Thomas Lively f71ec6c9f1 [WebAssembly] Remove uses of ThreadModel
Summary:
In the clang UI, replaces -mthread-model posix with -matomics as the
source of truth on threading. In the backend, replaces
-thread-model=posix with the atomics target feature, which is now
collected on the WebAssemblyTargetMachine along with all other used
features. These collected features will also be used to emit the
target features section in the future.

The default configuration for the backend is thread-model=posix and no
atomics, which was previously an invalid configuration. This change
makes the default valid because the thread model is ignored.

A side effect of this change is that objects are never emitted with
passive segments. It will instead be up to the linker to decide
whether sections should be active or passive based on whether atomics
are used in the final link.

Reviewers: aheejin, sbc100, dschuff

Subscribers: mehdi_amini, jgravelle-google, hiraditya, sunfish, steven_wu, dexonsmith, rupprecht, jfb, jdoerfert, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D58742

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355112 91177308-0d34-0410-b5e6-96231b3b80d8
2019-02-28 18:39:08 +00:00

223 lines
6.2 KiB
LLVM

; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-disable-explicit-locals -wasm-keep-registers -mattr=-atomics | FileCheck %s
; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-disable-explicit-locals -wasm-keep-registers -mattr=+atomics | FileCheck %s
; Test that globals assemble as expected.
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"
; CHECK-NOT: llvm.used
; CHECK-NOT: llvm.metadata
@llvm.used = appending global [1 x i32*] [i32* @g], section "llvm.metadata"
; CHECK: foo:
; CHECK: i32.const $push0=, 0{{$}}
; CHECK-NEXT: i32.load $push1=, answer($pop0){{$}}
; CHECK-NEXT: return $pop1{{$}}
define i32 @foo() {
%a = load i32, i32* @answer
ret i32 %a
}
; CHECK-LABEL: call_memcpy:
; CHECK-NEXT: .functype call_memcpy (i32, i32, i32) -> (i32){{$}}
; CHECK-NEXT: i32.call $push0=, memcpy, $0, $1, $2{{$}}
; CHECK-NEXT: return $pop0{{$}}
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture readonly, i32, i1)
define i8* @call_memcpy(i8* %p, i8* nocapture readonly %q, i32 %n) {
tail call void @llvm.memcpy.p0i8.p0i8.i32(i8* %p, i8* %q, i32 %n, i1 false)
ret i8* %p
}
; CHECK: .type .Lg,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: .Lg:
; CHECK-NEXT: .int32 1337{{$}}
; CHECK-NEXT: .size .Lg, 4{{$}}
@g = private global i32 1337
; CHECK-LABEL: ud:
; CHECK-NEXT: .skip 4{{$}}
; CHECK-NEXT: .size ud, 4{{$}}
@ud = internal global i32 undef
; CHECK: .type nil,@object
; CHECK: .p2align 2
; CHECK: nil:
; CHECK: .int32 0
; CHECK: .size nil, 4
@nil = internal global i32 zeroinitializer
; CHECK: .type z,@object
; CHECK: .p2align 2
; CHECK: z:
; CHECK: .int32 0
; CHECK: .size z, 4
@z = internal global i32 0
; CHECK: .type one,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: one:
; CHECK-NEXT: .int32 1{{$}}
; CHECK-NEXT: .size one, 4{{$}}
@one = internal global i32 1
; CHECK: .type answer,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: answer:
; CHECK-NEXT: .int32 42{{$}}
; CHECK-NEXT: .size answer, 4{{$}}
@answer = internal global i32 42
; CHECK: .type u32max,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: u32max:
; CHECK-NEXT: .int32 4294967295{{$}}
; CHECK-NEXT: .size u32max, 4{{$}}
@u32max = internal global i32 -1
; CHECK: .type ud64,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: ud64:
; CHECK-NEXT: .skip 8{{$}}
; CHECK-NEXT: .size ud64, 8{{$}}
@ud64 = internal global i64 undef
; CHECK: .type nil64,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: nil64:
; CHECK-NEXT: .int64 0{{$}}
; CHECK-NEXT: .size nil64, 8{{$}}
