//===-- APInt.cpp - Implement APInt class ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Sheng Zhou and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integral // constant values. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/DerivedTypes.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include using namespace llvm; APInt::APInt(uint64_t val, unsigned numBits, bool sign) : bitsnum(numBits), isSigned(sign) { assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); if (isSingleWord()) VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); else { // Memory allocation and check if successful. assert((pVal = new uint64_t[numWords()]) && "APInt memory allocation fails!"); bzero(pVal, numWords() * 8); pVal[0] = val; } } APInt::APInt(unsigned numBits, uint64_t bigVal[], bool sign) : bitsnum(numBits), isSigned(sign) { assert(bitsnum >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(bitsnum <= IntegerType::MAX_INT_BITS && "bitwidth too large"); assert(bigVal && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - bitsnum)); else { // Memory allocation and check if successful. assert((pVal = new uint64_t[numWords()]) && "APInt memory allocation fails!"); // Calculate the actual length of bigVal[]. unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]); unsigned maxN = std::max(n, numWords()); unsigned minN = std::min(n, numWords()); memcpy(pVal, bigVal, (minN - 1) * 8); pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - bitsnum % 64)); if (maxN == numWords()) bzero(pVal+n, (numWords() - n) * 8); } } APInt::APInt(std::string& Val, uint8_t radix, bool sign) : isSigned(sign) { assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); assert(!Val.empty() && "String empty?"); unsigned slen = Val.size(); unsigned size = 0; // If the radix is a power of 2, read the input // from most significant to least significant. if ((radix & (radix - 1)) == 0) { unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; uint64_t resDigit = 0; bitsnum = slen * bits_per_digit; if (numWords() > 1) assert((pVal = new uint64_t[numWords()]) && "APInt memory allocation fails!"); for (int i = slen - 1; i >= 0; --i) { uint64_t digit = Val[i] - 48; // '0' == 48. resDigit |= digit << nextBitPos; nextBitPos += bits_per_digit; if (nextBitPos >= 64) { if (isSingleWord()) { VAL = resDigit; break; } pVal[size++] = resDigit; nextBitPos -= 64; resDigit = digit >> (bits_per_digit - nextBitPos); } } if (!isSingleWord() && size <= numWords()) pVal[size] = resDigit; } else { // General case. The radix is not a power of 2. // For 10-radix, the max value of 64-bit integer is 18446744073709551615, // and its digits number is 14. const unsigned chars_per_word = 20; if (slen < chars_per_word || (Val <= "18446744073709551615" && slen == chars_per_word)) { // In case Val <= 2^64 - 1 bitsnum = 64; VAL = strtoull(Val.c_str(), 0, 10); } else { // In case Val > 2^64 - 1 bitsnum = (slen / chars_per_word + 1) * 64; assert((pVal = new uint64_t[numWords()]) && "APInt memory allocation fails!"); bzero(pVal, numWords() * 8); unsigned str_pos = 0; while (str_pos < slen) { unsigned chunk = slen - str_pos; if (chunk > chars_per_word - 1) chunk = chars_per_word - 1; uint64_t resDigit = Val[str_pos++] - 48; // 48 == '0'. uint64_t big_base = radix; while (--chunk > 0) { resDigit = resDigit * radix + Val[str_pos++] - 48; big_base *= radix; } uint64_t carry; if (!size) carry = resDigit; else { carry = mul_1(pVal, pVal, size, big_base); carry += add_1(pVal, pVal, size, resDigit); } if (carry) pVal[size++] = carry; } } } } APInt::APInt(const APInt& APIVal) : bitsnum(APIVal.bitsnum), isSigned(APIVal.isSigned) { if (isSingleWord()) VAL = APIVal.VAL; else { // Memory allocation and check if successful. assert((pVal = new uint64_t[numWords()]) && "APInt memory allocation fails!"); memcpy(pVal, APIVal.pVal, numWords() * 8); } } APInt::~APInt() { if (!isSingleWord() && pVal) delete[] pVal; } /// whichByte - This function returns the word position /// for the specified bit position. inline unsigned APInt::whichByte(unsigned bitPosition) { return (bitPosition % APINT_BITS_PER_WORD) / 8; } /// getWord - returns the corresponding word for the specified bit position. inline uint64_t& APInt::getWord(unsigned bitPosition) { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// getWord - returns the corresponding word for the specified bit position. /// This is a constant version. inline uint64_t APInt::getWord(unsigned bitPosition) const { return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; } /// mul_1 - This function multiplies the integer array x[] by a integer y and /// returns the carry. uint64_t APInt::mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { // Split y into high 32-bit part and low 32-bit part. uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0, lx, hx; for (unsigned i = 0; i < len; ++i) { lx = x[i] & 0xffffffffULL; hx = x[i] >> 32; // hasCarry - A flag to indicate if has carry. