llvm/lib/LTO/LTOModule.cpp
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

651 lines
21 KiB
C++

//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//
#include "llvm/LTO/legacy/LTOModule.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include <system_error>
using namespace llvm;
using namespace llvm::object;
LTOModule::LTOModule(std::unique_ptr<Module> M, MemoryBufferRef MBRef,
llvm::TargetMachine *TM)
: Mod(std::move(M)), MBRef(MBRef), _target(TM) {
SymTab.addModule(Mod.get());
}
LTOModule::~LTOModule() {}
/// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
/// bitcode.
bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
return !errorToBool(BCData.takeError());
}
bool LTOModule::isBitcodeFile(StringRef Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(Path);
if (!BufferOrErr)
return false;
Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
BufferOrErr.get()->getMemBufferRef());
return !errorToBool(BCData.takeError());
}
bool LTOModule::isThinLTO() {
Expected<BitcodeLTOInfo> Result = getBitcodeLTOInfo(MBRef);
if (!Result) {
logAllUnhandledErrors(Result.takeError(), errs());
return false;
}
return Result->IsThinLTO;
}
bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
StringRef TriplePrefix) {
Expected<MemoryBufferRef> BCOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
if (errorToBool(BCOrErr.takeError()))
return false;
LLVMContext Context;
ErrorOr<std::string> TripleOrErr =
expectedToErrorOrAndEmitErrors(Context, getBitcodeTargetTriple(*BCOrErr));
if (!TripleOrErr)
return false;
return StringRef(*TripleOrErr).startswith(TriplePrefix);
}
std::string LTOModule::getProducerString(MemoryBuffer *Buffer) {
Expected<MemoryBufferRef> BCOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
if (errorToBool(BCOrErr.takeError()))
return "";
LLVMContext Context;
ErrorOr<std::string> ProducerOrErr = expectedToErrorOrAndEmitErrors(
Context, getBitcodeProducerString(*BCOrErr));
if (!ProducerOrErr)
return "";
return *ProducerOrErr;
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromFile(LLVMContext &Context, StringRef path,
const TargetOptions &options) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(path);
if (std::error_code EC = BufferOrErr.getError()) {
Context.emitError(EC.message());
return EC;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
/* ShouldBeLazy*/ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromOpenFile(LLVMContext &Context, int fd, StringRef path,
size_t size, const TargetOptions &options) {
return createFromOpenFileSlice(Context, fd, path, size, 0, options);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromOpenFileSlice(LLVMContext &Context, int fd, StringRef path,
size_t map_size, off_t offset,
const TargetOptions &options) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getOpenFileSlice(fd, path, map_size, offset);
if (std::error_code EC = BufferOrErr.getError()) {
Context.emitError(EC.message());
return EC;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
/* ShouldBeLazy */ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromBuffer(LLVMContext &Context, const void *mem,
size_t length, const TargetOptions &options,
StringRef path) {
StringRef Data((const char *)mem, length);
MemoryBufferRef Buffer(Data, path);
return makeLTOModule(Buffer, options, Context, /* ShouldBeLazy */ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createInLocalContext(std::unique_ptr<LLVMContext> Context,
const void *mem, size_t length,
const TargetOptions &options, StringRef path) {
StringRef Data((const char *)mem, length);
MemoryBufferRef Buffer(Data, path);
// If we own a context, we know this is being used only for symbol extraction,
// not linking. Be lazy in that case.
ErrorOr<std::unique_ptr<LTOModule>> Ret =
makeLTOModule(Buffer, options, *Context, /* ShouldBeLazy */ true);
if (Ret)
(*Ret)->OwnedContext = std::move(Context);
return Ret;
}
static ErrorOr<std::unique_ptr<Module>>
parseBitcodeFileImpl(MemoryBufferRef Buffer, LLVMContext &Context,
bool ShouldBeLazy) {
// Find the buffer.
