSectionData const &SectionData); void DefineSymbol(MCSymbolData const &SymbolData, MCAssembler &Assembler, const MCAsmLayout &Layout); void MakeSymbolReal(COFFSymbol &S, size_t Index); void MakeSectionReal(COFFSection &S, size_t Number); bool ExportSymbol(MCSymbolData const &SymbolData, MCAssembler &Asm); bool IsPhysicalSection(COFFSection *S); // Entity writing methods. void WriteFileHeader(const COFF::header &Header); void WriteSymbol(const COFFSymbol &S); void WriteAuxiliarySymbols(const COFFSymbol::AuxiliarySymbols &S); void WriteSectionHeader(const COFF::section &S); void WriteRelocation(const COFF::relocation &R); // MCObjectWriter interface implementation. void ExecutePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) override; void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) override; void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; }; } static inline void write_uint32_le(void *Data, uint32_t const &Value) { uint8_t *Ptr = reinterpret_cast(Data); Ptr[0] = (Value & 0x000000FF) >> 0; Ptr[1] = (Value & 0x0000FF00) >> 8; Ptr[2] = (Value & 0x00FF0000) >> 16; Ptr[3] = (Value & 0xFF000000) >> 24; } //------------------------------------------------------------------------------ // Symbol class implementation COFFSymbol::COFFSymbol(StringRef name) : Name(name.begin(), name.end()) , Other(nullptr) , Section(nullptr) , Relocations(0) , MCData(nullptr) { memset(&Data, 0, sizeof(Data)); } size_t COFFSymbol::size() const { return COFF::SymbolSize + (Data.NumberOfAuxSymbols * COFF::SymbolSize); } // In the case that the name does not fit within 8 bytes, the offset // into the string table is stored in the last 4 bytes instead, leaving // the first 4 bytes as 0. void COFFSymbol::set_name_offset(uint32_t Offset) { write_uint32_le(Data.Name + 0, 0); write_uint32_le(Data.Name + 4, Offset); } /// logic to decide if the symbol should be reported in the symbol table bool COFFSymbol::should_keep() const { // no section means its external, keep it if (!Section) return true; // if it has relocations pointing at it, keep it if (Relocations > 0) { assert(Section->Number != -1 && "Sections with relocations must be real!"); return true; } // if the section its in is being droped, drop it if (Section->Number == -1) return false; // if it is the section symbol, keep it if (Section->Symbol == this) return true; // if its temporary, drop it if (MCData && MCData->getSymbol().isTemporary()) return false; // otherwise, keep it return true; } //------------------------------------------------------------------------------ // Section class implementation COFFSection::COFFSection(StringRef name) : Name(name) , MCData(nullptr) , Symbol(nullptr) { memset(&Header, 0, sizeof(Header)); } size_t COFFSection::size() { return COFF::SectionSize; } //------------------------------------------------------------------------------ // StringTable class implementation /// Write the length of the string table into Data. /// The length of the string table includes uint32 length header. void StringTable::update_length() { write_uint32_le(&Data.front(), Data.size()); } StringTable::StringTable() { // The string table data begins with the length of the entire string table // including the length header. Allocate space for this header. Data.resize(4); update_length(); } size_t StringTable::size() const { return Data.size(); } /// Add String to the table iff it is not already there. /// @returns the index into the string table where the string is now located. size_t StringTable::insert(StringRef String) { map::iterator i = Map.find(String); if (i != Map.end()) return i->second; size_t Offset = Data.size(); // Insert string data into string table. Data.insert(Data.end(), String.begin(), String.end()); Data.push_back('\0'); // Put a reference to it in the map. Map[String] = Offset; // Update