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; dest[i] = carry + lx * ly; // Determine if the add above introduces carry. hasCarry = (dest[i] < carry) ? 1 : 0; carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + // (2^32 - 1) + 2^32 = 2^64. hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; } return carry; } /// mul - This function multiplies integer array x[] by integer array y[] and /// stores the result into integer array dest[]. /// Note the array dest[]'s size should no less than xlen + ylen. void APInt::mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], unsigned ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); for (unsigned i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx, hx; for (unsigned j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; uint64_t resul = carry + lx * ly; hasCarry = (resul < carry) ? 1 : 0; carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; resul = (carry << 32) | (resul & 0xffffffffULL); dest[i+j] += resul; carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + ((lx * hy) >> 32) + hx * hy; } dest[i+xlen] = carry; } } /// add_1 - This function adds the integer array x[] by integer y and /// returns the carry. uint64_t APInt::add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { uint64_t carry = y; for (unsigned i = 0; i < len; ++i) { dest[i] = carry + x[i]; carry = (dest[i] < carry) ? 1 : 0; } return carry; } /// add - This function adds the integer array x[] by integer array /// y[] and returns the carry. uint64_t APInt::add(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) { unsigned carry = 0; for (unsigned i = 0; i< len; ++i) { carry += x[i]; dest[i] = carry + y[i]; carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); } return carry; } /// sub_1 - This function subtracts the integer array x[] by /// integer y and returns the borrow-out carry. uint64_t APInt::sub_1(uint64_t x[], unsigned len, uint64_t y) { uint64_t cy = y; for (unsigned i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= cy; if (cy > X) cy = 1; else { cy = 0; break; } } return cy; } /// sub - This function subtracts the integer array x[] by /// integer array y[], and returns the borrow-out carry. uint64_t APInt::sub(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) { // Carry indicator. uint64_t cy = 0; for (unsigned i = 0; i < len; ++i) { uint64_t Y = y[i], X = x[i]; Y += cy; cy = Y < cy ? 1 : 0; Y = X - Y; cy += Y > X ? 1 : 0; dest[i] = Y; } return cy; } /// UnitDiv - This function divides N by D, /// and returns (remainder << 32) | quotient. /// Assumes (N >> 32) < D. uint64_t APInt::unitDiv(uint64_t N, unsigned D) { uint64_t q, r; // q: quotient, r: remainder. uint64_t a1 = N >> 32; // a1: high 32-bit part of N. uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { q = N / D; r = N % D; } else { // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d uint64_t c = N - ((uint64_t) D << 31); // Divide (c1*2^32 + c0) by d q = c / D; r = c % D; // Add 2^31 to quotient q += 1 << 31; } return (r << 32) | (q & 0xFFFFFFFFl); } /// subMul - This function substracts x[len-1:0] * y from /// dest[offset+len-1:offset], and returns the most significant /// word of the product, minus the borrow-out from the subtraction. unsigned APInt::subMul(unsigned dest[], unsigned offset, unsigned x[], unsigned len, unsigned y) { uint64_t yl = (uint64_t) y & 0xffffffffL; unsigned carry = 0; unsigned j = 0; do { uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl; unsigned prod_low = (unsigned) prod; unsigned prod_high = (unsigned) (prod >> 32); prod_low += carry; carry = (prod_low < carry ? 