mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-16 15:08:59 +00:00
7e8cebf22d
By vectorizing a series of srl, or, ... instructions we have obfuscated the intention so much that the backend does not know how to fold this code away. radar://15336950 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193573 91177308-0d34-0410-b5e6-96231b3b80d8
2592 lines
84 KiB
C++
2592 lines
84 KiB
C++
//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
|
|
// stores that can be put together into vector-stores. Next, it attempts to
|
|
// construct vectorizable tree using the use-def chains. If a profitable tree
|
|
// was found, the SLP vectorizer performs vectorization on the tree.
|
|
//
|
|
// The pass is inspired by the work described in the paper:
|
|
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#define SV_NAME "slp-vectorizer"
|
|
#define DEBUG_TYPE "SLP"
|
|
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<int>
|
|
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
|
|
cl::desc("Only vectorize if you gain more than this "
|
|
"number "));
|
|
|
|
static cl::opt<bool>
|
|
ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
|
|
cl::desc("Attempt to vectorize horizontal reductions"));
|
|
|
|
static cl::opt<bool> ShouldStartVectorizeHorAtStore(
|
|
"slp-vectorize-hor-store", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Attempt to vectorize horizontal reductions feeding into a store"));
|
|
|
|
namespace {
|
|
|
|
static const unsigned MinVecRegSize = 128;
|
|
|
|
static const unsigned RecursionMaxDepth = 12;
|
|
|
|
/// A helper class for numbering instructions in multiple blocks.
|
|
/// Numbers start at zero for each basic block.
|
|
struct BlockNumbering {
|
|
|
|
BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
|
|
|
|
BlockNumbering() : BB(0), Valid(false) {}
|
|
|
|
void numberInstructions() {
|
|
unsigned Loc = 0;
|
|
InstrIdx.clear();
|
|
InstrVec.clear();
|
|
// Number the instructions in the block.
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
InstrIdx[it] = Loc++;
|
|
InstrVec.push_back(it);
|
|
assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
|
|
}
|
|
Valid = true;
|
|
}
|
|
|
|
int getIndex(Instruction *I) {
|
|
assert(I->getParent() == BB && "Invalid instruction");
|
|
if (!Valid)
|
|
numberInstructions();
|
|
assert(InstrIdx.count(I) && "Unknown instruction");
|
|
return InstrIdx[I];
|
|
}
|
|
|
|
Instruction *getInstruction(unsigned loc) {
|
|
if (!Valid)
|
|
numberInstructions();
|
|
assert(InstrVec.size() > loc && "Invalid Index");
|
|
return InstrVec[loc];
|
|
}
|
|
|
|
void forget() { Valid = false; }
|
|
|
|
private:
|
|
/// The block we are numbering.
|
|
BasicBlock *BB;
|
|
/// Is the block numbered.
|
|
bool Valid;
|
|
/// Maps instructions to numbers and back.
|
|
SmallDenseMap<Instruction *, int> InstrIdx;
|
|
/// Maps integers to Instructions.
|
|
SmallVector<Instruction *, 32> InstrVec;
|
|
};
|
|
|
|
/// \returns the parent basic block if all of the instructions in \p VL
|
|
/// are in the same block or null otherwise.
|
|
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
|
|
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
|
|
if (!I0)
|
|
return 0;
|
|
BasicBlock *BB = I0->getParent();
|
|
for (int i = 1, e = VL.size(); i < e; i++) {
|
|
Instruction *I = dyn_cast<Instruction>(VL[i]);
|
|
if (!I)
|
|
return 0;
|
|
|
|
if (BB != I->getParent())
|
|
return 0;
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
/// \returns True if all of the values in \p VL are constants.
|
|
static bool allConstant(ArrayRef<Value *> VL) {
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i)
|
|
if (!isa<Constant>(VL[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \returns True if all of the values in \p VL are identical.
|
|
static bool isSplat(ArrayRef<Value *> VL) {
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
if (VL[i] != VL[0])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \returns The opcode if all of the Instructions in \p VL have the same
|
|
/// opcode, or zero.