the internal length field. update_length(); return Offset; } //------------------------------------------------------------------------------ // WinCOFFObjectWriter class implementation WinCOFFObjectWriter::WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_ostream &OS) : MCObjectWriter(OS, true) , TargetObjectWriter(MOTW) { memset(&Header, 0, sizeof(Header)); Header.Machine = TargetObjectWriter->getMachine(); } COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) { return createCOFFEntity(Name, Symbols); } COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol * Symbol){ symbol_map::iterator i = SymbolMap.find(Symbol); if (i != SymbolMap.end()) return i->second; COFFSymbol *RetSymbol = createCOFFEntity(Symbol->getName(), Symbols); SymbolMap[Symbol] = RetSymbol; return RetSymbol; } COFFSection *WinCOFFObjectWriter::createSection(StringRef Name) { return createCOFFEntity(Name, Sections); } /// A template used to lookup or create a symbol/section, and initialize it if /// needed. template object_t *WinCOFFObjectWriter::createCOFFEntity(StringRef Name, list_t &List) { List.push_back(make_unique(Name)); return List.back().get(); } /// This function takes a section data object from the assembler /// and creates the associated COFF section staging object. void WinCOFFObjectWriter::DefineSection(MCSectionData const &SectionData) { assert(SectionData.getSection().getVariant() == MCSection::SV_COFF && "Got non-COFF section in the COFF backend!"); // FIXME: Not sure how to verify this (at least in a debug build). MCSectionCOFF const &Sec = static_cast(SectionData.getSection()); COFFSection *coff_section = createSection(Sec.getSectionName()); COFFSymbol *coff_symbol = createSymbol(Sec.getSectionName()); coff_section->Symbol = coff_symbol; coff_symbol->Section = coff_section; coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; // In this case the auxiliary symbol is a Section Definition. coff_symbol->Aux.resize(1); memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0])); coff_symbol->Aux[0].AuxType = ATSectionDefinition; coff_symbol->Aux[0].Aux.SectionDefinition.Selection = Sec.getSelection(); coff_section->Header.Characteristics = Sec.getCharacteristics(); uint32_t &Characteristics = coff_section->Header.Characteristics; switch (SectionData.getAlignment()) { case 1: Characteristics |= COFF::IMAGE_SCN_ALIGN_1BYTES; break; case 2: Characteristics |= COFF::IMAGE_SCN_ALIGN_2BYTES; break; case 4: Characteristics |= COFF::IMAGE_SCN_ALIGN_4BYTES; break; case 8: Characteristics |= COFF::IMAGE_SCN_ALIGN_8BYTES; break; case 16: Characteristics |= COFF::IMAGE_SCN_ALIGN_16BYTES; break; case 32: Characteristics |= COFF::IMAGE_SCN_ALIGN_32BYTES; break; case 64: Characteristics |= COFF::IMAGE_SCN_ALIGN_64BYTES; break; case 128: Characteristics |= COFF::IMAGE_SCN_ALIGN_128BYTES; break; case 256: Characteristics |= COFF::IMAGE_SCN_ALIGN_256BYTES; break; case 512: Characteristics |= COFF::IMAGE_SCN_ALIGN_512BYTES; break; case 1024: Characteristics |= COFF::IMAGE_SCN_ALIGN_1024BYTES; break; case 2048: Characteristics |= COFF::IMAGE_SCN_ALIGN_2048BYTES; break; case 4096: Characteristics |= COFF::IMAGE_SCN_ALIGN_4096BYTES; break; case 8192: Characteristics |= COFF::IMAGE_SCN_ALIGN_8192BYTES; break; default: llvm_unreachable("unsupported section alignment"); } // Bind internal COFF section to MC section. coff_section->MCData = &SectionData; SectionMap[&SectionData.getSection()] = coff_section; } static uint64_t getSymbolValue(const MCSymbolData &Data, const MCAsmLayout &Layout) { if (Data.isCommon() && Data.isExternal()) return Data.getCommonSize(); uint64_t Res; if (!Layout.getSymbolOffset(&Data, Res)) return 0; return Res; } /// This function takes a symbol data object from the assembler /// and creates the associated COFF symbol staging object. void