1 : 0) + prod_high; unsigned x_j = dest[offset+j]; prod_low = x_j - prod_low; if (prod_low > x_j) ++carry; dest[offset+j] = prod_low; } while (++j < len); return carry; } /// div - This is basically Knuth's formulation of the classical algorithm. /// Correspondance with Knuth's notation: /// Knuth's u[0:m+n] == zds[nx:0]. /// Knuth's v[1:n] == y[ny-1:0] /// Knuth's n == ny. /// Knuth's m == nx-ny. /// Our nx == Knuth's m+n. /// Could be re-implemented using gmp's mpn_divrem: /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). void APInt::div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { unsigned j = nx; do { // loop over digits of quotient // Knuth's j == our nx-j. // Knuth's u[j:j+n] == our zds[j:j-ny]. unsigned qhat; // treated as unsigned if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff else { uint64_t w = (((uint64_t)(zds[j])) << 32) + ((uint64_t)zds[j-1] & 0xffffffffL); qhat = (unsigned) unitDiv(w, y[ny-1]); } if (qhat) { unsigned borrow = subMul(zds, j - ny, y, ny, qhat); unsigned save = zds[j]; uint64_t num = ((uint64_t)save&0xffffffffL) - ((uint64_t)borrow&0xffffffffL); while (num) { qhat--; uint64_t carry = 0; for (unsigned i = 0; i < ny; i++) { carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) + ((uint64_t) y[i] & 0xffffffffL); zds[j-ny+i] = (unsigned) carry; carry >>= 32; } zds[j] += carry; num = carry - 1; } } zds[j] = qhat; } while (--j >= ny); } /// lshift - This function shift x[0:len-1] left by shiftAmt bits, and /// store the len least significant words of the result in /// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from /// the most significant digit. uint64_t APInt::lshift(uint64_t dest[], unsigned d_offset, uint64_t x[], unsigned len, unsigned shiftAmt) { unsigned count = 64 - shiftAmt; int i = len - 1; uint64_t high_word = x[i], retVal = high_word >> count; ++d_offset; while (--i >= 0) { uint64_t low_word = x[i]; dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count); high_word = low_word; } dest[d_offset+i] = high_word << shiftAmt; return retVal; } /// @brief Copy assignment operator. Create a new object from the given /// APInt one by initialization. APInt& APInt::operator=(const APInt& RHS) { if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { unsigned minN = std::min(numWords(), RHS.numWords()); memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8); if (numWords() != minN) bzero(pVal + minN, (numWords() - minN) * 8); } return *this; } /// @brief Assignment operator. Assigns a common case integer value to /// the APInt. APInt& APInt::operator=(uint64_t RHS) { if (isSingleWord()) VAL = RHS; else { pVal[0] = RHS; bzero(pVal, (numWords() - 1) * 8); } return *this; } /// @brief Postfix increment operator. Increments the APInt by one. const APInt APInt::operator++(int) { APInt API(*this); if (isSingleWord()) ++VAL; else add_1(pVal, pVal, numWords(), 1); API.TruncToBits(); return API; } /// @brief Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { if (isSingleWord()) ++VAL; else add_1(pVal, pVal, numWords(), 1); TruncToBits(); return *this; } /// @brief Postfix decrement operator. Decrements the APInt by one. const APInt APInt::operator--(int) { APInt API(*this); if (isSingleWord()) --VAL; else sub_1(API.pVal, API.numWords(), 1); API.TruncToBits(); return API; } /// @brief Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { if (isSingleWord()) --VAL; else sub_1(pVal, numWords(), 1); TruncToBits(); return *this; } /// @brief Addition assignment operator. Adds this APInt by the given APInt& /// RHS and assigns the result to this APInt. APInt& APInt::operator+=(const APInt& RHS) { if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { if (RHS.isSingleWord()) add_1(pVal, pVal, numWords(), RHS.VAL); else { if (numWords() <= RHS.numWords()) add(pVal, pVal, RHS.pVal, numWords()); else { uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.numWords()); add_1(pVal + RHS.numWords(), pVal + RHS.numWords(), numWords() - RHS.numWords(), carry); } } } TruncToBits(); return *this; } /// @brief Subtraction assignment operator. Subtracts this APInt by the given /// APInt &RHS and assigns the result to this APInt. APInt& APInt::operator-=(const APInt& RHS) { if (isSingleWord()) VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { if (RHS.isSingleWord()) sub_1(pVal, numWords(), RHS.VAL); else { if (RHS.numWords() < numWords()) { uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.numWords()); sub_1(pVal + RHS.numWords(), numWords() - RHS.numWords(), carry); } else sub(pVal, pVal, RHS.pVal, numWords()); } } TruncToBits(); return *this; } /// @brief Multiplication assignment operator. Multiplies this APInt by the /// given APInt& RHS and assigns the result to this APInt. APInt& APInt::operator*=(const APInt& RHS) { if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { // one-based first non-zero bit position. unsigned first = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); unsigned xlen = !first ? 