|
|
static unsigned getSameOpcode(ArrayRef<Value *> VL) {
|
|
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
|
|
if (!I0)
|
|
return 0;
|
|
unsigned Opcode = I0->getOpcode();
|
|
for (int i = 1, e = VL.size(); i < e; i++) {
|
|
Instruction *I = dyn_cast<Instruction>(VL[i]);
|
|
if (!I || Opcode != I->getOpcode())
|
|
return 0;
|
|
}
|
|
return Opcode;
|
|
}
|
|
|
|
/// \returns The type that all of the values in \p VL have or null if there
|
|
/// are different types.
|
|
static Type* getSameType(ArrayRef<Value *> VL) {
|
|
Type *Ty = VL[0]->getType();
|
|
for (int i = 1, e = VL.size(); i < e; i++)
|
|
if (VL[i]->getType() != Ty)
|
|
return 0;
|
|
|
|
return Ty;
|
|
}
|
|
|
|
/// \returns True if the ExtractElement instructions in VL can be vectorized
|
|
/// to use the original vector.
|
|
static bool CanReuseExtract(ArrayRef<Value *> VL) {
|
|
assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
|
|
// Check if all of the extracts come from the same vector and from the
|
|
// correct offset.
|
|
Value *VL0 = VL[0];
|
|
ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
|
|
Value *Vec = E0->getOperand(0);
|
|
|
|
// We have to extract from the same vector type.
|
|
unsigned NElts = Vec->getType()->getVectorNumElements();
|
|
|
|
if (NElts != VL.size())
|
|
return false;
|
|
|
|
// Check that all of the indices extract from the correct offset.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
|
|
if (!CI || CI->getZExtValue())
|
|
return false;
|
|
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
|
|
ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
|
|
|
|
if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool all_equal(SmallVectorImpl<Value *> &V) {
|
|
Value *First = V[0];
|
|
for (int i = 1, e = V.size(); i != e; ++i)
|
|
if (V[i] != First)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
|
|
SmallVectorImpl<Value *> &Left,
|
|
SmallVectorImpl<Value *> &Right) {
|
|
|
|
SmallVector<Value *, 16> OrigLeft, OrigRight;
|
|
|
|
bool AllSameOpcodeLeft = true;
|
|
bool AllSameOpcodeRight = true;
|
|
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
|
|
Instruction *I = cast<Instruction>(VL[i]);
|
|
Value *V0 = I->getOperand(0);
|
|
Value *V1 = I->getOperand(1);
|
|
|
|
OrigLeft.push_back(V0);
|
|
OrigRight.push_back(V1);
|
|
|
|
Instruction *I0 = dyn_cast<Instruction>(V0);
|
|
Instruction *I1 = dyn_cast<Instruction>(V1);
|
|
|
|
// Check whether all operands on one side have the same opcode. In this case
|
|
// we want to preserve the original order and not make things worse by
|
|
// reordering.
|
|
AllSameOpcodeLeft = I0;
|
|
AllSameOpcodeRight = I1;
|
|
|
|
if (i && AllSameOpcodeLeft) {
|
|
if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
|
|
if(P0->getOpcode() != I0->getOpcode())
|
|
AllSameOpcodeLeft = false;
|
|
} else
|
|
AllSameOpcodeLeft = false;
|
|
}
|
|
if (i && AllSameOpcodeRight) {
|
|
if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
|
|
if(P1->getOpcode() != I1->getOpcode())
|
|
AllSameOpcodeRight = false;
|
|
} else
|
|
AllSameOpcodeRight = false;
|
|
}
|
|
|
|
// Sort two opcodes. In the code below we try to preserve the ability to use
|
|
// broadcast of values instead of individual inserts.
|
|
// vl1 = load
|
|
// vl2 = phi
|
|
// vr1 = load
|
|
// vr2 = vr2
|
|
// = vl1 x vr1
|
|
// = vl2 x vr2
|
|
// If we just sorted according to opcode we would leave the first line in
|
|
// tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
|
|
// = vl1 x vr1
|
|
// = vr2 x vl2
|
|
// Because vr2 and vr1 are from the same load we loose the opportunity of a
|
|
// broadcast for the packed right side in the backend: we have [vr1, vl2]
|
|
// instead of [vr1, vr2=vr1].
