//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the IRTranslator class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLowering.h" #define DEBUG_TYPE "irtranslator" using namespace llvm; char IRTranslator::ID = 0; INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", false, false) IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); } void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } unsigned IRTranslator::getOrCreateVReg(const Value &Val) { unsigned &ValReg = ValToVReg[&Val]; // Check if this is the first time we see Val. if (!ValReg) { // Fill ValRegsSequence with the sequence of registers // we need to concat together to produce the value. assert(Val.getType()->isSized() && "Don't know how to create an empty vreg"); unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL}); ValReg = VReg; if (auto CV = dyn_cast(&Val)) { bool Success = translate(*CV, VReg); if (!Success) { if (!TPC->isGlobalISelAbortEnabled()) { MIRBuilder.getMF().getProperties().set( MachineFunctionProperties::Property::FailedISel); return 0; } report_fatal_error("unable to translate constant"); } } } return ValReg; } unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { unsigned Alignment = 0; Type *ValTy = nullptr; if (const StoreInst *SI = dyn_cast(&I)) { Alignment = SI->getAlignment(); ValTy = SI->getValueOperand()->getType(); } else if (const LoadInst *LI = dyn_cast(&I)) { Alignment = LI->getAlignment(); ValTy = LI->getType(); } else if (!TPC->isGlobalISelAbortEnabled()) { MIRBuilder.getMF().getProperties().set( MachineFunctionProperties::Property::FailedISel); return 1; } else llvm_unreachable("unhandled memory instruction"); return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); } MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { MachineBasicBlock *&MBB = BBToMBB[&BB]; if (!MBB) { MachineFunction &MF = MIRBuilder.getMF(); MBB = MF.CreateMachineBasicBlock(); MF.push_back(MBB); } return *MBB; } bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) { // FIXME: handle signed/unsigned wrapping flags. // Get or create a virtual register for each value. // Unless the value is a Constant => loadimm cst? // or inline constant each time? // Creation of a virtual register needs to have a size. unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); unsigned Res = getOrCreateVReg(U); MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); return true; } bool IRTranslator::translateCompare(const User &U) { const CmpInst *CI = dyn_cast(&U); unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); unsigned Res = getOrCreateVReg(U); CmpInst::Predicate Pred = CI ? CI->getPredicate() : static_cast( cast(U).getPredicate()); if (CmpInst::isIntPredicate(Pred)) MIRBuilder.buildICmp(Pred, Res, Op0, Op1); else MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); return true; } bool IRTranslator::translateRet(const User &U) { const ReturnInst &RI = cast(U); const Value *Ret = RI.getReturnValue(); // The target may mess up with the insertion point, but // this is not important as a return is the last instruction // of the block anyway. return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); } bool IRTranslator::translateBr(const User &U) { const BranchInst &BrInst = cast(U); unsigned Succ = 0; if (!BrInst.isUnconditional()) { // We want a G_BRCOND to the true BB followed by an unconditional branch. unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); const BasicBlock &TrueTgt = *cast(BrInst.getSuccessor(Succ++)); MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); MIRBuilder.buildBrCond(Tst, TrueBB); } const BasicBlock &BrTgt = *cast(BrInst.getSuccessor(Succ)); MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); MIRBuilder.buildBr(TgtBB); // Link successors. MachineBasicBlock &CurBB = MIRBuilder.getMBB(); for (const BasicBlock *Succ : BrInst.successors()) CurBB.addSuccessor(&getOrCreateBB(*Succ)); return true; } bool IRTranslator::translateLoad(const User &U) { const LoadInst &LI = cast(U); if (!TPC->isGlobalISelAbortEnabled() && !LI.isSimple()) return false; assert(LI.isSimple() && "only simple loads are supported at the moment"); MachineFunction &MF = MIRBuilder.getMF(); unsigned Res = getOrCreateVReg(LI); unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL}; MIRBuilder.buildLoad( Res, Addr, *MF.getMachineMemOperand( MachinePointerInfo(LI.getPointerOperand()), MachineMemOperand::MOLoad, DL->getTypeStoreSize(LI.getType()), getMemOpAlignment(LI))); return true; } bool IRTranslator::translateStore(const User &U) { const StoreInst &SI = cast(U); if (!TPC->isGlobalISelAbortEnabled() && !SI.isSimple()) return false; assert(SI.isSimple() && "only simple loads are supported at the moment"); MachineFunction &MF = MIRBuilder.getMF(); unsigned Val = getOrCreateVReg(*SI.getValueOperand()); unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); LLT VTy{*SI.getValueOperand()->getType(), *DL}, PTy{*SI.getPointerOperand()->getType(), *DL}; MIRBuilder.buildStore( Val, Addr, *MF.getMachineMemOperand( MachinePointerInfo(SI.getPointerOperand()), MachineMemOperand::MOStore, DL->getTypeStoreSize(SI.getValueOperand()->getType()), getMemOpAlignment(SI))); return true; } bool IRTranslator::translateExtractValue(const User &U) { const Value *Src = U.getOperand(0); Type *Int32Ty = Type::getInt32Ty(U.getContext()); SmallVector Indices; // getIndexedOffsetInType is designed for GEPs, so the first index is the // usual array element rather than looking into the actual aggregate. Indices.push_back(ConstantInt::get(Int32Ty, 0)); if (const ExtractValueInst *EVI = dyn_cast(&U)) { for (auto Idx : EVI->indices()) Indices.push_back(ConstantInt::get(Int32Ty, Idx)); } else { for (unsigned i = 1; i < U.getNumOperands(); ++i) Indices.push_back(U.getOperand(i)); } uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); unsigned Res = getOrCreateVReg(U); MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); return true; } bool IRTranslator::translateInsertValue(const User &U) { const Value *Src = U.getOperand(0); Type *Int32Ty = Type::getInt32Ty(U.getContext()); SmallVector Indices; // getIndexedOffsetInType is designed for GEPs, so the first index is the // usual array element rather than looking into the actual aggregate. Indices.push_back(ConstantInt::get(Int32Ty, 0)); if (const InsertValueInst *IVI = dyn_cast(&U)) { for (auto Idx : IVI->indices()) Indices.push_back(ConstantInt::get(Int32Ty, Idx)); } else { for (unsigned i = 2; i < U.getNumOperands(); ++i) Indices.push_back(U.getOperand(i)); } uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); unsigned Res = getOrCreateVReg(U); const Value &Inserted = *U.getOperand(1); MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), Offset); return true; } bool IRTranslator::translateSelect(const User &U) { MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), getOrCreateVReg(*U.getOperand(1)), getOrCreateVReg(*U.getOperand(2))); return true; } bool IRTranslator::translateBitCast(const User &U) { if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) { unsigned &Reg = ValToVReg[&U]; if (Reg) MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); else Reg = getOrCreateVReg(*U.getOperand(0)); return true; } return translateCast(TargetOpcode::G_BITCAST, U); } bool IRTranslator::translateCast(unsigned Opcode, const User &U) { unsigned Op = getOrCreateVReg(*U.getOperand(0)); unsigned Res = getOrCreateVReg(U); MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); return true; } bool IRTranslator::translateGetElementPtr(const User &U) { // FIXME: support vector GEPs. if (U.getType()->isVectorTy()) return false; Value &Op0 = *U.getOperand(0); unsigned BaseReg = getOrCreateVReg(Op0); LLT PtrTy{*Op0.getType(), *DL}; unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); LLT OffsetTy = LLT::scalar(PtrSize); int64_t Offset = 0; for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); GTI != E; ++GTI) { const Value *Idx = GTI.getOperand(); if (StructType *StTy = dyn_cast(*GTI)) { unsigned Field = cast(Idx)->getUniqueInteger().getZExtValue(); Offset += DL->getStructLayout(StTy)->getElementOffset(Field); continue; } else { uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); // If this is a scalar constant or a splat vector of constants, // handle it quickly. if (const auto *CI = dyn_cast(Idx)) { Offset += ElementSize * CI->getSExtValue(); continue; } if (Offset != 0) { unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildConstant(OffsetReg, Offset); MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); BaseReg = NewBaseReg; Offset = 0; } // N = N + Idx * ElementSize; unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildConstant(ElementSizeReg, ElementSize); unsigned IdxReg = getOrCreateVReg(*Idx); if (MRI->getType(IdxReg) != OffsetTy) { unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); IdxReg = NewIdxReg; } unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); BaseReg = NewBaseReg; } } if (Offset != 0) { unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); MIRBuilder.buildConstant(OffsetReg, Offset); MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); return true; } MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); return true; } bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID) { unsigned Op = 0; switch (ID) { default: return false; case Intrinsic::uadd_with_overflow: Op = TargetOpcode::G_UADDE; break; case Intrinsic::sadd_with_overflow: Op = TargetOpcode::G_SADDO; break; case Intrinsic::usub_with_overflow: Op = TargetOpcode::G_USUBE; break; case Intrinsic::ssub_with_overflow: Op = TargetOpcode::G_SSUBO; break; case Intrinsic::umul_with_overflow: Op = TargetOpcode::G_UMULO; break; case Intrinsic::smul_with_overflow: Op = TargetOpcode::G_SMULO; break; } LLT Ty{*CI.getOperand(0)->getType(), *DL}; LLT s1 = LLT::scalar(1); unsigned Width = Ty.getSizeInBits(); unsigned Res = MRI->createGenericVirtualRegister(Ty); unsigned Overflow = MRI->createGenericVirtualRegister(s1); auto MIB = MIRBuilder.buildInstr(Op) .addDef(Res) .addDef(Overflow) .addUse(getOrCreateVReg(*CI.getOperand(0))) .addUse(getOrCreateVReg(*CI.getOperand(1))); if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { unsigned Zero = MRI->createGenericVirtualRegister(s1); EntryBuilder.buildConstant(Zero, 0); MIB.addUse(Zero); } MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); return true; } bool IRTranslator::translateCall(const User &U) { const CallInst &CI = cast(U); auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo(); const Function *F = CI.getCalledFunction(); if (!F || !F->isIntrinsic()) { unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); SmallVector Args; for (auto &Arg: CI.arg_operands()) Args.push_back(getOrCreateVReg(*Arg)); return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); } Intrinsic::ID ID = F->getIntrinsicID(); if (TII && ID == Intrinsic::not_intrinsic) ID = static_cast(TII->getIntrinsicID(F)); assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); if (translateKnownIntrinsic(CI, ID)) return true; unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); for (auto &Arg : CI.arg_operands()) { if (ConstantInt *CI = dyn_cast(Arg)) MIB.addImm(CI->getSExtValue()); else MIB.addUse(getOrCreateVReg(*Arg)); } return true; } bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) { if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) return false; assert(AI.isStaticAlloca() && "only handle static allocas now"); MachineFunction &MF = MIRBuilder.getMF(); unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); unsigned Size = ElementSize * cast(AI.getArraySize())->getZExtValue(); // Always allocate at least one byte. Size = std::max(Size, 1u); unsigned Alignment = AI.getAlignment(); if (!Alignment) Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); unsigned Res = getOrCreateVReg(AI); int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); MIRBuilder.buildFrameIndex(Res, FI); return true; } bool IRTranslator::translatePHI(const