Expected<MemoryBufferRef> MBOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer);
if (Error E = MBOrErr.takeError()) {
std::error_code EC = errorToErrorCode(std::move(E));
Context.emitError(EC.message());
return EC;
}
if (!ShouldBeLazy) {
// Parse the full file.
return expectedToErrorOrAndEmitErrors(Context,
parseBitcodeFile(*MBOrErr, Context));
}
// Parse lazily.
return expectedToErrorOrAndEmitErrors(
Context,
getLazyBitcodeModule(*MBOrErr, Context, true /*ShouldLazyLoadMetadata*/));
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::makeLTOModule(MemoryBufferRef Buffer, const TargetOptions &options,
LLVMContext &Context, bool ShouldBeLazy) {
ErrorOr<std::unique_ptr<Module>> MOrErr =
parseBitcodeFileImpl(Buffer, Context, ShouldBeLazy);
if (std::error_code EC = MOrErr.getError())
return EC;
std::unique_ptr<Module> &M = *MOrErr;
std::string TripleStr = M->getTargetTriple();
if (TripleStr.empty())
TripleStr = sys::getDefaultTargetTriple();
llvm::Triple Triple(TripleStr);
// find machine architecture for this module
std::string errMsg;
const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg);
if (!march)
return make_error_code(object::object_error::arch_not_found);
// construct LTOModule, hand over ownership of module and target
SubtargetFeatures Features;
Features.getDefaultSubtargetFeatures(Triple);
std::string FeatureStr = Features.getString();
// Set a default CPU for Darwin triples.
std::string CPU;
if (Triple.isOSDarwin()) {
if (Triple.getArch() == llvm::Triple::x86_64)
CPU = "core2";
else if (Triple.getArch() == llvm::Triple::x86)
CPU = "yonah";
else if (Triple.getArch() == llvm::Triple::aarch64)
CPU = "cyclone";
}
TargetMachine *target =
march->createTargetMachine(TripleStr, CPU, FeatureStr, options, None);
std::unique_ptr<LTOModule> Ret(new LTOModule(std::move(M), Buffer, target));
Ret->parseSymbols();
Ret->parseMetadata();
return std::move(Ret);
}
/// Create a MemoryBuffer from a memory range with an optional name.
std::unique_ptr<MemoryBuffer>
LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
const char *startPtr = (const char*)mem;
return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
}
/// objcClassNameFromExpression - Get string that the data pointer points to.
bool
LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) {
if (const ConstantExpr *ce = dyn_cast<ConstantExpr>(c)) {
Constant *op = ce->getOperand(0);
if (GlobalVariable *gvn = dyn_cast<GlobalVariable>(op)) {
Constant *cn = gvn->getInitializer();
if (ConstantDataArray *ca = dyn_cast<ConstantDataArray>(cn)) {
if (ca->isCString()) {
name = (".objc_class_name_" + ca->getAsCString()).str();
return true;
}
}
}
}
return false;
}
/// addObjCClass - Parse i386/ppc ObjC class data structure.
void LTOModule::addObjCClass(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__class is pointer to superclass name
std::string superclassName;
if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
auto IterBool =
_undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
if (IterBool.second) {
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
}
// third slot in __OBJC,__class is pointer to class name
std::string className;
if (objcClassNameFromExpression(c->getOperand(2), className)) {
auto Iter = _defines.insert(className).first;
NameAndAttributes info;
info.name = Iter->first();
info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
info.isFunction = false;
info.symbol = clgv;
_symbols.push_back(info);
}
}
/// addObjCCategory - Parse i386/ppc ObjC category data structure.
void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__category is pointer to target class name
std::string targetclassName;
if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
/// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
std::string targetclassName;
if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
void LTOModule::addDefinedDataSymbol(ModuleSymbolTable::Symbol Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
const GlobalValue *V = Sym.get<GlobalValue *>();
addDefinedDataSymbol(Buffer, V);
}
void LTOModule::addDefinedDataSymbol(StringRef Name, const GlobalValue *v) {
// Add to list of defined symbols.
addDefinedSymbol(Name, v, false);
if (!v->hasSection() /* || !isTargetDarwin */)
return;
// Special case i386/ppc ObjC data structures in magic sections:
// The issue is that the old ObjC object format did some strange
// contortions to avoid real linker symbols. For instance, the
// ObjC class data structure is allocated statically in the executable
// that defines that class. That data structures contains a pointer to
// its superclass. But instead of just initializing that part of the
// struct to the address of its superclass, and letting the static and
// dynamic linkers do the rest, the runtime works by having that field
// instead point to a C-string that is the name of the superclass.