|
|
if (I0 && I1) {
|
|
if(!i && I0->getOpcode() > I1->getOpcode()) {
|
|
Left.push_back(I1);
|
|
Right.push_back(I0);
|
|
} else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
|
|
// Try not to destroy a broad cast for no apparent benefit.
|
|
Left.push_back(I1);
|
|
Right.push_back(I0);
|
|
} else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
|
|
// Try preserve broadcasts.
|
|
Left.push_back(I1);
|
|
Right.push_back(I0);
|
|
} else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
|
|
// Try preserve broadcasts.
|
|
Left.push_back(I1);
|
|
Right.push_back(I0);
|
|
} else {
|
|
Left.push_back(I0);
|
|
Right.push_back(I1);
|
|
}
|
|
continue;
|
|
}
|
|
// One opcode, put the instruction on the right.
|
|
if (I0) {
|
|
Left.push_back(V1);
|
|
Right.push_back(I0);
|
|
continue;
|
|
}
|
|
Left.push_back(V0);
|
|
Right.push_back(V1);
|
|
}
|
|
|
|
bool LeftBroadcast = all_equal(Left);
|
|
bool RightBroadcast = all_equal(Right);
|
|
|
|
// Don't reorder if the operands where good to begin with.
|
|
if (!(LeftBroadcast || RightBroadcast) &&
|
|
(AllSameOpcodeRight || AllSameOpcodeLeft)) {
|
|
Left = OrigLeft;
|
|
Right = OrigRight;
|
|
}
|
|
}
|
|
|
|
/// Bottom Up SLP Vectorizer.
|
|
class BoUpSLP {
|
|
public:
|
|
typedef SmallVector<Value *, 8> ValueList;
|
|
typedef SmallVector<Instruction *, 16> InstrList;
|
|
typedef SmallPtrSet<Value *, 16> ValueSet;
|
|
typedef SmallVector<StoreInst *, 8> StoreList;
|
|
|
|
BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
|
|
TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
|
|
DominatorTree *Dt) :
|
|
F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
|
|
Builder(Se->getContext()) {
|
|
// Setup the block numbering utility for all of the blocks in the
|
|
// function.
|
|
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
|
|
BasicBlock *BB = it;
|
|
BlocksNumbers[BB] = BlockNumbering(BB);
|
|
}
|
|
}
|
|
|
|
/// \brief Vectorize the tree that starts with the elements in \p VL.
|
|
/// Returns the vectorized root.
|
|
Value *vectorizeTree();
|
|
|
|
/// \returns the vectorization cost of the subtree that starts at \p VL.
|
|
/// A negative number means that this is profitable.
|
|
int getTreeCost();
|
|
|
|
/// Construct a vectorizable tree that starts at \p Roots and is possibly
|
|
/// used by a reduction of \p RdxOps.
|
|
void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
|
|
|
|
/// Clear the internal data structures that are created by 'buildTree'.
|
|
void deleteTree() {
|
|
RdxOps = 0;
|
|
VectorizableTree.clear();
|
|
ScalarToTreeEntry.clear();
|
|
MustGather.clear();
|
|
ExternalUses.clear();
|
|
MemBarrierIgnoreList.clear();
|
|
}
|
|
|
|
/// \returns true if the memory operations A and B are consecutive.
|
|
bool isConsecutiveAccess(Value *A, Value *B);
|
|
|
|
/// \brief Perform LICM and CSE on the newly generated gather sequences.
|
|
void optimizeGatherSequence();
|
|
private:
|
|
struct TreeEntry;
|
|
|
|
/// \returns the cost of the vectorizable entry.
|
|
int getEntryCost(TreeEntry *E);
|
|
|
|
/// This is the recursive part of buildTree.
