//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the target-independent ELF writer. This file writes out // the ELF file in the following order: // // #1. ELF Header // #2. '.text' section // #3. '.data' section // #4. '.bss' section (conceptual position in file) // ... // #X. '.shstrtab' section // #Y. Section Table // // The entries in the section table are laid out as: // #0. Null entry [required] // #1. ".text" entry - the program code // #2. ".data" entry - global variables with initializers. [ if needed ] // #3. ".bss" entry - global variables without initializers. [ if needed ] // ... // #N. ".shstrtab" entry - String table for the section names. // // NOTE: This code should eventually be extended to support 64-bit ELF (this // won't be hard), but we haven't done so yet! // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ELFWriter.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" using namespace llvm; namespace llvm { class ELFCodeEmitter : public MachineCodeEmitter { ELFWriter &EW; std::vector &OutputBuffer; size_t FnStart; public: ELFCodeEmitter(ELFWriter &ew) : EW(ew), OutputBuffer(EW.OutputBuffer) {} void startFunction(MachineFunction &F) { // Align the output buffer to the appropriate alignment. unsigned Align = 16; // FIXME: GENERICIZE!! ELFWriter::ELFSection &TextSection = EW.SectionList.back(); // Upgrade the section alignment if required. if (TextSection.Align < Align) TextSection.Align = Align; // Add padding zeros to the end of the buffer to make sure that the // function will start on the correct byte alignment within the section. size_t SectionOff = OutputBuffer.size()-TextSection.Offset; if (SectionOff & (Align-1)) { // Add padding to get alignment to the correct place. size_t Pad = Align-(SectionOff & (Align-1)); OutputBuffer.resize(OutputBuffer.size()+Pad); } FnStart = OutputBuffer.size(); } void finishFunction(MachineFunction &F) {} void emitConstantPool(MachineConstantPool *MCP) { if (MCP->isEmpty()) return; assert(0 && "unimp"); } virtual void emitByte(unsigned char B) { OutputBuffer.push_back(B); } virtual void emitWordAt(unsigned W, unsigned *Ptr) { assert(0 && "ni"); } virtual void emitWord(unsigned W) { assert(0 && "ni"); } virtual uint64_t getCurrentPCValue() { return OutputBuffer.size(); } virtual uint64_t getCurrentPCOffset() { return OutputBuffer.size()-FnStart; } void addRelocation(const MachineRelocation &MR) { assert(0 && "relo not handled yet!"); } virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { assert(0 && "CP not implementated yet!"); } /// JIT SPECIFIC FUNCTIONS void startFunctionStub(unsigned StubSize) { assert(0 && "JIT specific function called!"); abort(); } void *finishFunctionStub(const Function *F) { assert(0 && "JIT specific function called!"); abort(); return 0; } }; } ELFWriter::ELFWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { e_machine = 0; // e_machine defaults to 'No Machine' e_flags = 0; // e_flags defaults to 0, no flags. is64Bit = TM.getTargetData().getPointerSizeInBits() == 64; isLittleEndian = TM.getTargetData().isLittleEndian(); // Create the machine code emitter object for this target. MCE = new ELFCodeEmitter(*this); } ELFWriter::~ELFWriter() { delete MCE; } // doInitialization - Emit the file header and all of the global variables for // the module to the ELF file. bool ELFWriter::doInitialization(Module &M) { Mang = new Mangler(M); outbyte(0x7F); // EI_MAG0 outbyte('E'); // EI_MAG1 outbyte('L'); // EI_MAG2 outbyte('F'); // EI_MAG3 outbyte(is64Bit ? 2 : 1); // EI_CLASS outbyte(isLittleEndian ? 1 : 2); // EI_DATA outbyte(1); // EI_VERSION for (unsigned i = OutputBuffer.size(); i != 16; ++i) outbyte(0); // EI_PAD up to 16 bytes. // This should change for shared objects. outhalf(1); // e_type = ET_REL outhalf(e_machine); // e_machine = whatever the target wants outword(1); // e_version = 1 outaddr(0); // e_entry = 0 -> no entry point in .o file outaddr(0); // e_phoff = 0 -> no program header for .o ELFHeader_e_shoff_Offset = OutputBuffer.size(); outaddr(0); // e_shoff outword(e_flags); // e_flags = whatever the target wants assert(!is64Bit && "These sizes need to be adjusted for 64-bit!"); outhalf(52); // e_ehsize = ELF header size outhalf(0); // e_phentsize = prog header entry size outhalf(0); // e_phnum = # prog header entries = 0 outhalf(40); // e_shentsize = sect header entry size ELFHeader_e_shnum_Offset = OutputBuffer.size(); outhalf(0); // e_shnum = # of section header ents ELFHeader_e_shstrndx_Offset = OutputBuffer.size(); outhalf(0); // e_shstrndx = Section # of '.shstrtab' // Add the null section. SectionList.push_back(ELFSection()); // Start up the symbol table. The first entry in the symtab is the null // entry. SymbolTable.push_back(ELFSym(0)); SectionList.push_back(ELFSection(".text", OutputBuffer.size())); return