0 : whichWord(first - 1) + 1; if (!xlen) return *this; else if (RHS.isSingleWord()) mul_1(pVal, pVal, xlen, RHS.VAL); else { first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; if (!ylen) { bzero(pVal, numWords() * 8); return *this; } uint64_t *dest = new uint64_t[xlen+ylen]; assert(dest && "Memory Allocation Failed!"); mul(dest, pVal, xlen, RHS.pVal, ylen); memcpy(pVal, dest, ((xlen + ylen >= numWords()) ? numWords() : xlen + ylen) * 8); delete[] dest; } } TruncToBits(); return *this; } /// @brief Division assignment operator. Divides this APInt by the given APInt /// &RHS and assigns the result to this APInt. APInt& APInt::operator/=(const APInt& RHS) { unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; assert(ylen && "Divided by zero???"); if (isSingleWord()) { if (isSigned && RHS.isSigned) VAL = RHS.isSingleWord() ? (int64_t(VAL) / int64_t(RHS.VAL)) : (ylen > 1 ? 0 : int64_t(VAL) / int64_t(RHS.pVal[0])); else VAL = RHS.isSingleWord() ? (VAL / RHS.VAL) : (ylen > 1 ? 0 : VAL / RHS.pVal[0]); } else { unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; if (!xlen) return *this; else if ((*this) < RHS) bzero(pVal, numWords() * 8); else if ((*this) == RHS) { bzero(pVal, numWords() * 8); pVal[0] = 1; } else if (xlen == 1) pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; assert(xwords && ywords && "Memory Allocation Failed!"); memcpy(xwords, pVal, xlen * 8); xwords[xlen] = 0; memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); if (unsigned nshift = 63 - (first - 1) % 64) { lshift(ywords, 0, ywords, ylen, nshift); unsigned xlentmp = xlen; xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); } div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); bzero(pVal, numWords() * 8); memcpy(pVal, xwords + ylen, (xlen - ylen) * 8); delete[] xwords; delete[] ywords; } } return *this; } /// @brief Remainder assignment operator. Yields the remainder from the /// division of this APInt by the given APInt& RHS and assigns the remainder /// to this APInt. APInt& APInt::operator%=(const APInt& RHS) { unsigned first = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; assert(ylen && "Performing remainder operation by zero ???"); if (isSingleWord()) { if (isSigned && RHS.isSigned) VAL = RHS.isSingleWord() ? (int64_t(VAL) % int64_t(RHS.VAL)) : (ylen > 1 ? VAL : int64_t(VAL) % int64_t(RHS.pVal[0])); else VAL = RHS.isSingleWord() ? (VAL % RHS.VAL) : (ylen > 1 ? VAL : VAL % RHS.pVal[0]); } else { unsigned first2 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(); unsigned xlen = !first2 ? 0 : whichWord(first2 - 1) + 1; if (!xlen || (*this) < RHS) return *this; else if ((*this) == RHS) bzero(pVal, numWords() * 8); else if (xlen == 1) pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen]; assert(xwords && ywords && "Memory Allocation Failed!"); memcpy(xwords, pVal, xlen * 8); xwords[xlen] = 0; memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8); unsigned nshift = 63 - (first - 1) % 64; if (nshift) { lshift(ywords, 0, ywords, ylen, nshift); unsigned xlentmp = xlen; xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift); } div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2); bzero(pVal, numWords() * 8); for (unsigned i = 0; i < ylen-1; ++i) pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift)); pVal[ylen-1] = xwords[ylen-1] >> nshift; delete[] xwords; delete[] ywords; } } return *this; } /// @brief Bitwise AND assignment operator. Performs bitwise AND operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator&=(const APInt& RHS) { if (isSingleWord()) { if (RHS.isSingleWord()) VAL &= RHS.VAL; else VAL &= RHS.pVal[0]; } else { if (RHS.isSingleWord()) { bzero(pVal, (numWords() - 1) * 8); pVal[0] &= RHS.VAL; } else { unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); for (unsigned i = 0; i < minwords; ++i) pVal[i] &= RHS.pVal[i]; if (numWords() > minwords) bzero(pVal+minwords, (numWords() - minwords) * 8); } } return *this; } /// @brief Bitwise OR assignment operator. Performs bitwise OR operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator|=(const APInt& RHS) { if (isSingleWord()) { if (RHS.isSingleWord()) VAL |= RHS.VAL; else VAL |= RHS.pVal[0]; } else { if (RHS.isSingleWord()) { pVal[0] |= RHS.VAL; } else { unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); for (unsigned i = 0; i < minwords; ++i) pVal[i] |= RHS.pVal[i]; } } TruncToBits(); return *this; } /// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator^=(const APInt& RHS) { if (isSingleWord()) { if (RHS.isSingleWord()) VAL ^= RHS.VAL; else VAL ^= RHS.pVal[0]; } else { if (RHS.isSingleWord()) { for (unsigned i = 0; i < numWords(); ++i) pVal[i] ^= RHS.VAL; } else { unsigned minwords = numWords() < RHS.numWords() ? numWords() : RHS.numWords(); for (unsigned i = 0; i < minwords; ++i) pVal[i] ^= RHS.pVal[i]; if (numWords() > minwords) for (unsigned i = minwords; i < numWords(); ++i) pVal[i] ^= 0; } } TruncToBits(); return *this; } /// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt /// and the given APInt& RHS. APInt APInt::operator&(const APInt& RHS) const { APInt API(RHS); return API &= *this; } /// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt /// and the given APInt& RHS. APInt APInt::operator|(const APInt& RHS) const { APInt API(RHS); API |= *this; API.TruncToBits(); return API; } /// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt /// and the given APInt& RHS. APInt APInt::operator^(const APInt& RHS) const { APInt API(RHS); API ^= *this; API.TruncToBits(); return API; } /// @brief Logical AND operator. Performs logical AND operation on this APInt /// and the given APInt& RHS. bool APInt::operator&&(const APInt& RHS) const { if (isSingleWord()) return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0]; else if (RHS.isSingleWord()) return RHS.VAL && pVal[0]; else { unsigned minN = std::min(numWords(), RHS.numWords()); for (unsigned i = 0; i < minN; ++i) if (pVal[i] && RHS.pVal[i]) return true; } return false; } /// @brief Logical OR operator. Performs logical OR operation on this APInt /// and the given APInt& RHS. bool APInt::operator||(const APInt& RHS) const { if (isSingleWord()) return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0]; else if (RHS.isSingleWord()) return RHS.VAL || pVal[0]; else { unsigned minN = std::min(numWords(), RHS.numWords()); for (unsigned i = 0; i < minN; ++i) if (pVal[i] || RHS.pVal[i]) return true; } return false; } /// @brief Logical negation operator. Performs logical negation operation on /// this APInt. bool APInt::operator !() const { if (isSingleWord()) return !VAL; else for (unsigned i = 0; i < numWords(); ++i) if (pVal[i]) return false; return true; } /// @brief Multiplication operator. Multiplies this APInt by the given APInt& /// RHS. APInt APInt::operator*(const APInt& RHS) const { APInt API(RHS); API *= *this; API.TruncToBits(); return API; } /// @brief Division operator. Divides this APInt by the given APInt& RHS. APInt APInt::operator/(const APInt& RHS) const { APInt API(*this); return API /= RHS; } /// @brief Remainder operator. Yields the remainder from the division of this /// APInt and the given APInt& RHS. APInt APInt::operator%(const APInt& RHS) const { APInt API(*this); return API %= RHS; } /// @brief Addition operator. Adds this APInt by the given APInt& RHS. APInt APInt::operator+(const APInt& RHS) const { APInt API(*this); API += RHS; API.TruncToBits(); return API; } /// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS APInt APInt::operator-(const APInt& RHS) const { APInt API(*this); API -= RHS; API.TruncToBits(); return API; } /// @brief Array-indexing support. bool APInt::operator[](unsigned bitPosition) const { return maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)]) != 0; } /// @brief Equality operator. Compare this APInt with the given APInt& RHS /// for the validity of the equality relationship. bool APInt::operator==(const APInt& RHS) const { unsigned n1 = numWords() * APINT_BITS_PER_WORD - CountLeadingZeros(), n2 = RHS.numWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros(); if (n1 != n2) return false; else if (isSingleWord()) return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); else { if (n1 <= 64) return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); for (int i = whichWord(n1 - 1); i >= 0; --i) if (pVal[i] != RHS.pVal[i]) return false; } return true; } /// @brief Inequality operator. Compare this APInt with the given APInt& RHS /// for the validity of the inequality relationship. bool APInt::operator!