// At runtime the objc initialization updates that pointer and sets
// it to point to the actual super class. As far as the linker
// knows it is just a pointer to a string. But then someone wanted the
// linker to issue errors at build time if the superclass was not found.
// So they figured out a way in mach-o object format to use an absolute
// symbols (.objc_class_name_Foo = 0) and a floating reference
// (.reference .objc_class_name_Bar) to cause the linker into erroring when
// a class was missing.
// The following synthesizes the implicit .objc_* symbols for the linker
// from the ObjC data structures generated by the front end.
// special case if this data blob is an ObjC class definition
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(v)) {
StringRef Section = GV->getSection();
if (Section.startswith("__OBJC,__class,")) {
addObjCClass(GV);
}
// special case if this data blob is an ObjC category definition
else if (Section.startswith("__OBJC,__category,")) {
addObjCCategory(GV);
}
// special case if this data blob is the list of referenced classes
else if (Section.startswith("__OBJC,__cls_refs,")) {
addObjCClassRef(GV);
}
}
}
void LTOModule::addDefinedFunctionSymbol(ModuleSymbolTable::Symbol Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
const Function *F = cast<Function>(Sym.get<GlobalValue *>());
addDefinedFunctionSymbol(Buffer, F);
}
void LTOModule::addDefinedFunctionSymbol(StringRef Name, const Function *F) {
// add to list of defined symbols
addDefinedSymbol(Name, F, true);
}
void LTOModule::addDefinedSymbol(StringRef Name, const GlobalValue *def,
bool isFunction) {
// set alignment part log2() can have rounding errors
uint32_t align = def->getAlignment();
uint32_t attr = align ? countTrailingZeros(align) : 0;
// set permissions part
if (isFunction) {
attr |= LTO_SYMBOL_PERMISSIONS_CODE;
} else {
const GlobalVariable *gv = dyn_cast<GlobalVariable>(def);
if (gv && gv->isConstant())
attr |= LTO_SYMBOL_PERMISSIONS_RODATA;
else
attr |= LTO_SYMBOL_PERMISSIONS_DATA;
}
// set definition part
if (def->hasWeakLinkage() || def->hasLinkOnceLinkage())
attr |= LTO_SYMBOL_DEFINITION_WEAK;
else if (def->hasCommonLinkage())
attr |= LTO_SYMBOL_DEFINITION_TENTATIVE;
else
attr |= LTO_SYMBOL_DEFINITION_REGULAR;
// set scope part
if (def->hasLocalLinkage())
// Ignore visibility if linkage is local.
attr |= LTO_SYMBOL_SCOPE_INTERNAL;
else if (def->hasHiddenVisibility())
attr |= LTO_SYMBOL_SCOPE_HIDDEN;
else if (def->hasProtectedVisibility())
attr |= LTO_SYMBOL_SCOPE_PROTECTED;
else if (def->canBeOmittedFromSymbolTable())
attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
else
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
if (def->hasComdat())
attr |= LTO_SYMBOL_COMDAT;
if (isa<GlobalAlias>(def))
attr |= LTO_SYMBOL_ALIAS;
auto Iter = _defines.insert(Name).first;
// fill information structure
NameAndAttributes info;
StringRef NameRef = Iter->first();
info.name = NameRef;
assert(NameRef.data()[NameRef.size()] == '\0');
info.attributes = attr;
info.isFunction = isFunction;
info.symbol = def;
// add to table of symbols
_symbols.push_back(info);
}
/// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the
/// defined list.
void LTOModule::addAsmGlobalSymbol(StringRef name,
lto_symbol_attributes scope) {
auto IterBool = _defines.insert(name);
// only add new define if not already defined
if (!IterBool.second)
return;
NameAndAttributes &info = _undefines[IterBool.first->first()];
if (info.symbol == nullptr) {
// FIXME: This is trying to take care of module ASM like this:
//
// module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0"
//
// but is gross and its mother dresses it funny. Have the ASM parser give us
// more details for this type of situation so that we're not guessing so
// much.
