//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PHITransAddr class. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PHITransAddr.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" using namespace llvm; static bool CanPHITrans(Instruction *Inst) { if (isa(Inst) || isa(Inst) || isa(Inst)) return true; if (Inst->getOpcode() == Instruction::And && isa(Inst->getOperand(1))) return true; // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; // if (isa(PtrInst) || isa(PtrInst)) // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); return false; } /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true /// if we have some hope of doing it. This should be used as a filter to /// avoid calling PHITranslateValue in hopeless situations. bool PHITransAddr::IsPotentiallyPHITranslatable() const { // If the input value is not an instruction, or if it is not defined in CurBB, // then we don't need to phi translate it. Instruction *Inst = dyn_cast(Addr); return Inst == 0 || CanPHITrans(Inst); } Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, BasicBlock *PredBB) { // If this is a non-instruction value, it can't require PHI translation. Instruction *Inst = dyn_cast(V); if (Inst == 0) return V; // If 'Inst' is defined in this block, it must be an input that needs to be // phi translated or an intermediate expression that needs to be incorporated // into the expression. if (Inst->getParent() == CurBB) { assert(std::count(InstInputs.begin(), InstInputs.end(), Inst) && "Not an input?"); // If this is a PHI, go ahead and translate it. if (PHINode *PN = dyn_cast(Inst)) return PN->getIncomingValueForBlock(PredBB); // If this is a non-phi value, and it is analyzable, we can incorporate it // into the expression by making all instruction operands be inputs. if (!CanPHITrans(Inst)) return 0; // Okay, we can incorporate it, this instruction is no longer an input. InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); // All instruction operands are now inputs (and of course, they may also be // defined in this block, so they may need to be phi translated themselves. for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(Inst->getOperand(i))) InstInputs.push_back(Op); } else { // Determine whether 'Inst' is an input to our PHI translatable expression. bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst); // If it is an input defined in a different block, then it remains an input. if (isInput) return Inst; } // Ok, it must be an intermediate result (either because it started that way // or because we just incorporated it into the expression). See if its // operands need to be phi translated, and if so, reconstruct it. if (BitCastInst *BC = dyn_cast(Inst)) { Value *PHIIn = PHITranslateSubExpr(BC->getOperand(0), CurBB, PredBB); if (PHIIn == 0) return 0; if (PHIIn == BC->getOperand(0)) return BC; // Find an available version of this cast. // Constants are trivial to find. if (Constant *C = dyn_cast(PHIIn)) return ConstantExpr::getBitCast(C, BC->getType()); // Otherwise we have to see if a bitcasted version of the incoming pointer // is available. If so, we can use it, otherwise we have to fail. for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end(); UI != E; ++UI) { if (BitCastInst *BCI = dyn_cast(*UI)) if (BCI->getType() == BC->getType()) return BCI; } return 0; } // Handle getelementptr with at least one PHI translatable operand. if (GetElementPtrInst *GEP = dyn_cast(Inst)) { SmallVector GEPOps; BasicBlock *CurBB = GEP->getParent(); bool AnyChanged = false; for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB); if (GEPOp == 0) return 0; AnyChanged = GEPOp != GEP->getOperand(i); GEPOps.push_back(GEPOp); } if (!AnyChanged) return GEP; // Simplify the GEP to handle 'gep x, 0' -> x etc. if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD)) return V; // Scan to see if we have this GEP available. Value *APHIOp = GEPOps[0]; for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end(); UI != E; ++UI) { if (GetElementPtrInst *GEPI = dyn_cast(*UI)) if (GEPI->getType() == GEP->getType() && GEPI->getNumOperands() == GEPOps.size() && GEPI->getParent()->getParent() == CurBB->getParent()) { bool Mismatch = false; for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) if (GEPI->getOperand(i) != GEPOps[i]) { Mismatch = true; break; } if (!Mismatch) return GEPI; } } return 0; } // Handle add with a constant RHS. if (Inst->getOpcode() == Instruction::Add && isa(Inst->getOperand(1))) { // PHI translate the LHS. Constant *RHS = cast(Inst->getOperand(1)); bool isNSW = cast(Inst)->hasNoSignedWrap(); bool isNUW = cast(Inst)->hasNoUnsignedWrap(); Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB); if (LHS == 0) return 0; // If the PHI