llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

296 lines
12 KiB
C++

//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements dead code elimination and basic block merging, along
// with a collection of other peephole control flow optimizations. For example:
//
// * Removes basic blocks with no predecessors.
// * Merges a basic block into its predecessor if there is only one and the
// predecessor only has one successor.
// * Eliminates PHI nodes for basic blocks with a single predecessor.
// * Eliminates a basic block that only contains an unconditional branch.
// * Changes invoke instructions to nounwind functions to be calls.
// * Change things like "if (x) if (y)" into "if (x&y)".
// * etc..
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "simplifycfg"
static cl::opt<unsigned> UserBonusInstThreshold(
"bonus-inst-threshold", cl::Hidden, cl::init(1),
cl::desc("Control the number of bonus instructions (default = 1)"));
static cl::opt<bool> UserKeepLoops(
"keep-loops", cl::Hidden, cl::init(true),
cl::desc("Preserve canonical loop structure (default = true)"));
static cl::opt<bool> UserSwitchToLookup(
"switch-to-lookup", cl::Hidden, cl::init(false),
cl::desc("Convert switches to lookup tables (default = false)"));
static cl::opt<bool> UserForwardSwitchCond(
"forward-switch-cond", cl::Hidden, cl::init(false),
cl::desc("Forward switch condition to phi ops (default = false)"));
static cl::opt<bool> UserSinkCommonInsts(
"sink-common-insts", cl::Hidden, cl::init(false),
cl::desc("Sink common instructions (default = false)"));
STATISTIC(NumSimpl, "Number of blocks simplified");
/// If we have more than one empty (other than phi node) return blocks,
/// merge them together to promote recursive block merging.
static bool mergeEmptyReturnBlocks(Function &F) {
bool Changed = false;
BasicBlock *RetBlock = nullptr;
// Scan all the blocks in the function, looking for empty return blocks.
for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
BasicBlock &BB = *BBI++;
// Only look at return blocks.
ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
if (!Ret) continue;
// Only look at the block if it is empty or the only other thing in it is a
// single PHI node that is the operand to the return.
if (Ret != &BB.front()) {
// Check for something else in the block.
BasicBlock::iterator I(Ret);
--I;
// Skip over debug info.
while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
--I;
if (!isa<DbgInfoIntrinsic>(I) &&
(!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 ||
Ret->getOperand(0) != &*I))
continue;
}
// If this is the first returning block, remember it and keep going.
if (!RetBlock) {
RetBlock = &BB;
continue;
}
// Otherwise, we found a duplicate return block. Merge the two.
Changed = true;
// Case when there is no input to the return or when the returned values
// agree is trivial. Note that they can't agree if there are phis in the
// blocks.
if (Ret->getNumOperands() == 0 ||
Ret->getOperand(0) ==
cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
BB.replaceAllUsesWith(RetBlock);
BB.eraseFromParent();
continue;
}
// If the canonical return block has no PHI node, create one now.
PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
if (!RetBlockPHI) {
Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
std::distance(PB, PE), "merge",
&RetBlock->front());
for (pred_iterator PI = PB; PI != PE; ++PI)
RetBlockPHI->addIncoming(InVal, *PI);
RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
}
// Turn BB into a block that just unconditionally branches to the return
// block. This handles the case when the two return blocks have a common
// predecessor but that return different things.
RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
BB.getTerminator()->eraseFromParent();
BranchInst::Create(RetBlock, &BB);
}
return Changed;
}
/// Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
const SimplifyCFGOptions &Options) {
bool Changed = false;
bool LocalChange = true;
SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 32> Edges;
FindFunctionBackedges(F, Edges);
SmallPtrSet<BasicBlock *, 16> LoopHeaders;
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
LoopHeaders.insert(const_cast<BasicBlock *>(Edges[i].second));
while (LocalChange) {
LocalChange = false;
// Loop over all of the basic blocks and remove them if they are unneeded.