// fill information structure
info.name = IterBool.first->first();
info.attributes =
LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
info.isFunction = false;
info.symbol = nullptr;
// add to table of symbols
_symbols.push_back(info);
return;
}
if (info.isFunction)
addDefinedFunctionSymbol(info.name, cast<Function>(info.symbol));
else
addDefinedDataSymbol(info.name, info.symbol);
_symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK;
_symbols.back().attributes |= scope;
}
/// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
/// undefined list.
void LTOModule::addAsmGlobalSymbolUndef(StringRef name) {
auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
_asm_undefines.push_back(IterBool.first->first());
// we already have the symbol
if (!IterBool.second)
return;
uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = attr;
info.isFunction = false;
info.symbol = nullptr;
}
/// Add a symbol which isn't defined just yet to a list to be resolved later.
void LTOModule::addPotentialUndefinedSymbol(ModuleSymbolTable::Symbol Sym,
bool isFunc) {
SmallString<64> name;
{
raw_svector_ostream OS(name);
SymTab.printSymbolName(OS, Sym);
name.c_str();
}
auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
// we already have the symbol
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
const GlobalValue *decl = Sym.dyn_cast<GlobalValue *>();
if (decl->hasExternalWeakLinkage())
info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF;
else
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = isFunc;
info.symbol = decl;
}
void LTOModule::parseSymbols() {
for (auto Sym : SymTab.symbols()) {
auto *GV = Sym.dyn_cast<GlobalValue *>();
uint32_t Flags = SymTab.getSymbolFlags(Sym);
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
continue;
bool IsUndefined = Flags & object::BasicSymbolRef::SF_Undefined;
if (!GV) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
StringRef Name(Buffer);
if (IsUndefined)
addAsmGlobalSymbolUndef(Name);
else if (Flags & object::BasicSymbolRef::SF_Global)
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_DEFAULT);
else
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_INTERNAL);
continue;
}
auto *F = dyn_cast<Function>(GV);
if (IsUndefined) {
addPotentialUndefinedSymbol(Sym, F != nullptr);
continue;
}
if (F) {
addDefinedFunctionSymbol(Sym);
continue;
}
if (isa<GlobalVariable>(GV)) {
addDefinedDataSymbol(Sym);
continue;
}
assert(isa<GlobalAlias>(GV));
addDefinedDataSymbol(Sym);
}
// make symbols for all undefines
for (StringMap<NameAndAttributes>::iterator u =_undefines.begin(),
e = _undefines.end(); u != e; ++u) {
// If this symbol also has a definition, then don't make an undefine because
// it is a tentative definition.
if (_defines.count(u->getKey())) continue;
NameAndAttributes info = u->getValue();
_symbols.push_back(info);
}
}
/// parseMetadata - Parse metadata from the module
void LTOModule::parseMetadata() {
raw_string_ostream OS(LinkerOpts);
// Linker Options
if (NamedMDNode *LinkerOptions =
getModule().getNamedMetadata("llvm.linker.options")) {
for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
MDNode *MDOptions = LinkerOptions->getOperand(i);
for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
OS << " " << MDOption->getString();
}
}
}
// Globals - we only need to do this for COFF.
const Triple TT(_target->getTargetTriple());
if (!TT.isOSBinFormatCOFF())
return;
Mangler M;
for (const NameAndAttributes &Sym : _symbols) {
if (!Sym.symbol)
continue;
emitLinkerFlagsForGlobalCOFF(OS, Sym.symbol, TT, M);
}
// Add other interesting metadata here.
}