|
|
void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
|
|
|
|
/// Vectorize a single entry in the tree.
|
|
Value *vectorizeTree(TreeEntry *E);
|
|
|
|
/// Vectorize a single entry in the tree, starting in \p VL.
|
|
Value *vectorizeTree(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the pointer to the vectorized value if \p VL is already
|
|
/// vectorized, or NULL. They may happen in cycles.
|
|
Value *alreadyVectorized(ArrayRef<Value *> VL) const;
|
|
|
|
/// \brief Take the pointer operand from the Load/Store instruction.
|
|
/// \returns NULL if this is not a valid Load/Store instruction.
|
|
static Value *getPointerOperand(Value *I);
|
|
|
|
/// \brief Take the address space operand from the Load/Store instruction.
|
|
/// \returns -1 if this is not a valid Load/Store instruction.
|
|
static unsigned getAddressSpaceOperand(Value *I);
|
|
|
|
/// \returns the scalarization cost for this type. Scalarization in this
|
|
/// context means the creation of vectors from a group of scalars.
|
|
int getGatherCost(Type *Ty);
|
|
|
|
/// \returns the scalarization cost for this list of values. Assuming that
|
|
/// this subtree gets vectorized, we may need to extract the values from the
|
|
/// roots. This method calculates the cost of extracting the values.
|
|
int getGatherCost(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the AA location that is being access by the instruction.
|
|
AliasAnalysis::Location getLocation(Instruction *I);
|
|
|
|
/// \brief Checks if it is possible to sink an instruction from
|
|
/// \p Src to \p Dst.
|
|
/// \returns the pointer to the barrier instruction if we can't sink.
|
|
Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
|
|
|
|
/// \returns the index of the last instruction in the BB from \p VL.
|
|
int getLastIndex(ArrayRef<Value *> VL);
|
|
|
|
/// \returns the Instruction in the bundle \p VL.
|
|
Instruction *getLastInstruction(ArrayRef<Value *> VL);
|
|
|
|
/// \brief Set the Builder insert point to one after the last instruction in
|
|
/// the bundle
|
|
void setInsertPointAfterBundle(ArrayRef<Value *> VL);
|
|
|
|
/// \returns a vector from a collection of scalars in \p VL.
|
|
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
|
|
|
|
/// \returns whether the VectorizableTree is fully vectoriable and will
|
|
/// be beneficial even the tree height is tiny.
|
|
bool isFullyVectorizableTinyTree();
|
|
|
|
struct TreeEntry {
|
|
TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
|
|
NeedToGather(0) {}
|
|
|
|
/// \returns true if the scalars in VL are equal to this entry.
|
|
bool isSame(ArrayRef<Value *> VL) const {
|
|
assert(VL.size() == Scalars.size() && "Invalid size");
|
|
return std::equal(VL.begin(), VL.end(), Scalars.begin());
|
|
}
|
|
|
|
/// A vector of scalars.
|
|
ValueList Scalars;
|
|
|
|
/// The Scalars are vectorized into this value. It is initialized to Null.
|
|
Value *VectorizedValue;
|
|
|
|
/// The index in the basic block of the last scalar.
|
|
int LastScalarIndex;
|
|
|
|
/// Do we need to gather this sequence ?
|
|
bool NeedToGather;
|
|
};
|
|
|
|
/// Create a new VectorizableTree entry.
|
|
TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
|
|
VectorizableTree.push_back(TreeEntry());
|
|
int idx = VectorizableTree.size() - 1;
|
|
TreeEntry *Last = &VectorizableTree[idx];
|
|
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
|
|
Last->NeedToGather = !Vectorized;
|
|
if (Vectorized) {
|
|
Last->LastScalarIndex = getLastIndex(VL);
|
|
for (int i = 0, e = VL.size(); i != e; ++i) {
|
|
assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
|
|
ScalarToTreeEntry[VL[i]] = idx;
|
|
}
|
|
} else {
|
|
Last->LastScalarIndex = 0;
|
|
MustGather.insert(VL.begin(), VL.end());
|
|
}
|
|
return Last;
|
|
}
|
|
|
|
/// -- Vectorization State --
|
|
/// Holds all of the tree entries.