User &U) { const PHINode &PI = cast(U); auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); MIB.addDef(getOrCreateVReg(PI)); PendingPHIs.emplace_back(&PI, MIB.getInstr()); return true; } void IRTranslator::finishPendingPhis() { for (std::pair &Phi : PendingPHIs) { const PHINode *PI = Phi.first; MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second); // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator // won't create extra control flow here, otherwise we need to find the // dominating predecessor here (or perhaps force the weirder IRTranslators // to provide a simple boundary). for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) && "I appear to have misunderstood Machine PHIs"); MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i))); MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]); } } PendingPHIs.clear(); } bool IRTranslator::translate(const Instruction &Inst) { MIRBuilder.setDebugLoc(Inst.getDebugLoc()); switch(Inst.getOpcode()) { #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return translate##OPCODE(Inst); #include "llvm/IR/Instruction.def" default: if (!TPC->isGlobalISelAbortEnabled()) return false; llvm_unreachable("unknown opcode"); } } bool IRTranslator::translate(const Constant &C, unsigned Reg) { if (auto CI = dyn_cast(&C)) EntryBuilder.buildConstant(Reg, CI->getZExtValue()); else if (auto CF = dyn_cast(&C)) EntryBuilder.buildFConstant(Reg, *CF); else if (isa(C)) EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); else if (isa(C)) EntryBuilder.buildInstr(TargetOpcode::G_CONSTANT) .addDef(Reg) .addImm(0); else if (auto GV = dyn_cast(&C)) EntryBuilder.buildGlobalValue(Reg, GV); else if (auto CE = dyn_cast(&C)) { switch(CE->getOpcode()) { #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return translate##OPCODE(*CE); #include "llvm/IR/Instruction.def" default: if (!TPC->isGlobalISelAbortEnabled()) return false; llvm_unreachable("unknown opcode"); } } else if (!TPC->isGlobalISelAbortEnabled()) return false; else llvm_unreachable("unhandled constant kind"); return true; } void IRTranslator::finalizeFunction() { finishPendingPhis(); // Release the memory used by the different maps we // needed during the translation. ValToVReg.clear(); Constants.clear(); } bool IRTranslator::runOnMachineFunction(MachineFunction &MF) { const Function &F = *MF.getFunction(); if (F.empty()) return false; CLI = MF.getSubtarget().getCallLowering(); MIRBuilder.setMF(MF); EntryBuilder.setMF(MF); MRI = &MF.getRegInfo(); DL = &F.getParent()->getDataLayout(); TPC = &getAnalysis(); assert(PendingPHIs.empty() && "stale PHIs"); // Setup the arguments. MachineBasicBlock &MBB = getOrCreateBB(F.front()); MIRBuilder.setMBB(MBB); SmallVector VRegArgs; for (const Argument &Arg: F.args()) VRegArgs.push_back(getOrCreateVReg(Arg)); bool Succeeded = CLI->lowerFormalArguments(MIRBuilder, F, VRegArgs); if (!Succeeded) { if (!TPC->isGlobalISelAbortEnabled()) { MIRBuilder.getMF().getProperties().set( MachineFunctionProperties::Property::FailedISel); return false; } report_fatal_error("Unable to lower arguments"); } // Now that we've got the ABI handling code, it's safe to set a location for // any Constants we find in the IR. if (MBB.empty()) EntryBuilder.setMBB(MBB); else EntryBuilder.setInstr(MBB.back(), /* Before */ false); for (const BasicBlock &BB: F) { MachineBasicBlock &MBB = getOrCreateBB(BB); // Set the insertion point of all the following translations to // the end of this basic block. MIRBuilder.setMBB(MBB); for (const Instruction &Inst: BB) { bool Succeeded = translate(Inst); if (!Succeeded) { DEBUG(dbgs() << "Cannot translate: " << Inst << '\n'); if (TPC->isGlobalISelAbortEnabled()) report_fatal_error("Unable to translate instruction"); MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); break; } } } finalizeFunction(); // Now that the MachineFrameInfo has been configured, no further changes to // the reserved registers are possible. MRI->freezeReservedRegs(MF); return false; }