llvm/lib/Target/AMDGPU/SIFixWWMLiveness.cpp
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

418 lines
16 KiB
C++

//===-- SIFixWWMLiveness.cpp - Fix WWM live intervals ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Computations in WWM can overwrite values in inactive channels for
/// variables that the register allocator thinks are dead. This pass adds fake
/// uses of those variables to their def(s) to make sure that they aren't
/// overwritten.
///
/// As an example, consider this snippet:
/// %vgpr0 = V_MOV_B32_e32 0.0
/// if (...) {
/// %vgpr1 = ...
/// %vgpr2 = WWM killed %vgpr1
/// ... = killed %vgpr2
/// %vgpr0 = V_MOV_B32_e32 1.0
/// }
/// ... = %vgpr0
///
/// The live intervals of %vgpr0 don't overlap with those of %vgpr1. Normally,
/// we can safely allocate %vgpr0 and %vgpr1 in the same register, since
/// writing %vgpr1 would only write to channels that would be clobbered by the
/// second write to %vgpr0 anyways. But if %vgpr1 is written with WWM enabled,
/// it would clobber even the inactive channels for which the if-condition is
/// false, for which %vgpr0 is supposed to be 0. This pass adds an implicit use
/// of %vgpr0 to its def to make sure they aren't allocated to the
/// same register.
///
/// In general, we need to figure out what registers might have their inactive
/// channels which are eventually used accidentally clobbered by a WWM
/// instruction. We do that by spotting three separate cases of registers:
///
/// 1. A "then phi": the value resulting from phi elimination of a phi node at
/// the end of an if..endif. If there is WWM code in the "then", then we
/// make the def at the end of the "then" branch a partial def by adding an
/// implicit use of the register.
///
/// 2. A "loop exit register": a value written inside a loop but used outside the
/// loop, where there is WWM code inside the loop (the case in the example
/// above). We add an implicit_def of the register in the loop pre-header,
/// and make the original def a partial def by adding an implicit use of the
/// register.
///
/// 3. A "loop exit phi": the value resulting from phi elimination of a phi node
/// in a loop header. If there is WWM code inside the loop, then we make all
/// defs inside the loop partial defs by adding an implicit use of the
/// register on each one.
///
/// Note that we do not need to consider an if..else..endif phi. We only need to
/// consider non-uniform control flow, and control flow structurization would
/// have transformed a non-uniform if..else..endif into two if..endifs.
///
/// The analysis to detect these cases relies on a property of the MIR
/// arising from this pass running straight after PHIElimination and before any
/// coalescing: that any virtual register with more than one definition must be
/// the new register added to lower a phi node by PHIElimination.
///
/// FIXME: We should detect whether a register in one of the above categories is
/// already live at the WWM code before deciding to add the implicit uses to
/// synthesize its liveness.
///
/// FIXME: I believe this whole scheme may be flawed due to the possibility of
/// the register allocator doing live interval splitting.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "si-fix-wwm-liveness"
namespace {
class SIFixWWMLiveness : public MachineFunctionPass {
private:
MachineDominatorTree *DomTree;
MachineLoopInfo *LoopInfo;
LiveIntervals *LIS = nullptr;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
MachineRegisterInfo *MRI;
std::vector<MachineInstr *> WWMs;
std::vector<MachineOperand *> ThenDefs;
std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopExitDefs;
std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopPhiDefs;
public:
static char ID;
SIFixWWMLiveness() : MachineFunctionPass(ID) {
initializeSIFixWWMLivenessPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fix WWM Liveness"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(MachineDominatorsID);
AU.addRequiredID(MachineLoopInfoID);
// Should preserve the same set that TwoAddressInstructions does.
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(LiveVariablesID);
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
void processDef(MachineOperand &DefOpnd);
bool processThenDef(MachineOperand *DefOpnd);
bool processLoopExitDef(MachineOperand *DefOpnd, MachineLoop *Loop);
bool processLoopPhiDef(MachineOperand *DefOpnd, MachineLoop *Loop);
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIFixWWMLiveness, DEBUG_TYPE,
"SI fix WWM liveness", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(SIFixWWMLiveness, DEBUG_TYPE,
"SI fix WWM liveness", false, false)
char SIFixWWMLiveness::ID = 0;
char &llvm::SIFixWWMLivenessID = SIFixWWMLiveness::ID;
FunctionPass *llvm::createSIFixWWMLivenessPass() {
return new SIFixWWMLiveness();
}
bool SIFixWWMLiveness::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "SIFixWWMLiveness: function " << MF.getName() << "\n");
bool Modified = false;
// This doesn't actually need LiveIntervals, but we can preserve them.