false; } void ELFWriter::EmitGlobal(GlobalVariable *GV, ELFSection &DataSection, ELFSection &BSSSection) { // If this is an external global, emit it now. TODO: Note that it would be // better to ignore the symbol here and only add it to the symbol table if // referenced. if (!GV->hasInitializer()) { ELFSym ExternalSym(GV); ExternalSym.SetBind(ELFSym::STB_GLOBAL); ExternalSym.SetType(ELFSym::STT_NOTYPE); ExternalSym.SectionIdx = ELFSection::SHN_UNDEF; SymbolTable.push_back(ExternalSym); return; } const Type *GVType = (const Type*)GV->getType(); unsigned Align = TM.getTargetData().getTypeAlignment(GVType); unsigned Size = TM.getTargetData().getTypeSize(GVType); // If this global has a zero initializer, it is part of the .bss or common // section. if (GV->getInitializer()->isNullValue()) { // If this global is part of the common block, add it now. Variables are // part of the common block if they are zero initialized and allowed to be // merged with other symbols. if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) { ELFSym CommonSym(GV); // Value for common symbols is the alignment required. CommonSym.Value = Align; CommonSym.Size = Size; CommonSym.SetBind(ELFSym::STB_GLOBAL); CommonSym.SetType(ELFSym::STT_OBJECT); // TODO SOMEDAY: add ELF visibility. CommonSym.SectionIdx = ELFSection::SHN_COMMON; SymbolTable.push_back(CommonSym); return; } // Otherwise, this symbol is part of the .bss section. Emit it now. // Handle alignment. Ensure section is aligned at least as much as required // by this symbol. BSSSection.Align = std::max(BSSSection.Align, Align); // Within the section, emit enough virtual padding to get us to an alignment // boundary. if (Align) BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1); ELFSym BSSSym(GV); BSSSym.Value = BSSSection.Size; BSSSym.Size = Size; BSSSym.SetType(ELFSym::STT_OBJECT); switch (GV->getLinkage()) { default: // weak/linkonce handled above assert(0 && "Unexpected linkage type!"); case GlobalValue::AppendingLinkage: // FIXME: This should be improved! case GlobalValue::ExternalLinkage: BSSSym.SetBind(ELFSym::STB_GLOBAL); break; case GlobalValue::InternalLinkage: BSSSym.SetBind(ELFSym::STB_LOCAL); break; } // Set the idx of the .bss section BSSSym.SectionIdx = &BSSSection-&SectionList[0]; SymbolTable.push_back(BSSSym); // Reserve space in the .bss section for this symbol. BSSSection.Size += Size; return; } // FIXME: handle .rodata //assert(!GV->isConstant() && "unimp"); // FIXME: handle .data //assert(0 && "unimp"); } bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { // Nothing to do here, this is all done through the MCE object above. return false; } /// doFinalization - Now that the module has been completely processed, emit /// the ELF file to 'O'. bool ELFWriter::doFinalization(Module &M) { // Okay, the .text section has now been finalized. If it contains nothing, do // not emit it. uint64_t TextSize = OutputBuffer.size() - SectionList.back().Offset; if (TextSize == 0) { SectionList.pop_back(); } else { ELFSection &Text = SectionList.back(); Text.Size = TextSize; Text.Type = ELFSection::SHT_PROGBITS; Text.Flags = ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC; } // Okay, the ELF header and .text sections have been completed, build the // .data, .bss, and "common" sections next. SectionList.push_back(ELFSection(".data", OutputBuffer.size())); SectionList.push_back(ELFSection(".bss")); ELFSection &DataSection = *(SectionList.end()-2); ELFSection &BSSSection = SectionList.back(); for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EmitGlobal(I, DataSection, BSSSection); // Finish up the data section. DataSection.Type = ELFSection::SHT_PROGBITS; DataSection.Flags = ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC; // The BSS Section logically starts at the end of the Data Section (adjusted // to the required alignment of the BSSSection). BSSSection.Offset = DataSection.Offset+DataSection.Size; BSSSection.Type = ELFSection::SHT_NOBITS; BSSSection.Flags = ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC; if (BSSSection.Align) BSSSection.Offset = (BSSSection.Offset+BSSSection.Align-1) & ~(BSSSection.Align-1); // Emit the symbol table now, if non-empty. EmitSymbolTable(); // FIXME: Emit the relocations now. // Emit the string table for the sections in the ELF file we have. EmitSectionTableStringTable(); // Emit the .o file section table. EmitSectionTable(); // Emit the .o file to the specified stream. O.write((char*)&OutputBuffer[0], OutputBuffer.size()); // Free the output buffer. std::vector().swap(OutputBuffer); // Release the name mangler object. delete Mang; Mang = 0; return false; } /// EmitSymbolTable - If the current symbol table is non-empty, emit the string /// table