WinCOFFObjectWriter::DefineSymbol(MCSymbolData const &SymbolData, MCAssembler &Assembler, const MCAsmLayout &Layout) { MCSymbol const &Symbol = SymbolData.getSymbol(); COFFSymbol *coff_symbol = GetOrCreateCOFFSymbol(&Symbol); SymbolMap[&Symbol] = coff_symbol; if (SymbolData.getFlags() & COFF::SF_WeakExternal) { coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL; if (Symbol.isVariable()) { const MCSymbolRefExpr *SymRef = dyn_cast(Symbol.getVariableValue()); if (!SymRef) report_fatal_error("Weak externals may only alias symbols"); coff_symbol->Other = GetOrCreateCOFFSymbol(&SymRef->getSymbol()); } else { std::string WeakName = std::string(".weak.") + Symbol.getName().str() + ".default"; COFFSymbol *WeakDefault = createSymbol(WeakName); WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; WeakDefault->Data.StorageClass = COFF::IMAGE_SYM_CLASS_EXTERNAL; WeakDefault->Data.Type = 0; WeakDefault->Data.Value = 0; coff_symbol->Other = WeakDefault; } // Setup the Weak External auxiliary symbol. coff_symbol->Aux.resize(1); memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0])); coff_symbol->Aux[0].AuxType = ATWeakExternal; coff_symbol->Aux[0].Aux.WeakExternal.TagIndex = 0; coff_symbol->Aux[0].Aux.WeakExternal.Characteristics = COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY; coff_symbol->MCData = &SymbolData; } else { const MCSymbolData &ResSymData = Assembler.getSymbolData(Symbol); const MCSymbol *Base = Layout.getBaseSymbol(Symbol); coff_symbol->Data.Value = getSymbolValue(ResSymData, Layout); coff_symbol->Data.Type = (ResSymData.getFlags() & 0x0000FFFF) >> 0; coff_symbol->Data.StorageClass = (ResSymData.getFlags() & 0x00FF0000) >> 16; // If no storage class was specified in the streamer, define it here. if (coff_symbol->Data.StorageClass == 0) { bool external = ResSymData.isExternal() || !ResSymData.Fragment; coff_symbol->Data.StorageClass = external ? COFF::IMAGE_SYM_CLASS_EXTERNAL : COFF::IMAGE_SYM_CLASS_STATIC; } if (!Base) { coff_symbol->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; } else { const MCSymbolData &BaseData = Assembler.getSymbolData(*Base); if (BaseData.Fragment) coff_symbol->Section = SectionMap[&BaseData.Fragment->getParent()->getSection()]; } coff_symbol->MCData = &ResSymData; } } // Maximum offsets for different string table entry encodings. static const unsigned Max6DecimalOffset = 999999; static const unsigned Max7DecimalOffset = 9999999; static const uint64_t MaxBase64Offset = 0xFFFFFFFFFULL; // 64^6, including 0 // Encode a string table entry offset in base 64, padded to 6 chars, and // prefixed with a double slash: '//AAAAAA', '//AAAAAB', ... // Buffer must be at least 8 bytes large. No terminating null appended. static void encodeBase64StringEntry(char* Buffer, uint64_t Value) { assert(Value > Max7DecimalOffset && Value <= MaxBase64Offset && "Illegal section name encoding for value"); static const char Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; Buffer[0] = '/'; Buffer[1] = '/'; char* Ptr = Buffer + 7; for (unsigned i = 0; i < 6; ++i) { unsigned Rem = Value % 64; Value /= 64; *(Ptr--) = Alphabet[Rem]; } } /// making a section real involves assigned it a number and putting /// name into the string table if needed void WinCOFFObjectWriter::MakeSectionReal(COFFSection &S, size_t Number) { if (S.Name.size() > COFF::NameSize) { uint64_t StringTableEntry = Strings.insert(S.Name.c_str()); if (StringTableEntry <= Max6DecimalOffset) { std::sprintf(S.Header.Name, "/%d", unsigned(StringTableEntry)); } else if (StringTableEntry <= Max7DecimalOffset) { // With seven digits, we have to skip the terminating null. Because // sprintf always appends it, we use a larger temporary buffer. char buffer[9] = { }; std::sprintf(buffer, "/%d", unsigned(StringTableEntry)); std::memcpy(S.Header.Name, buffer, 8); } else if (StringTableEntry <= MaxBase64Offset) { // Starting with 10,000,000, offsets are encoded as base64. encodeBase64StringEntry(S.Header.Name, StringTableEntry); } else { report_fatal_error("COFF string table is greater than 64 GB."); } } else std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size()); S.Number = Number; S.Symbol->Data.SectionNumber = S.Number; S.Symbol->Aux[0].Aux.SectionDefinition.Number = S.Number; } void WinCOFFObjectWriter::MakeSymbolReal(COFFSymbol &S, size_t Index) { if (S.Name.size() > COFF::NameSize) { size_t StringTableEntry = Strings.insert(S.Name.c_str()); S.set_name_offset(StringTableEntry); } else std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size()); S.Index = Index; } bool WinCOFFObjectWriter::ExportSymbol(MCSymbolData const &SymbolData, MCAssembler &Asm) { // This doesn't seem to be right. Strings referred to from the .data section // need symbols so they can be linked to code in the .text section right? // return Asm.isSymbolLinkerVisible (&SymbolData); // For now, all non-variable symbols are exported, // the linker will sort the rest out for us. return SymbolData.isExternal() || !SymbolData.getSymbol().isVariable(); } bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) { return (S->Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0; } //------------------------------------------------------------------------------ // entity writing methods void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) { WriteLE16(Header.Machine); WriteLE16(Header.NumberOfSections); WriteLE32(Header.TimeDateStamp); WriteLE32(Header.PointerToSymbolTable); WriteLE32(Header.NumberOfSymbols); WriteLE16(Header.SizeOfOptionalHeader); WriteLE16(Header.Characteristics); } void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) { WriteBytes(StringRef(S.Data.Name, COFF::NameSize)); WriteLE32(S.Data.Value); WriteLE16(S.Data.SectionNumber); WriteLE16(S.Data.Type); Write8(S.Data.StorageClass); Write8(S.Data.NumberOfAuxSymbols); WriteAuxiliarySymbols(S.Aux); } void WinCOFFObjectWriter::WriteAuxiliarySymbols( const COFFSymbol::AuxiliarySymbols &S) { for(COFFSymbol::AuxiliarySymbols::const_iterator i = S.begin(), e = S.end(); i != e; ++i) { switch(i->AuxType) { case ATFunctionDefinition: WriteLE32(i->Aux.FunctionDefinition.TagIndex); WriteLE32(i->Aux.FunctionDefinition.TotalSize); WriteLE32(i->Aux.FunctionDefinition.PointerToLinenumber); WriteLE32(i->Aux.FunctionDefinition.PointerToNextFunction); WriteZeros(sizeof(i->Aux.FunctionDefinition.unused)); break; case ATbfAndefSymbol: WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused1)); WriteLE16(i->Aux.bfAndefSymbol.Linenumber); WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused2)); WriteLE32(i->Aux.bfAndefSymbol.PointerToNextFunction); WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused3)); break; case ATWeakExternal: WriteLE32(i->Aux.WeakExternal.TagIndex); WriteLE32(i->Aux.WeakExternal.Characteristics); WriteZeros(sizeof(i->Aux.WeakExternal.unused)); break; case ATFile: WriteBytes(StringRef(reinterpret_cast(i->Aux.File.FileName), sizeof(i->Aux.File.FileName))); break; case ATSectionDefinition: WriteLE32(i->Aux.SectionDefinition.Length); WriteLE16(i->Aux.SectionDefinition.NumberOfRelocations); WriteLE16(i->Aux.SectionDefinition.NumberOfLinenumbers); WriteLE32(i->Aux.SectionDefinition.CheckSum); WriteLE16(i->Aux.SectionDefinition.Number); Write8(i->Aux.SectionDefinition.Selection); WriteZeros(sizeof(i->Aux.SectionDefinition.unused)); break; } } } void WinCOFFObjectWriter::WriteSectionHeader(const COFF::section &S) { WriteBytes(StringRef(S.Name, COFF::NameSize)); WriteLE32(S.VirtualSize); WriteLE32(S.VirtualAddress); WriteLE32(S.SizeOfRawData); WriteLE32(S.PointerToRawData); WriteLE32(S.PointerToRelocations); WriteLE32(S.PointerToLineNumbers); WriteLE16(S.NumberOfRelocations); WriteLE16(S.NumberOfLineNumbers); WriteLE32(S.Characteristics); } void