LIS = getAnalysisIfAvailable<LiveIntervals>();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
DomTree = &getAnalysis<MachineDominatorTree>();
LoopInfo = &getAnalysis<MachineLoopInfo>();
// Scan the function to find the WWM sections and the candidate registers for
// having liveness modified.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::EXIT_WWM)
WWMs.push_back(&MI);
else {
for (MachineOperand &DefOpnd : MI.defs()) {
if (DefOpnd.isReg()) {
unsigned Reg = DefOpnd.getReg();
if (TRI->isVGPR(*MRI, Reg))
processDef(DefOpnd);
}
}
}
}
}
if (!WWMs.empty()) {
// Synthesize liveness over WWM sections as required.
for (auto ThenDef : ThenDefs)
Modified |= processThenDef(ThenDef);
for (auto LoopExitDef : LoopExitDefs)
Modified |= processLoopExitDef(LoopExitDef.first, LoopExitDef.second);
for (auto LoopPhiDef : LoopPhiDefs)
Modified |= processLoopPhiDef(LoopPhiDef.first, LoopPhiDef.second);
}
WWMs.clear();
ThenDefs.clear();
LoopExitDefs.clear();
LoopPhiDefs.clear();
return Modified;
}
// During the function scan, process an operand that defines a VGPR.
// This categorizes the register and puts it in the appropriate list for later
// use when processing a WWM section.
void SIFixWWMLiveness::processDef(MachineOperand &DefOpnd) {
unsigned Reg = DefOpnd.getReg();
// Get all the defining instructions. For convenience, make Defs[0] the def
// we are on now.
SmallVector<const MachineInstr *, 4> Defs;
Defs.push_back(DefOpnd.getParent());
for (auto &MI : MRI->def_instructions(Reg)) {
if (&MI != DefOpnd.getParent())
Defs.push_back(&MI);
}
// Check whether this def dominates all the others. If not, ignore this def.
// Either it is going to be processed when the scan encounters its other def
// that dominates all defs, or there is no def that dominates all others.
// The latter case is an eliminated phi from an if..else..endif or similar,
// which must be for uniform control flow so can be ignored.
// Because this pass runs shortly after PHIElimination, we assume that any
// multi-def register is a lowered phi, and thus has each def in a separate
// basic block.
for (unsigned I = 1; I != Defs.size(); ++I) {
if (!DomTree->dominates(Defs[0]->getParent(), Defs[I]->getParent()))
return;
}
// Check for the case of an if..endif lowered phi: It has two defs, one
// dominates the other, and there is a single use in a successor of the
// dominant def.
// Later we will spot any WWM code inside
// the "then" clause and turn the second def into a partial def so its
// liveness goes through the WWM code in the "then" clause.
if (Defs.size() == 2) {
auto DomDefBlock = Defs[0]->getParent();
if (DomDefBlock->succ_size() == 2 && MRI->hasOneUse(Reg)) {
auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
for (auto Succ : DomDefBlock->successors()) {
if (Succ == UseBlock) {
LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is a then phi reg\n");
ThenDefs.push_back(&DefOpnd);
return;
}
}
}
}
// Check for the case of a non-lowered-phi register (single def) that exits
// a loop, that is, it has a use that is outside a loop that the def is
// inside. We find the outermost loop that the def is inside but a use is
// outside. Later we will spot any WWM code inside that loop and then make
// the def a partial def so its liveness goes round the loop and through the
// WWM code.
if (Defs.size() == 1) {
auto Loop = LoopInfo->getLoopFor(Defs[0]->getParent());
if (!Loop)
return;
bool IsLoopExit = false;
for (auto &Use : MRI->use_instructions(Reg)) {
auto UseBlock = Use.getParent();
if (Loop->contains(UseBlock))
continue;
IsLoopExit = true;
while (auto Parent = Loop->getParentLoop()) {
if (Parent->contains(UseBlock))
break;
Loop = Parent;
}
}
if (!IsLoopExit)
return;
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is a loop exit reg with loop header at "
<< "bb." << Loop->getHeader()->getNumber() << "\n");
LoopExitDefs.push_back(std::pair<MachineOperand *, MachineLoop *>(
&DefOpnd, Loop));
return;
}
// Check for the case of a lowered single-preheader-loop phi, that is, a
// multi-def register where the dominating def is in the loop pre-header and
// all other defs are in backedges. Later we will spot any WWM code inside
// that loop and then make the backedge defs partial defs so the liveness
// goes through the WWM code.