for it and then the symbol table itself. void ELFWriter::EmitSymbolTable() { if (SymbolTable.size() == 1) return; // Only the null entry. // FIXME: compact all local symbols to the start of the symtab. unsigned FirstNonLocalSymbol = 1; SectionList.push_back(ELFSection(".strtab", OutputBuffer.size())); ELFSection &StrTab = SectionList.back(); StrTab.Type = ELFSection::SHT_STRTAB; StrTab.Align = 1; // Set the zero'th symbol to a null byte, as required. outbyte(0); SymbolTable[0].NameIdx = 0; unsigned Index = 1; for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) { // Use the name mangler to uniquify the LLVM symbol. std::string Name = Mang->getValueName(SymbolTable[i].GV); if (Name.empty()) { SymbolTable[i].NameIdx = 0; } else { SymbolTable[i].NameIdx = Index; // Add the name to the output buffer, including the null terminator. OutputBuffer.insert(OutputBuffer.end(), Name.begin(), Name.end()); // Add a null terminator. OutputBuffer.push_back(0); // Keep track of the number of bytes emitted to this section. Index += Name.size()+1; } } StrTab.Size = OutputBuffer.size()-StrTab.Offset; // Now that we have emitted the string table and know the offset into the // string table of each symbol, emit the symbol table itself. assert(!is64Bit && "Should this be 8 byte aligned for 64-bit?" " (check .Align below also)"); align(4); SectionList.push_back(ELFSection(".symtab", OutputBuffer.size())); ELFSection &SymTab = SectionList.back(); SymTab.Type = ELFSection::SHT_SYMTAB; SymTab.Align = 4; // FIXME: check for ELF64 SymTab.Link = SectionList.size()-2; // Section Index of .strtab. SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol. SymTab.EntSize = 16; // Size of each symtab entry. FIXME: wrong for ELF64 assert(!is64Bit && "check this!"); for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) { ELFSym &Sym = SymbolTable[i]; outword(Sym.NameIdx); outaddr(Sym.Value); outword(Sym.Size); outbyte(Sym.Info); outbyte(Sym.Other); outhalf(Sym.SectionIdx); } SymTab.Size = OutputBuffer.size()-SymTab.Offset; } /// EmitSectionTableStringTable - This method adds and emits a section for the /// ELF Section Table string table: the string table that holds all of the /// section names. void ELFWriter::EmitSectionTableStringTable() { // First step: add the section for the string table to the list of sections: SectionList.push_back(ELFSection(".shstrtab", OutputBuffer.size())); SectionList.back().Type = ELFSection::SHT_STRTAB; // Now that we know which section number is the .shstrtab section, update the // e_shstrndx entry in the ELF header. fixhalf(SectionList.size()-1, ELFHeader_e_shstrndx_Offset); // Set the NameIdx of each section in the string table and emit the bytes for // the string table. unsigned Index = 0; for (unsigned i = 0, e = SectionList.size(); i != e; ++i) { // Set the index into the table. Note if we have lots of entries with // common suffixes, we could memoize them here if we cared. SectionList[i].NameIdx = Index; // Add the name to the output buffer, including the null terminator. OutputBuffer.insert(OutputBuffer.end(), SectionList[i].Name.begin(), SectionList[i].Name.end()); // Add a null terminator. OutputBuffer.push_back(0); // Keep track of the number of bytes emitted to this section. Index += SectionList[i].Name.size()+1; } // Set the size of .shstrtab now that we know what it is. SectionList.back().Size = Index; } /// EmitSectionTable - Now that we have emitted the entire contents of the file /// (all of the sections), emit the section table which informs the reader where /// the boundaries are. void ELFWriter::EmitSectionTable() { // Now that all of the sections have been emitted, set the e_shnum entry in // the ELF header. fixhalf(SectionList.size(), ELFHeader_e_shnum_Offset); // Now that we know the offset in the file of the section table (which we emit // next), update the e_shoff address in the ELF header. fixaddr(OutputBuffer.size(), ELFHeader_e_shoff_Offset); // Emit all of the section table entries. for (unsigned i = 0, e = SectionList.size(); i != e; ++i) { const ELFSection &S = SectionList[i]; outword(S.NameIdx); // sh_name - Symbol table name idx outword(S.Type); // sh_type - Section contents & semantics outword(S.Flags); // sh_flags - Section flags. outaddr(S.Addr); // sh_addr - The mem address this section appears in. outaddr(S.Offset); // sh_offset - The offset from the start of the file. outword(S.Size); // sh_size - The section size. outword(S.Link); // sh_link - Section header table index link. outword(S.Info); // sh_info - Auxillary information. outword(S.Align); // sh_addralign - Alignment of section. outword(S.EntSize); // sh_entsize - Size of each entry in the section. } // Release the memory allocated for the section list. std::vector().swap(SectionList); }