|
|
std::vector<TreeEntry> VectorizableTree;
|
|
|
|
/// Maps a specific scalar to its tree entry.
|
|
SmallDenseMap<Value*, int> ScalarToTreeEntry;
|
|
|
|
/// A list of scalars that we found that we need to keep as scalars.
|
|
ValueSet MustGather;
|
|
|
|
/// This POD struct describes one external user in the vectorized tree.
|
|
struct ExternalUser {
|
|
ExternalUser (Value *S, llvm::User *U, int L) :
|
|
Scalar(S), User(U), Lane(L){};
|
|
// Which scalar in our function.
|
|
Value *Scalar;
|
|
// Which user that uses the scalar.
|
|
llvm::User *User;
|
|
// Which lane does the scalar belong to.
|
|
int Lane;
|
|
};
|
|
typedef SmallVector<ExternalUser, 16> UserList;
|
|
|
|
/// A list of values that need to extracted out of the tree.
|
|
/// This list holds pairs of (Internal Scalar : External User).
|
|
UserList ExternalUses;
|
|
|
|
/// A list of instructions to ignore while sinking
|
|
/// memory instructions. This map must be reset between runs of getCost.
|
|
ValueSet MemBarrierIgnoreList;
|
|
|
|
/// Holds all of the instructions that we gathered.
|
|
SetVector<Instruction *> GatherSeq;
|
|
|
|
/// Numbers instructions in different blocks.
|
|
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
|
|
|
|
/// Reduction operators.
|
|
ValueSet *RdxOps;
|
|
|
|
// Analysis and block reference.
|
|
Function *F;
|
|
ScalarEvolution *SE;
|
|
DataLayout *DL;
|
|
TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
/// Instruction builder to construct the vectorized tree.
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
|
|
deleteTree();
|
|
RdxOps = Rdx;
|
|
if (!getSameType(Roots))
|
|
return;
|
|
buildTree_rec(Roots, 0);
|
|
|
|
// Collect the values that we need to extract from the tree.
|
|
for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
|
|
TreeEntry *Entry = &VectorizableTree[EIdx];
|
|
|
|
// For each lane:
|
|
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
|
|
Value *Scalar = Entry->Scalars[Lane];
|
|
|
|
// No need to handle users of gathered values.
|
|
if (Entry->NeedToGather)
|
|
continue;
|
|
|
|
for (Value::use_iterator User = Scalar->use_begin(),
|
|
UE = Scalar->use_end(); User != UE; ++User) {
|
|
DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
|
|
|
|
bool Gathered = MustGather.count(*User);
|
|
|
|
// Skip in-tree scalars that become vectors.
|
|
if (ScalarToTreeEntry.count(*User) && !Gathered) {
|
|
DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
|
|
**User << ".\n");
|
|
int Idx = ScalarToTreeEntry[*User]; (void) Idx;
|
|
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
|
|
continue;
|
|
}
|
|
Instruction *UserInst = dyn_cast<Instruction>(*User);
|
|
if (!UserInst)
|
|
continue;
|
|
|
|
// Ignore uses that are part of the reduction.
|
|
if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
|
|
Lane << " from " << *Scalar << ".\n");
|
|
ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
|
bool SameTy = getSameType(VL); (void)SameTy;
|
|
assert(SameTy && "Invalid types!");
|
|
|
|
if (Depth == RecursionMaxDepth) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
// Don't handle vectors.
|
|
if (VL[0]->getType()->isVectorTy()) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
if (SI->getValueOperand()->getType()->isVectorTy()) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
// If all of the operands are identical or constant we have a simple solution.
|
|
if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
|
|
!getSameOpcode(VL)) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
// We now know that this is a vector of instructions of the same type from
|
|
// the same block.
|
|
|
|
// Check if this is a duplicate of another entry.