WinCOFFObjectWriter::WriteRelocation(const COFF::relocation &R) { WriteLE32(R.VirtualAddress); WriteLE32(R.SymbolTableIndex); WriteLE16(R.Type); } //////////////////////////////////////////////////////////////////////////////// // MCObjectWriter interface implementations void WinCOFFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { // "Define" each section & symbol. This creates section & symbol // entries in the staging area. static_assert(sizeof(((COFF::AuxiliaryFile *)nullptr)->FileName) == COFF::SymbolSize, "size mismatch for COFF::AuxiliaryFile::FileName"); for (auto FI = Asm.file_names_begin(), FE = Asm.file_names_end(); FI != FE; ++FI) { // round up to calculate the number of auxiliary symbols required unsigned Count = (FI->size() + COFF::SymbolSize - 1) / COFF::SymbolSize; COFFSymbol *file = createSymbol(".file"); file->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE; file->Aux.resize(Count); unsigned Offset = 0; unsigned Length = FI->size(); for (auto & Aux : file->Aux) { Aux.AuxType = ATFile; if (Length > COFF::SymbolSize) { memcpy(Aux.Aux.File.FileName, FI->c_str() + Offset, COFF::SymbolSize); Length = Length - COFF::SymbolSize; } else { memcpy(Aux.Aux.File.FileName, FI->c_str() + Offset, Length); memset(&Aux.Aux.File.FileName[Length], 0, COFF::SymbolSize - Length); Length = 0; } Offset = Offset + COFF::SymbolSize; } } for (const auto & Section : Asm) DefineSection(Section); for (MCSymbolData &SD : Asm.symbols()) if (ExportSymbol(SD, Asm)) DefineSymbol(SD, Asm, Layout); } void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) { assert(Target.getSymA() && "Relocation must reference a symbol!"); const MCSymbol &Symbol = Target.getSymA()->getSymbol(); const MCSymbol &A = Symbol.AliasedSymbol(); if (!Asm.hasSymbolData(A)) Asm.getContext().FatalError( Fixup.getLoc(), Twine("symbol '") + A.getName() + "' can not be undefined"); const MCSymbolData &A_SD = Asm.getSymbolData(A); MCSectionData const *SectionData = Fragment->getParent(); // Mark this symbol as requiring an entry in the symbol table. assert(SectionMap.find(&SectionData->getSection()) != SectionMap.end() && "Section must already have been defined in ExecutePostLayoutBinding!"); assert(SymbolMap.find(&A_SD.getSymbol()) != SymbolMap.end() && "Symbol must already have been defined in ExecutePostLayoutBinding!"); COFFSection *coff_section = SectionMap[&SectionData->getSection()]; COFFSymbol *coff_symbol = SymbolMap[&A_SD.getSymbol()]; const MCSymbolRefExpr *SymB = Target.getSymB(); bool CrossSection = false; if (SymB) { const MCSymbol *B = &SymB->getSymbol(); const MCSymbolData &B_SD = Asm.getSymbolData(*B); if (!B_SD.getFragment()) Asm.getContext().FatalError( Fixup.getLoc(), Twine("symbol '") + B->getName() + "' can not be undefined in a subtraction expression"); if (!A_SD.getFragment()) Asm.getContext().FatalError( Fixup.getLoc(), Twine("symbol '") + Symbol.getName() + "' can not be undefined in a subtraction expression"); CrossSection = &Symbol.getSection() != &B->getSection(); // Offset of the symbol in the section int64_t a = Layout.getSymbolOffset(&B_SD); // Ofeset of the relocation in the section int64_t b = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); FixedValue = b - a; // In the case where we have SymbA and SymB, we just need to store the delta // between the two symbols. Update FixedValue to account for the delta, and // skip recording the relocation. if (!CrossSection) return; } else { FixedValue = Target.getConstant(); } COFFRelocation Reloc; Reloc.Data.SymbolTableIndex = 0; Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment); // Turn relocations for temporary symbols into section relocations. if (coff_symbol->MCData->getSymbol().isTemporary() || CrossSection) { Reloc.Symb = coff_symbol->Section->Symbol; FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->Fragment) + coff_symbol->MCData->getOffset(); } else Reloc.Symb = coff_symbol; ++Reloc.Symb->Relocations; Reloc.Data.VirtualAddress += Fixup.getOffset(); Reloc.Data.Type = TargetObjectWriter->getRelocType(Target, Fixup, CrossSection); // FIXME: Can anyone explain what this does other than adjust for the size // of the offset? if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 && Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) || (Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 && Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32)) FixedValue += 4; if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) { switch (Reloc.Data.Type) { case COFF::IMAGE_REL_ARM_ABSOLUTE: case COFF::IMAGE_REL_ARM_ADDR32: case COFF::IMAGE_REL_ARM_ADDR32NB: case COFF::IMAGE_REL_ARM_TOKEN: case COFF::IMAGE_REL_ARM_SECTION: case COFF::IMAGE_REL_ARM_SECREL: break; case COFF::IMAGE_REL_ARM_BRANCH11: case COFF::IMAGE_REL_ARM_BLX11: // IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for // pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid // for Windows CE). case COFF::IMAGE_REL_ARM_BRANCH24: case COFF::IMAGE_REL_ARM_BLX24: case COFF::IMAGE_REL_ARM_MOV32A: // IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are // only used for ARM mode code, which is documented as being unsupported // by Windows on ARM. Emperical proof indicates that masm is able to // generate the relocations however the rest of the MSVC toolchain is // unable to handle it. llvm_unreachable("unsupported relocation"); break; case COFF::IMAGE_REL_ARM_MOV32T: break; case COFF::IMAGE_REL_ARM_BRANCH20T: case COFF::IMAGE_REL_ARM_BRANCH24T: case COFF::IMAGE_REL_ARM_BLX23T: // IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all // perform a 4 byte adjustment to the relocation. Relative branches are // offset by 4 on ARM, however, because there is no RELA relocations, all // branches are offset by 4. FixedValue = FixedValue + 4; break; } } coff_section->Relocations.push_back(Reloc); } void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) { // Assign symbol and section indexes and offsets. Header.NumberOfSections = 0; DenseMap SectionIndices; for (auto & Section : Sections) { if (Layout.getSectionAddressSize(Section->MCData) > 0) { size_t Number = ++Header.NumberOfSections; SectionIndices[Section.get()] = Number; MakeSectionReal(*Section, Number); } else { Section->Number = -1; } } Header.NumberOfSymbols = 0; for (auto & Symbol : Symbols) { // Update section number & offset for symbols that have them. if (Symbol->Section) Symbol->Data.SectionNumber = Symbol->Section->Number; if (Symbol->should_keep()) { MakeSymbolReal(*Symbol, Header.NumberOfSymbols++); // Update auxiliary symbol info. Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size(); Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols; } else Symbol->Index = -1; } // Fixup weak external references. for (auto & Symbol : Symbols) { if (Symbol->Other) { assert(Symbol->Index != -1); assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!"); assert(Symbol->Aux[0].AuxType == ATWeakExternal && "Symbol's aux symbol must be a Weak External!"); Symbol->Aux[0].Aux.WeakExternal.TagIndex = Symbol->Other->Index; } } // Fixup associative COMDAT sections. for (auto & Section : Sections) { if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) continue; const MCSectionCOFF &MCSec = static_cast(Section->MCData->getSection()); COFFSection *Assoc = SectionMap.lookup(MCSec.getAssocSection()); if (!Assoc) report_fatal_error(Twine("Missing associated COMDAT section ") + MCSec.getAssocSection()->getSectionName() + " for section " + MCSec.getSectionName()); // Skip this section if the associated section is unused. if (Assoc->Number == -1) continue; Section->Symbol->Aux[0].Aux.SectionDefinition.Number = SectionIndices[Assoc]; } // Assign file offsets to COFF object file structures. unsigned offset = 0; offset += COFF::HeaderSize; offset += COFF::SectionSize * Header.NumberOfSections; for (const auto & Section : Asm) { COFFSection *Sec = SectionMap[&Section.getSection()]; if (Sec->Number == -1) continue; Sec->Header.SizeOfRawData = Layout.getSectionAddressSize(&Section); if (IsPhysicalSection(Sec)) { Sec->Header.PointerToRawData = offset; offset += Sec->Header.SizeOfRawData; } if (Sec->Relocations.size() > 0) { bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff; if (RelocationsOverflow) { // Signal overflow by setting NumberOfSections to max value. Actual // size is found in reloc #0. Microsoft tools understand this. Sec->Header.NumberOfRelocations = 0xffff; } else { Sec->Header.NumberOfRelocations = Sec->Relocations.size(); } Sec->Header.PointerToRelocations = offset; if (RelocationsOverflow) { // Reloc #0 will contain actual count, so make room for it. offset += COFF::RelocationSize; } offset += COFF::RelocationSize * Sec->Relocations.size(); for (auto & Relocation : Sec->Relocations) { assert(Relocation.Symb->Index != -1); Relocation.Data.SymbolTableIndex = Relocation.Symb->Index; } } assert(Sec->Symbol->Aux.size() == 1 && "Section's symbol must have one aux!"); AuxSymbol &Aux = Sec->Symbol->Aux[0]; assert(Aux.AuxType == ATSectionDefinition && "Section's symbol's aux symbol must be a Section Definition!"); Aux.Aux.SectionDefinition.Length = Sec->Header.SizeOfRawData; Aux.Aux.SectionDefinition.NumberOfRelocations = Sec->Header.NumberOfRelocations; Aux.Aux.SectionDefinition.NumberOfLinenumbers = Sec->Header.NumberOfLineNumbers; } Header.PointerToSymbolTable = offset; // We want a deterministic output. It looks like GNU as also writes 0 in here. Header.TimeDateStamp = 0; // Write it all to disk... WriteFileHeader(Header); { sections::iterator i, ie; MCAssembler::const_iterator j, je; for (auto & Section : Sections) { if (Section->Number != -1) { if (Section->Relocations.size() >= 0xffff) Section->Header.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL; WriteSectionHeader(Section->Header); } } for (i = Sections.begin(), ie = Sections.end(), j = Asm.begin(), je = Asm.end(); (i != ie) && (j != je); ++i, ++j) { if ((*i)->Number == -1) continue; if ((*i)->Header.PointerToRawData != 0) { assert(OS.tell() == (*i)->Header.PointerToRawData && "Section::PointerToRawData is insane!"); Asm.writeSectionData(j, Layout); } if ((*i)->Relocations.size() > 0) { assert(OS.tell() == (*i)->Header.PointerToRelocations && "Section::PointerToRelocations is insane!"); if ((*i)->Relocations.size() >= 0xffff) { // In case of overflow, write actual relocation count as first // relocation. Including the synthetic reloc itself (+ 1). COFF::relocation r; r.VirtualAddress = (*i)->Relocations.size() + 1; r.SymbolTableIndex = 0; r.Type = 0; WriteRelocation(r); } for (const auto & Relocation : (*i)->Relocations) WriteRelocation(Relocation.Data); } else assert((*i)->Header.PointerToRelocations == 0 && "Section::PointerToRelocations is insane!"); } } assert(OS.tell() == Header.PointerToSymbolTable && "Header::PointerToSymbolTable is insane!"); for (auto & Symbol : Symbols) if (Symbol->Index != -1) WriteSymbol(*Symbol); OS.write((char const *)&Strings.Data.front(), Strings.Data.size()); } MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) : Machine(Machine_) { } // Pin the vtable to this file. void MCWinCOFFObjectTargetWriter::anchor() {} //------------------------------------------------------------------------------ // WinCOFFObjectWriter factory function namespace llvm { MCObjectWriter *createWinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_ostream &OS) { return new WinCOFFObjectWriter(MOTW, OS); } }