@nil64 = internal global i64 zeroinitializer
; CHECK: .type z64,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: z64:
; CHECK-NEXT: .int64 0{{$}}
; CHECK-NEXT: .size z64, 8{{$}}
@z64 = internal global i64 0
; CHECK: .type twoP32,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: twoP32:
; CHECK-NEXT: .int64 4294967296{{$}}
; CHECK-NEXT: .size twoP32, 8{{$}}
@twoP32 = internal global i64 4294967296
; CHECK: .type u64max,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: u64max:
; CHECK-NEXT: .int64 -1{{$}}
; CHECK-NEXT: .size u64max, 8{{$}}
@u64max = internal global i64 -1
; CHECK: .type f32ud,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: f32ud:
; CHECK-NEXT: .skip 4{{$}}
; CHECK-NEXT: .size f32ud, 4{{$}}
@f32ud = internal global float undef
; CHECK: .type f32nil,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: f32nil:
; CHECK-NEXT: .int32 0{{$}}
; CHECK-NEXT: .size f32nil, 4{{$}}
@f32nil = internal global float zeroinitializer
; CHECK: .type f32z,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: f32z:
; CHECK-NEXT: .int32 0{{$}}
; CHECK-NEXT: .size f32z, 4{{$}}
@f32z = internal global float 0.0
; CHECK: .type f32nz,@object
; CHECK: .p2align 2{{$}}
; CHECK: f32nz:
; CHECK: .int32 2147483648{{$}}
; CHECK: .size f32nz, 4{{$}}
@f32nz = internal global float -0.0
; CHECK: .type f32two,@object
; CHECK: .p2align 2{{$}}
; CHECK-NEXT: f32two:
; CHECK-NEXT: .int32 1073741824{{$}}
; CHECK-NEXT: .size f32two, 4{{$}}
@f32two = internal global float 2.0
; CHECK: .type f64ud,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: f64ud:
; CHECK-NEXT: .skip 8{{$}}
; CHECK-NEXT: .size f64ud, 8{{$}}
@f64ud = internal global double undef
; CHECK: .type f64nil,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: f64nil:
; CHECK-NEXT: .int64 0{{$}}
; CHECK-NEXT: .size f64nil, 8{{$}}
@f64nil = internal global double zeroinitializer
; CHECK: .type f64z,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: f64z:
; CHECK-NEXT: .int64 0{{$}}
; CHECK-NEXT: .size f64z, 8{{$}}
@f64z = internal global double 0.0
; CHECK: .type f64nz,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: f64nz:
; CHECK-NEXT: .int64 -9223372036854775808{{$}}
; CHECK-NEXT: .size f64nz, 8{{$}}
@f64nz = internal global double -0.0
; CHECK: .type f64two,@object
; CHECK: .p2align 3{{$}}
; CHECK-NEXT: f64two:
; CHECK-NEXT: .int64 4611686018427387904{{$}}
; CHECK-NEXT: .size f64two, 8{{$}}
@f64two = internal global double 2.0
; Indexing into a global array produces a relocation.
; CHECK: .type arr,@object
; CHECK: .type ptr,@object
; CHECK: ptr:
; CHECK-NEXT: .int32 arr+80
; CHECK-NEXT: .size ptr, 4
@arr = global [128 x i32] zeroinitializer, align 16
@ptr = global i32* getelementptr inbounds ([128 x i32], [128 x i32]* @arr, i32 0, i32 20), align 4
; Constant global.
; CHECK: .type rom,@object{{$}}
; CHECK: .section .rodata.rom,""
; CHECK: .globl rom{{$}}
; CHECK: .p2align 4{{$}}
; CHECK: rom:
; CHECK: .skip 512{{$}}
; CHECK: .size rom, 512{{$}}
@rom = constant [128 x i32] zeroinitializer, align 16
; CHECK: .type array,@object
; CHECK: array:
; CHECK-NEXT: .skip 8
; CHECK-NEXT: .size array, 8
; CHECK: .type pointer_to_array,@object
; CHECK-NEXT: .section .rodata.pointer_to_array,""
; CHECK-NEXT: .globl pointer_to_array
; CHECK-NEXT: .p2align 2
; CHECK-NEXT: pointer_to_array:
; CHECK-NEXT: .int32 array+4
; CHECK-NEXT: .size pointer_to_array, 4
@array = internal constant [8 x i8] zeroinitializer, align 1
@pointer_to_array = constant i8* getelementptr inbounds ([8 x i8], [8 x i8]* @array, i32 0, i32 4), align 4
; Handle external objects with opaque type.
%struct.ASTRUCT = type opaque
@g_struct = external global %struct.ASTRUCT, align 1
define i32 @address_of_opaque() {
ret i32 ptrtoint (%struct.ASTRUCT* @g_struct to i32)
}