translated LHS is an add of a constant, fold the immediates. if (BinaryOperator *BOp = dyn_cast(LHS)) if (BOp->getOpcode() == Instruction::Add) if (ConstantInt *CI = dyn_cast(BOp->getOperand(1))) { LHS = BOp->getOperand(0); RHS = ConstantExpr::getAdd(RHS, CI); isNSW = isNUW = false; } // See if the add simplifies away. if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD)) return Res; // Otherwise, see if we have this add available somewhere. for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end(); UI != E; ++UI) { if (BinaryOperator *BO = dyn_cast(*UI)) if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && BO->getParent()->getParent() == CurBB->getParent()) return BO; } return 0; } // Otherwise, we failed. return 0; } /// PHITranslateValue - PHI translate the current address up the CFG from /// CurBB to Pred, updating our state the reflect any needed changes. This /// returns true on failure. bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB) { Addr = PHITranslateSubExpr(Addr, CurBB, PredBB); return Addr == 0; } /// GetAvailablePHITranslatedSubExpr - Return the value computed by /// PHITranslateSubExpr if it dominates PredBB, otherwise return null. Value *PHITransAddr:: GetAvailablePHITranslatedSubExpr(Value *V, BasicBlock *CurBB,BasicBlock *PredBB, const DominatorTree &DT) { // See if PHI translation succeeds. V = PHITranslateSubExpr(V, CurBB, PredBB); // Make sure the value is live in the predecessor. if (Instruction *Inst = dyn_cast_or_null(V)) if (!DT.dominates(Inst->getParent(), PredBB)) return 0; return V; } /// PHITranslateWithInsertion - PHI translate this value into the specified /// predecessor block, inserting a computation of the value if it is /// unavailable. /// /// All newly created instructions are added to the NewInsts list. This /// returns null on failure. /// Value *PHITransAddr:: PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree &DT, SmallVectorImpl &NewInsts) { unsigned NISize = NewInsts.size(); // Attempt to PHI translate with insertion. Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); // If successful, return the new value. if (Addr) return Addr; // If not, destroy any intermediate instructions inserted. while (NewInsts.size() != NISize) NewInsts.pop_back_val()->eraseFromParent(); return 0; } /// InsertPHITranslatedPointer - Insert a computation of the PHI translated /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB /// block. All newly created instructions are added to the NewInsts list. /// This returns null on failure. /// Value *PHITransAddr:: InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree &DT, SmallVectorImpl &NewInsts) { // See if we have a version of this value already available and dominating // PredBB. If so, there is no need to insert a new instance of it. if (Value *Res = GetAvailablePHITranslatedSubExpr(InVal, CurBB, PredBB, DT)) return Res; // If we don't have an available version of this value, it must be an // instruction. Instruction *Inst = cast(InVal); // Handle bitcast of PHI translatable value. if (BitCastInst *BC = dyn_cast(Inst)) { Value *OpVal = InsertPHITranslatedSubExpr(BC->getOperand(0), CurBB, PredBB, DT, NewInsts); if (OpVal == 0) return 0; // Otherwise insert a bitcast at the end of PredBB. BitCastInst *New = new BitCastInst(OpVal, InVal->getType(), InVal->getName()+".phi.trans.insert", PredBB->getTerminator()); NewInsts.push_back(New); return New; } // Handle getelementptr with at least one PHI operand. if (GetElementPtrInst *GEP = dyn_cast(Inst)) { SmallVector GEPOps; BasicBlock *CurBB = GEP->getParent(); for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), CurBB, PredBB, DT, NewInsts); if (OpVal == 0) return 0; GEPOps.push_back(OpVal); } GetElementPtrInst *Result = GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(), InVal->getName()+".phi.trans.insert", PredBB->getTerminator()); Result->setIsInBounds(GEP->isInBounds()); NewInsts.push_back(Result); return Result; } #if 0 // FIXME: This code works, but it is unclear that we actually want to insert // a big chain of computation in order to make a value available in a block. // This needs to be evaluated carefully to consider its cost trade offs. // Handle add with a constant RHS. if (Inst->getOpcode() == Instruction::Add && isa(Inst->getOperand(1))) { // PHI translate the LHS. Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), CurBB, PredBB, DT, NewInsts); if (OpVal == 0) return 0; BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), InVal->getName()+".phi.trans.insert", PredBB->getTerminator()); Res->setHasNoSignedWrap(cast(Inst)->hasNoSignedWrap()); Res->setHasNoUnsignedWrap(cast(Inst)->hasNoUnsignedWrap()); NewInsts.push_back(Res); return Res; } #endif return 0; }