// Note that we are ignoring multi-preheader loops on the basis that the
// structurizer does not allow that for non-uniform loops.
// There must be a single use in the loop header.
if (!MRI->hasOneUse(Reg))
return;
auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
auto Loop = LoopInfo->getLoopFor(UseBlock);
if (!Loop || Loop->getHeader() != UseBlock
|| Loop->contains(Defs[0]->getParent())) {
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is multi-def but single use not in loop header\n");
return;
}
for (unsigned I = 1; I != Defs.size(); ++I) {
if (!Loop->contains(Defs[I]->getParent()))
return;
}
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is a loop phi reg with loop header at "
<< "bb." << Loop->getHeader()->getNumber() << "\n");
LoopPhiDefs.push_back(
std::pair<MachineOperand *, MachineLoop *>(&DefOpnd, Loop));
}
// Process a then phi def: It has two defs, one dominates the other, and there
// is a single use in a successor of the dominant def. Here we spot any WWM
// code inside the "then" clause and turn the second def into a partial def so
// its liveness goes through the WWM code in the "then" clause.
bool SIFixWWMLiveness::processThenDef(MachineOperand *DefOpnd) {
LLVM_DEBUG(dbgs() << "Processing then def: " << *DefOpnd->getParent());
if (DefOpnd->getParent()->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Ignore if dominating def is undef.
LLVM_DEBUG(dbgs() << " ignoring as dominating def is undef\n");
return false;
}
unsigned Reg = DefOpnd->getReg();
// Get the use block, which is the endif block.
auto UseBlock = MRI->use_instr_begin(Reg)->getParent();
// Check whether there is WWM code inside the then branch. The WWM code must
// be dominated by the if but not dominated by the endif.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (DomTree->dominates(DefOpnd->getParent()->getParent(), WWM->getParent())
&& !DomTree->dominates(UseBlock, WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
// Get the other def.
MachineInstr *OtherDef = nullptr;
for (auto &MI : MRI->def_instructions(Reg)) {
if (&MI != DefOpnd->getParent())
OtherDef = &MI;
}
// Make it a partial def.
OtherDef->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *OtherDef);
return true;
}
// Process a loop exit def, that is, a register with a single use in a loop
// that has a use outside the loop. Here we spot any WWM code inside that loop
// and then make the def a partial def so its liveness goes round the loop and
// through the WWM code.
bool SIFixWWMLiveness::processLoopExitDef(MachineOperand *DefOpnd,
MachineLoop *Loop) {
LLVM_DEBUG(dbgs() << "Processing loop exit def: " << *DefOpnd->getParent());
// Check whether there is WWM code inside the loop.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (Loop->contains(WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
unsigned Reg = DefOpnd->getReg();
// Add a new implicit_def in loop preheader(s).
for (auto Pred : Loop->getHeader()->predecessors()) {
if (!Loop->contains(Pred)) {
auto ImplicitDef = BuildMI(*Pred, Pred->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
LLVM_DEBUG(dbgs() << *ImplicitDef);
(void)ImplicitDef;
}
}
// Make the original def partial.
DefOpnd->getParent()->addOperand(MachineOperand::CreateReg(
Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *DefOpnd->getParent());
return true;
}
// Process a loop phi def, that is, a multi-def register where the dominating
// def is in the loop pre-header and all other defs are in backedges. Here we
// spot any WWM code inside that loop and then make the backedge defs partial
// defs so the liveness goes through the WWM code.
bool SIFixWWMLiveness::processLoopPhiDef(MachineOperand *DefOpnd,
MachineLoop *Loop) {
LLVM_DEBUG(dbgs() << "Processing loop phi def: " << *DefOpnd->getParent());
// Check whether there is WWM code inside the loop.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (Loop->contains(WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
unsigned Reg = DefOpnd->getReg();
// Remove kill mark from uses.
for (auto &Use : MRI->use_operands(Reg))
Use.setIsKill(false);
// Make all defs except the dominating one partial defs.
SmallVector<MachineInstr *, 4> Defs;
for (auto &Def : MRI->def_instructions(Reg))
Defs.push_back(&Def);
for (auto Def : Defs) {
if (DefOpnd->getParent() == Def)
continue;
Def->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *Def);
}
return true;
}