llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
Ulrich Weigand 0291833580 [SystemZ] Improve use of conditional instructions
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.

To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks.  It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.

Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.

Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa).  These are converted back to a branch sequence
after register allocation.  Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.

Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288028 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-28 13:34:08 +00:00

210 lines
7.2 KiB
C++

//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "SystemZTargetTransformInfo.h"
#include "SystemZMachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
using namespace llvm;
extern "C" void LLVMInitializeSystemZTarget() {
// Register the target.
RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
}
// Determine whether we use the vector ABI.
static bool UsesVectorABI(StringRef CPU, StringRef FS) {
// We use the vector ABI whenever the vector facility is avaiable.
// This is the case by default if CPU is z13 or later, and can be
// overridden via "[+-]vector" feature string elements.
bool VectorABI = true;
if (CPU.empty() || CPU == "generic" ||
CPU == "z10" || CPU == "z196" || CPU == "zEC12")
VectorABI = false;
SmallVector<StringRef, 3> Features;
FS.split(Features, ',', -1, false /* KeepEmpty */);
for (auto &Feature : Features) {
if (Feature == "vector" || Feature == "+vector")
VectorABI = true;
if (Feature == "-vector")
VectorABI = false;
}
return VectorABI;
}
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
StringRef FS) {
bool VectorABI = UsesVectorABI(CPU, FS);
std::string Ret = "";
// Big endian.
Ret += "E";
// Data mangling.
Ret += DataLayout::getManglingComponent(TT);
// Make sure that global data has at least 16 bits of alignment by
// default, so that we can refer to it using LARL. We don't have any
// special requirements for stack variables though.
Ret += "-i1:8:16-i8:8:16";
// 64-bit integers are naturally aligned.
Ret += "-i64:64";
// 128-bit floats are aligned only to 64 bits.
Ret += "-f128:64";
// When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
if (VectorABI)
Ret += "-v128:64";
// We prefer 16 bits of aligned for all globals; see above.
Ret += "-a:8:16";
// Integer registers are 32 or 64 bits.
Ret += "-n32:64";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
// Static code is suitable for use in a dynamic executable; there is no
// separate DynamicNoPIC model.
if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
return Reloc::Static;
return *RM;
}
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
getEffectiveRelocModel(RM), CM, OL),
TLOF(make_unique<TargetLoweringObjectFileELF>()),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();
}
SystemZTargetMachine::~SystemZTargetMachine() {}
namespace {
/// SystemZ Code Generator Pass Configuration Options.
class SystemZPassConfig : public TargetPassConfig {
public:
SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
SystemZTargetMachine &getSystemZTargetMachine() const {
return getTM<SystemZTargetMachine>();
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
return new ScheduleDAGMI(C, make_unique<SystemZPostRASchedStrategy>(C),
/*RemoveKillFlags=*/true);
}
void addIRPasses() override;
bool addInstSelector() override;
bool addILPOpts() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // end anonymous namespace
void SystemZPassConfig::addIRPasses() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createSystemZTDCPass());
TargetPassConfig::addIRPasses();
}
bool SystemZPassConfig::addInstSelector() {
addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
if (getOptLevel() != CodeGenOpt::None)
addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
return false;
}
bool SystemZPassConfig::addILPOpts() {
addPass(&EarlyIfConverterID);
return true;
}
void SystemZPassConfig::addPreSched2() {
addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
if (getOptLevel() != CodeGenOpt::None)
addPass(&IfConverterID);
}
void SystemZPassConfig::addPreEmitPass() {
// Do instruction shortening before compare elimination because some
// vector instructions will be shortened into opcodes that compare
// elimination recognizes.
if (getOptLevel() != CodeGenOpt::None)
addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
// We eliminate comparisons here rather than earlier because some
// transformations can change the set of available CC values and we
// generally want those transformations to have priority. This is
// especially true in the commonest case where the result of the comparison
// is used by a single in-range branch instruction, since we will then
// be able to fuse the compare and the branch instead.
//
// For example, two-address NILF can sometimes be converted into
// three-address RISBLG. NILF produces a CC value that indicates whether
// the low word is zero, but RISBLG does not modify CC at all. On the
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
// The CC value produced by NILL isn't useful for our purposes, but the
// value produced by RISBG can be used for any comparison with zero
// (not just equality). So there are some transformations that lose
// CC values (while still being worthwhile) and others that happen to make
// the CC result more useful than it was originally.
//
// Another reason is that we only want to use BRANCH ON COUNT in cases
// where we know that the count register is not going to be spilled.
//
// Doing it so late makes it more likely that a register will be reused
// between the comparison and the branch, but it isn't clear whether
// preventing that would be a win or not.
if (getOptLevel() != CodeGenOpt::None)
addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
// Do final scheduling after all other optimizations, to get an
// optimal input for the decoder (branch relaxation must happen
// after block placement).
if (getOptLevel() != CodeGenOpt::None)
addPass(&PostMachineSchedulerID);
}
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
return new SystemZPassConfig(this, PM);
}
TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(SystemZTTIImpl(this, F));
});
}