=(const APInt& RHS) const { return !((*this) == RHS); } /// @brief Less-than operator. Compare this APInt with the given APInt& RHS /// for the validity of the less-than relationship. bool APInt::operator <(const APInt& RHS) const { if (isSigned && RHS.isSigned) { if ((*this)[bitsnum-1] > RHS[RHS.bitsnum-1]) return false; else if ((*this)[bitsnum-1] < RHS[RHS.bitsnum-1]) return true; } unsigned n1 = numWords() * 64 - CountLeadingZeros(), n2 = RHS.numWords() * 64 - RHS.CountLeadingZeros(); if (n1 < n2) return true; else if (n1 > n2) return false; else if (isSingleWord()) return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); else { if (n1 <= 64) return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); for (int i = whichWord(n1 - 1); i >= 0; --i) { if (pVal[i] > RHS.pVal[i]) return false; else if (pVal[i] < RHS.pVal[i]) return true; } } return false; } /// @brief Less-than-or-equal operator. Compare this APInt with the given /// APInt& RHS for the validity of the less-than-or-equal relationship. bool APInt::operator<=(const APInt& RHS) const { return (*this) == RHS || (*this) < RHS; } /// @brief Greater-than operator. Compare this APInt with the given APInt& RHS /// for the validity of the greater-than relationship. bool APInt::operator >(const APInt& RHS) const { return !((*this) <= RHS); } /// @brief Greater-than-or-equal operator. Compare this APInt with the given /// APInt& RHS for the validity of the greater-than-or-equal relationship. bool APInt::operator>=(const APInt& RHS) const { return !((*this) < RHS); } /// Set the given bit to 1 whose poition is given as "bitPosition". /// @brief Set a given bit to 1. APInt& APInt::set(unsigned bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); return *this; } /// @brief Set every bit to 1. APInt& APInt::set() { if (isSingleWord()) VAL = -1ULL; else for (unsigned i = 0; i < numWords(); ++i) pVal[i] = -1ULL; return *this; } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. APInt& APInt::clear(unsigned bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); return *this; } /// @brief Set every bit to 0. APInt& APInt::clear() { if (isSingleWord()) VAL = 0; else bzero(pVal, numWords() * 8); return *this; } /// @brief Left-shift assignment operator. Left-shift the APInt by shiftAmt /// and assigns the result to this APInt. APInt& APInt::operator<<=(unsigned shiftAmt) { if (shiftAmt >= bitsnum) { if (isSingleWord()) VAL = 0; else bzero(pVal, numWords() * 8); } else { for (unsigned i = 0; i < shiftAmt; ++i) clear(i); for (unsigned i = shiftAmt; i < bitsnum; ++i) { if ((*this)[i-shiftAmt]) set(i); else clear(i); } } return *this; } /// @brief Left-shift operator. Left-shift the APInt by shiftAmt. APInt APInt::operator<<(unsigned shiftAmt) const { APInt API(*this); API <<= shiftAmt; return API; } /// @brief Right-shift assignment operator. Right-shift the APInt by shiftAmt /// and assigns the result to this APInt. APInt& APInt::operator>>=(unsigned shiftAmt) { bool isAShr = isSigned && (*this)[bitsnum-1]; if (isSingleWord()) VAL = isAShr ? (int64_t(VAL) >> shiftAmt) : (VAL >> shiftAmt); else { unsigned i = 0; for (i = 0; i < bitsnum - shiftAmt; ++i) if ((*this)[i+shiftAmt]) set(i); else clear(i); for (; i < bitsnum; ++i) isAShr ? set(i) : clear(i); } return *this; } /// @brief Right-shift operator. Right-shift the APInt by shiftAmt. APInt APInt::operator>>(unsigned shiftAmt) const { APInt API(*this); API >>= shiftAmt; return API; } /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on /// this APInt. APInt APInt::operator~() const { APInt API(*this); API.flip(); return API; } /// @brief Toggle every bit to its opposite value. APInt& APInt::flip() { if (isSingleWord()) VAL = (~(VAL << (64 - bitsnum))) >> (64 - bitsnum); else { unsigned i = 0; for (; i < numWords() - 1; ++i) pVal[i] = ~pVal[i]; unsigned