llvm/lib/Transforms/Scalar/LoopDeletion.cpp
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

268 lines
9.8 KiB
C++

//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-delete"
STATISTIC(NumDeleted, "Number of loops deleted");
enum class LoopDeletionResult {
Unmodified,
Modified,
Deleted,
};
/// Determines if a loop is dead.
///
/// This assumes that we've already checked for unique exit and exiting blocks,
/// and that the code is in LCSSA form.
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
BasicBlock *ExitBlock, bool &Changed,
BasicBlock *Preheader) {
// Make sure that all PHI entries coming from the loop are loop invariant.
// Because the code is in LCSSA form, any values used outside of the loop
// must pass through a PHI in the exit block, meaning that this check is
// sufficient to guarantee that no loop-variant values are used outside
// of the loop.
bool AllEntriesInvariant = true;
bool AllOutgoingValuesSame = true;
for (PHINode &P : ExitBlock->phis()) {
Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]);
// Make sure all exiting blocks produce the same incoming value for the exit
// block. If there are different incoming values for different exiting
// blocks, then it is impossible to statically determine which value should
// be used.
AllOutgoingValuesSame =
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
return incoming == P.getIncomingValueForBlock(BB);
});
if (!AllOutgoingValuesSame)
break;
if (Instruction *I = dyn_cast<Instruction>(incoming))
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
AllEntriesInvariant = false;
break;
}
}
if (Changed)
SE.forgetLoopDispositions(L);
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
return false;
// Make sure that no instructions in the block have potential side-effects.
// This includes instructions that could write to memory, and loads that are
// marked volatile.
for (auto &I : L->blocks())
if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); }))
return false;
return true;
}
/// This function returns true if there is no viable path from the
/// entry block to the header of \p L. Right now, it only does
/// a local search to save compile time.
static bool isLoopNeverExecuted(Loop *L) {
using namespace PatternMatch;
auto *Preheader = L->getLoopPreheader();
// TODO: We can relax this constraint, since we just need a loop
// predecessor.
assert(Preheader && "Needs preheader!");
if (Preheader == &Preheader->getParent()->getEntryBlock())
return false;
// All predecessors of the preheader should have a constant conditional
// branch, with the loop's preheader as not-taken.
for (auto *Pred: predecessors(Preheader)) {
BasicBlock *Taken, *NotTaken;
ConstantInt *Cond;
if (!match(Pred->getTerminator(),
m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
return false;
if (!Cond->getZExtValue())
std::swap(Taken, NotTaken);
if (Taken == Preheader)
return false;
}
assert(!pred_empty(Preheader) &&
"Preheader should have predecessors at this point!");
// All the predecessors have the loop preheader as not-taken target.
return true;
}
/// Remove a loop if it is dead.
///
/// A loop is considered dead if it does not impact the observable behavior of
/// the program other than finite running time. This never removes a loop that
/// might be infinite (unless it is never executed), as doing so could change
/// the halting/non-halting nature of a program.
///
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
/// order to make various safety checks work.
///
/// \returns true if any changes were made. This may mutate the loop even if it
/// is unable to delete it due to hoisting trivially loop invariant
/// instructions out of the loop.
static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT,
ScalarEvolution &SE, LoopInfo &LI) {
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
// We can only remove the loop if there is a preheader that we can branch from
// after removing it. Also, if LoopSimplify form is not available, stay out
// of trouble.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader || !L->hasDedicatedExits()) {
LLVM_DEBUG(
dbgs()
<< "Deletion requires Loop with preheader and dedicated exits.\n");
return LoopDeletionResult::Unmodified;
}
// We can't remove loops that contain subloops. If the subloops were dead,
// they would already have been removed in earlier executions of this pass.
if (L->begin() != L->end()) {
LLVM_DEBUG(dbgs() << "Loop contains subloops.\n");
return LoopDeletionResult::Unmodified;
}
BasicBlock *ExitBlock = L->getUniqueExitBlock();
if (ExitBlock && isLoopNeverExecuted(L)) {
LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
// Set incoming value to undef for phi nodes in the exit block.
for (PHINode &P : ExitBlock->phis()) {
std::fill(P.incoming_values().begin(), P.incoming_values().end(),
UndefValue::get(P.getType()));
}
deleteDeadLoop(L, &DT, &SE, &LI);
++NumDeleted;
return LoopDeletionResult::Deleted;
}
// The remaining checks below are for a loop being dead because all statements
// in the loop are invariant.
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// We require that the loop only have a single exit block. Otherwise, we'd
// be in the situation of needing to be able to solve statically which exit
// block will be branched to, or trying to preserve the branching logic in
// a loop invariant manner.
if (!ExitBlock) {
LLVM_DEBUG(dbgs() << "Deletion requires single exit block\n");
return LoopDeletionResult::Unmodified;
}
// Finally, we have to check that the loop really is dead.
bool Changed = false;
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) {
LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
return Changed ? LoopDeletionResult::Modified
: LoopDeletionResult::Unmodified;
}
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(S)) {
LLVM_DEBUG(dbgs() << "Could not compute SCEV MaxBackedgeTakenCount.\n");
return Changed ? LoopDeletionResult::Modified
: LoopDeletionResult::Unmodified;
}
LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!");
deleteDeadLoop(L, &DT, &SE, &LI);
++NumDeleted;
return LoopDeletionResult::Deleted;
}
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
LLVM_DEBUG(L.dump());
std::string LoopName = L.getName();
auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI);
if (Result == LoopDeletionResult::Unmodified)
return PreservedAnalyses::all();
if (Result == LoopDeletionResult::Deleted)
Updater.markLoopAsDeleted(L, LoopName);
return getLoopPassPreservedAnalyses();
}
namespace {
class LoopDeletionLegacyPass : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopDeletionLegacyPass() : LoopPass(ID) {
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
}
// Possibly eliminate loop L if it is dead.
bool runOnLoop(Loop *L, LPPassManager &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
};
}
char LoopDeletionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipLoop(L))
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
LLVM_DEBUG(L->dump());
LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI);
if (Result == LoopDeletionResult::Deleted)
LPM.markLoopAsDeleted(*L);
return Result != LoopDeletionResult::Unmodified;
}