//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AsmPrinter class. // //===----------------------------------------------------------------------===// #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm) : FunctionNumber(0), O(o), TM(tm), CommentString("#"), GlobalPrefix(""), PrivateGlobalPrefix("."), GlobalVarAddrPrefix(""), GlobalVarAddrSuffix(""), FunctionAddrPrefix(""), FunctionAddrSuffix(""), ZeroDirective("\t.zero\t"), AsciiDirective("\t.ascii\t"), AscizDirective("\t.asciz\t"), Data8bitsDirective("\t.byte\t"), Data16bitsDirective("\t.short\t"), Data32bitsDirective("\t.long\t"), Data64bitsDirective("\t.quad\t"), AlignDirective("\t.align\t"), AlignmentIsInBytes(true), SwitchToSectionDirective("\t.section\t"), ConstantPoolSection("\t.section .rodata\n"), StaticCtorsSection("\t.section .ctors,\"aw\",@progbits"), StaticDtorsSection("\t.section .dtors,\"aw\",@progbits"), LCOMMDirective(0), COMMDirective("\t.comm\t"), COMMDirectiveTakesAlignment(true), HasDotTypeDotSizeDirective(true) { } /// SwitchSection - Switch to the specified section of the executable if we /// are not already in it! /// void AsmPrinter::SwitchSection(const char *NewSection, const GlobalValue *GV) { std::string NS; if (GV && GV->hasSection()) NS = SwitchToSectionDirective + GV->getSection(); else NS = std::string("\t")+NewSection; if (CurrentSection != NS) { CurrentSection = NS; if (!CurrentSection.empty()) O << CurrentSection << '\n'; } } bool AsmPrinter::doInitialization(Module &M) { Mang = new Mangler(M, GlobalPrefix); SwitchSection("", 0); // Reset back to no section. return false; } bool AsmPrinter::doFinalization(Module &M) { delete Mang; Mang = 0; return false; } void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); IncrementFunctionNumber(); } /// EmitConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; const TargetData &TD = TM.getTargetData(); SwitchSection(ConstantPoolSection, 0); for (unsigned i = 0, e = CP.size(); i != e; ++i) { // FIXME: force doubles to be naturally aligned. We should handle this // more correctly in the future. unsigned Alignment = TD.getTypeAlignmentShift(CP[i]->getType()); if (CP[i]->getType() == Type::DoubleTy && Alignment < 3) Alignment = 3; EmitAlignment(Alignment); O << PrivateGlobalPrefix << "CPI" << getFunctionNumber() << '_' << i << ":\t\t\t\t\t" << CommentString << *CP[i] << '\n'; EmitGlobalConstant(CP[i]); } } /// EmitSpecialLLVMGlobal - Check to see if the specified global is a /// special global used by LLVM. If so, emit it and return true, otherwise /// do nothing and return false. bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { assert(GV->hasInitializer() && GV->hasAppendingLinkage() && "Not a special LLVM global!"); if (GV->getName() == "llvm.used") return true; // No need to emit this at all. if (GV->getName() == "llvm.global_ctors") { SwitchSection(StaticCtorsSection, 0); EmitAlignment(2, 0); EmitXXStructorList(GV->getInitializer()); return true; } if (GV->getName() == "llvm.global_dtors") { SwitchSection(StaticDtorsSection, 0); EmitAlignment(2, 0); EmitXXStructorList(GV->getInitializer()); return true; } return false; } /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the /// function pointers, ignoring the init priority. void AsmPrinter::EmitXXStructorList(Constant *List) { // Should be an array of '{ int, void ()* }' structs. The first value is the // init priority, which we ignore. if (!isa(List)) return; ConstantArray *InitList = cast(List); for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) return; // Found a null terminator, exit printing. // Emit the function pointer. EmitGlobalConstant(CS->getOperand(1)); } } // EmitAlignment - Emit an alignment directive to the specified power of two. void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { if (GV && GV->getAlignment()) NumBits = Log2_32(GV->getAlignment()); if (NumBits == 0) return; // No need to emit alignment. if (AlignmentIsInBytes) NumBits = 1 << NumBits; O << AlignDirective << NumBits << "\n"; } /// EmitZeros - Emit a block of zeros. /// void AsmPrinter::EmitZeros(uint64_t NumZeros) const { if (NumZeros) { if (ZeroDirective) O << ZeroDirective << NumZeros << "\n"; else { for (; NumZeros; --NumZeros) O << Data8bitsDirective << "0\n"; } } } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { if (CV->isNullValue() || isa(CV)) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) if (((CI->getValue() << 32) >> 32) == CI->getValue()) O << CI->getValue(); else O << (uint64_t)CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const GlobalValue *GV = dyn_cast(CV)) { // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value, possibly // decorating it with GlobalVarAddrPrefix/Suffix or // FunctionAddrPrefix/Suffix (these all default to "" ) if (isa(GV)) O << FunctionAddrPrefix << Mang->getValueName(GV) << FunctionAddrSuffix; else O << GlobalVarAddrPrefix << Mang->getValueName(GV) << GlobalVarAddrSuffix; } else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData &TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (int64_t Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { if (Offset) O << "("; EmitConstantValueOnly(ptrVal); if (Offset > 0) O << ") + " << Offset; else if (Offset < 0) O << ") - " << -Offset; } else { EmitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only non-converting or widening casts for now, that is, ones // that do not involve a change in value. This assertion is really gross, // and may not even be a complete check. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Remember, kids, pointers can be losslessly converted back and forth // into 32-bit or wider integers, regardless of signedness. :-P assert(((isa(OpTy) && (Ty == Type::LongTy || Ty == Type::ULongTy || Ty == Type::IntTy || Ty == Type::UIntTy)) || (isa(Ty) && (OpTy == Type::LongTy || OpTy == Type::ULongTy || OpTy == Type::IntTy || OpTy == Type::UIntTy)) || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) && OpTy->isLosslesslyConvertibleTo(Ty)))) && "FIXME: Don't yet support this kind of constant cast expr"); EmitConstantValueOnly(Op); break; } case Instruction::Add: O << "("; EmitConstantValueOnly(CE->getOperand(0)); O << ") + ("; EmitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// printAsCString - Print the specified array as a C compatible string, only if /// the predicate isString is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA, unsigned LastElt) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != LastElt; ++i) { unsigned char C = (unsigned char)cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } /// EmitGlobalConstant - Print a general LLVM constant to the .s file. /// void AsmPrinter::EmitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (CV->isNullValue() || isa(CV)) { EmitZeros(TD.getTypeSize(CV->getType())); return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { unsigned NumElts = CVA->getNumOperands(); if (AscizDirective && NumElts && cast(CVA->getOperand(NumElts-1))->getRawValue() == 0) { O << AscizDirective; printAsCString(O, CVA, NumElts-1); } else { O << AsciiDirective; printAsCString(O, CVA, NumElts); } O << "\n"; } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) EmitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); uint64_t sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. uint64_t fieldSize = TD.getTypeSize(field->getType()); uint64_t padSize = ((i == e-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value EmitGlobalConstant(field); // Insert the field padding unless it's zero bytes... EmitZeros(padSize); } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); if (CFP->getType() == Type::DoubleTy) { if (Data64bitsDirective) O << Data64bitsDirective << DoubleToBits(Val) << "\t" << CommentString << " double value: " << Val << "\n"; else if (TD.isBigEndian()) { O << Data32bitsDirective << unsigned(DoubleToBits(Val) >> 32) << "\t" << CommentString << " double most significant word " << Val << "\n"; O << Data32bitsDirective << unsigned(DoubleToBits(Val)) << "\t" << CommentString << " double least significant word " << Val << "\n"; } else { O << Data32bitsDirective << unsigned(DoubleToBits(Val)) << "\t" << CommentString << " double least significant word " << Val << "\n"; O << Data32bitsDirective << unsigned(DoubleToBits(Val) >> 32) << "\t" << CommentString << " double most significant word " << Val << "\n"; } return; } else { O << Data32bitsDirective << FloatToBits(Val) << "\t" << CommentString << " float " << Val << "\n"; return; } } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) { if (const ConstantInt *CI = dyn_cast(CV)) { uint64_t Val = CI->getRawValue(); if (Data64bitsDirective) O << Data64bitsDirective << Val << "\n"; else if (TD.isBigEndian()) { O << Data32bitsDirective << unsigned(Val >> 32) << "\t" << CommentString << " Double-word most significant word " << Val << "\n"; O << Data32bitsDirective << unsigned(Val) << "\t" << CommentString << " Double-word least significant word " << Val << "\n"; } else { O << Data32bitsDirective << unsigned(Val) << "\t" << CommentString << " Double-word least significant word " << Val << "\n"; O << Data32bitsDirective << unsigned(Val >> 32) << "\t" << CommentString << " Double-word most significant word " << Val << "\n"; } return; } } else if (const ConstantPacked *CP = dyn_cast(CV)) { const PackedType *PTy = CP->getType(); for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) EmitGlobalConstant(CP->getOperand(I)); return; } const Type *type = CV->getType(); switch (type->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: O << Data8bitsDirective; break; case Type::UShortTyID: case Type::ShortTyID: O << Data16bitsDirective; break; case Type::PointerTyID: if (TD.getPointerSize() == 8) { O << Data64bitsDirective; break; } //Fall through for pointer size == int size case Type::UIntTyID: case Type::IntTyID: O << Data32bitsDirective; break; case Type::ULongTyID: case Type::LongTyID: assert(Data64bitsDirective &&"Target cannot handle 64-bit constant exprs!"); O << Data64bitsDirective; break; case Type::FloatTyID: case Type::DoubleTyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } EmitConstantValueOnly(CV); O << "\n"; }