offset = 64 - (bitsnum - 64 * (i - 1)); pVal[i] = (~(pVal[i] << offset)) >> offset; } return *this; } /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. APInt& APInt::flip(unsigned bitPosition) { assert(bitPosition < bitsnum && "Out of the bit-width range!"); if ((*this)[bitPosition]) clear(bitPosition); else set(bitPosition); return *this; } /// to_string - This function translates the APInt into a string. std::string APInt::to_string(uint8_t radix) const { assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); std::ostringstream buf; buf << std::setbase(radix); // If the radix is a power of 2, set the format of ostringstream, // and output the value into buf. if ((radix & (radix - 1)) == 0) { if (isSingleWord()) buf << VAL; else { buf << pVal[numWords()-1]; buf << std::setw(64 / (radix / 8 + 2)) << std::setfill('0'); for (int i = numWords() - 2; i >= 0; --i) buf << pVal[i]; } } else { // If the radix = 10, need to translate the value into a // string. if (isSingleWord()) buf << VAL; else { // FIXME: To be supported. } } return buf.str(); } /// getMaxValue - This function returns the largest value /// for an APInt of the specified bit-width and if isSign == true, /// it should be largest signed value, otherwise unsigned value. APInt APInt::getMaxValue(unsigned numBits, bool isSign) { APInt APIVal(numBits, 1); APIVal.set(); return isSign ? APIVal.clear(numBits) : APIVal; } /// getMinValue - This function returns the smallest value for /// an APInt of the given bit-width and if isSign == true, /// it should be smallest signed value, otherwise zero. APInt APInt::getMinValue(unsigned numBits, bool isSign) { APInt APIVal(0, numBits); return isSign ? APIVal : APIVal.set(numBits); } /// getAllOnesValue - This function returns an all-ones value for /// an APInt of the specified bit-width. APInt APInt::getAllOnesValue(unsigned numBits) { return getMaxValue(numBits, false); } /// getNullValue - This function creates an '0' value for an /// APInt of the specified bit-width. APInt APInt::getNullValue(unsigned numBits) { return getMinValue(numBits, true); } /// HiBits - This function returns the high "numBits" bits of this APInt. APInt APInt::HiBits(unsigned numBits) const { return (*this) >> (bitsnum - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. APInt APInt::LoBits(unsigned numBits) const { return ((*this) << (bitsnum - numBits)) >> (bitsnum - numBits); } /// CountLeadingZeros - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting /// the number of zeros from the most significant bit to the first one bit. /// @returns numWord() * 64 if the value is zero. unsigned APInt::CountLeadingZeros() const { if (isSingleWord()) return CountLeadingZeros_64(VAL); unsigned Count = 0; for (int i = numWords() - 1; i >= 0; --i) { unsigned tmp = CountLeadingZeros_64(pVal[i]); Count += tmp; if (tmp != 64) break; } return Count; } /// CountTrailingZero - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting /// the number of zeros from the least significant bit to the first one bit. /// @returns numWord() * 64 if the value is zero. unsigned APInt::CountTrailingZeros() const { if (isSingleWord()) return CountTrailingZeros_64(~VAL & (VAL - 1)); APInt Tmp = ~(*this) & ((*this) - 1); return numWords() * 64 - Tmp.CountLeadingZeros(); } /// CountPopulation - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// CountPopulation_{32, 64}. It counts the number of set bits in a value. /// @returns 0 if the value is zero. unsigned APInt::CountPopulation() const { if (isSingleWord()) return CountPopulation_64(VAL); unsigned Count = 0; for (unsigned i = 0; i < numWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } /// ByteSwap - This function returns a byte-swapped representation of the /// APInt argument, APIVal. APInt llvm::ByteSwap(const APInt& APIVal) { if (APIVal.bitsnum <= 32) return APInt(APIVal.bitsnum, ByteSwap_32(unsigned(APIVal.VAL))); else if (APIVal.bitsnum <= 64) return APInt(APIVal.bitsnum, ByteSwap_64(APIVal.VAL)); else return APIVal; } /// GreatestCommonDivisor - This function returns the greatest common /// divisor of the two APInt values using Enclid's algorithm. APInt llvm::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { APInt A = API1, B = API2; while (!!B) { APInt T = B; B = A % B; A = T; } return A; }