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
if (simplifyCFG(&*BBIt++, TTI, Options, &LoopHeaders)) {
LocalChange = true;
++NumSimpl;
}
}
Changed |= LocalChange;
}
return Changed;
}
static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
const SimplifyCFGOptions &Options) {
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
EverChanged |= iterativelySimplifyCFG(F, TTI, Options);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
// iterativelySimplifyCFG can (rarely) make some loops dead. If this happens,
// removeUnreachableBlocks is needed to nuke them, which means we should
// iterate between the two optimizations. We structure the code like this to
// avoid rerunning iterativelySimplifyCFG if the second pass of
// removeUnreachableBlocks doesn't do anything.
if (!removeUnreachableBlocks(F))
return true;
do {
EverChanged = iterativelySimplifyCFG(F, TTI, Options);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
return true;
}
// Command-line settings override compile-time settings.
SimplifyCFGPass::SimplifyCFGPass(const SimplifyCFGOptions &Opts) {
Options.BonusInstThreshold = UserBonusInstThreshold.getNumOccurrences()
? UserBonusInstThreshold
: Opts.BonusInstThreshold;
Options.ForwardSwitchCondToPhi = UserForwardSwitchCond.getNumOccurrences()
? UserForwardSwitchCond
: Opts.ForwardSwitchCondToPhi;
Options.ConvertSwitchToLookupTable = UserSwitchToLookup.getNumOccurrences()
? UserSwitchToLookup
: Opts.ConvertSwitchToLookupTable;
Options.NeedCanonicalLoop = UserKeepLoops.getNumOccurrences()
? UserKeepLoops
: Opts.NeedCanonicalLoop;
Options.SinkCommonInsts = UserSinkCommonInsts.getNumOccurrences()
? UserSinkCommonInsts
: Opts.SinkCommonInsts;
}
PreservedAnalyses SimplifyCFGPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
Options.AC = &AM.getResult<AssumptionAnalysis>(F);
if (!simplifyFunctionCFG(F, TTI, Options))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<GlobalsAA>();
return PA;
}
namespace {
struct CFGSimplifyPass : public FunctionPass {
static char ID;
SimplifyCFGOptions Options;
std::function<bool(const Function &)> PredicateFtor;
CFGSimplifyPass(unsigned Threshold = 1, bool ForwardSwitchCond = false,
bool ConvertSwitch = false, bool KeepLoops = true,
bool SinkCommon = false,
std::function<bool(const Function &)> Ftor = nullptr)
: FunctionPass(ID), PredicateFtor(std::move(Ftor)) {
initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
// Check for command-line overrides of options for debug/customization.
Options.BonusInstThreshold = UserBonusInstThreshold.getNumOccurrences()
? UserBonusInstThreshold
: Threshold;
Options.ForwardSwitchCondToPhi = UserForwardSwitchCond.getNumOccurrences()
? UserForwardSwitchCond
: ForwardSwitchCond;
Options.ConvertSwitchToLookupTable = UserSwitchToLookup.getNumOccurrences()
? UserSwitchToLookup
: ConvertSwitch;
Options.NeedCanonicalLoop =
UserKeepLoops.getNumOccurrences() ? UserKeepLoops : KeepLoops;
Options.SinkCommonInsts = UserSinkCommonInsts.getNumOccurrences()
? UserSinkCommonInsts
: SinkCommon;
}
bool runOnFunction(Function &F) override {
if (skipFunction(F) || (PredicateFtor && !PredicateFtor(F)))
return false;
Options.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return simplifyFunctionCFG(F, TTI, Options);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
}
char CFGSimplifyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
// Public interface to the CFGSimplification pass
FunctionPass *
llvm::createCFGSimplificationPass(unsigned Threshold, bool ForwardSwitchCond,
bool ConvertSwitch, bool KeepLoops,
bool SinkCommon,
std::function<bool(const Function &)> Ftor) {
return new CFGSimplifyPass(Threshold, ForwardSwitchCond, ConvertSwitch,
KeepLoops, SinkCommon, std::move(Ftor));
}