|
|
if (ScalarToTreeEntry.count(VL[0])) {
|
|
int Idx = ScalarToTreeEntry[VL[0]];
|
|
TreeEntry *E = &VectorizableTree[Idx];
|
|
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
|
|
DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
|
|
if (E->Scalars[i] != VL[i]) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
|
|
return;
|
|
}
|
|
|
|
// Check that none of the instructions in the bundle are already in the tree.
|
|
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
|
|
if (ScalarToTreeEntry.count(VL[i])) {
|
|
DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
|
|
") is already in tree.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If any of the scalars appears in the table OR it is marked as a value that
|
|
// needs to stat scalar then we need to gather the scalars.
|
|
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
|
|
if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check that all of the users of the scalars that we want to vectorize are
|
|
// schedulable.
|
|
Instruction *VL0 = cast<Instruction>(VL[0]);
|
|
int MyLastIndex = getLastIndex(VL);
|
|
BasicBlock *BB = cast<Instruction>(VL0)->getParent();
|
|
|
|
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
|
|
Instruction *Scalar = cast<Instruction>(VL[i]);
|
|
DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
|
|
for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
|
|
U != UE; ++U) {
|
|
DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
|
|
Instruction *User = dyn_cast<Instruction>(*U);
|
|
if (!User) {
|
|
DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
// We don't care if the user is in a different basic block.
|
|
BasicBlock *UserBlock = User->getParent();
|
|
if (UserBlock != BB) {
|
|
DEBUG(dbgs() << "SLP: User from a different basic block "
|
|
<< *User << ". \n");
|
|
continue;
|
|
}
|
|
|
|
// If this is a PHINode within this basic block then we can place the
|
|
// extract wherever we want.
|
|
if (isa<PHINode>(*User)) {
|
|
DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
|
|
continue;
|
|
}
|
|
|
|
// Check if this is a safe in-tree user.
|
|
if (ScalarToTreeEntry.count(User)) {
|
|
int Idx = ScalarToTreeEntry[User];
|
|
int VecLocation = VectorizableTree[Idx].LastScalarIndex;
|
|
if (VecLocation <= MyLastIndex) {
|
|
DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
|
|
VecLocation << " vector value (" << *Scalar << ") at #"
|
|
<< MyLastIndex << ".\n");
|
|
continue;
|
|
}
|
|
|
|
// This user is part of the reduction.
|
|
if (RdxOps && RdxOps->count(User))
|
|
continue;
|
|
|
|
// Make sure that we can schedule this unknown user.
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
int UserIndex = BN.getIndex(User);
|
|
if (UserIndex < MyLastIndex) {
|
|
|
|
DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
|
|
<< *User << ". \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that every instructions appears once in this bundle.
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i)
|
|
for (unsigned j = i+1; j < e; ++j)
|
|
if (VL[i] == VL[j]) {
|
|
DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
|
|
// Check that instructions in this bundle don't reference other instructions.
|
|
// The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
|
|
U != UE; ++U) {
|
|
for (unsigned j = 0; j < e; ++j) {
|
|
if (i != j && *U == VL[j]) {
|
|
DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
|
|
|
|
unsigned Opcode = getSameOpcode(VL);
|
|
|
|
// Check if it is safe to sink the loads or the stores.
|
|
if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
|
|
Instruction *Last = getLastInstruction(VL);
|
|
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
if (VL[i] == Last)
|
|
continue;
|
|
Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
|
|
if (Barrier) {
|
|
DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
|
|
<< "\n because of " << *Barrier << ". Gathering.\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (Opcode) {
|
|
case Instruction::PHI: {
|
|
PHINode *PH = dyn_cast<PHINode>(VL0);
|
|
|
|
// Check for terminator values (e.g. invoke).
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
|
|
if (Term) {
|
|
DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
|
|
newTreeEntry(VL, false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
|
|
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
|
|
|
|
buildTree_rec(Operands, Depth + 1);
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::ExtractElement: {
|
|
bool Reuse = CanReuseExtract(VL);
|
|
if (Reuse) {
|
|
DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
|
|
}
|
|
newTreeEntry(VL, Reuse);
|
|
return;
|
|
}
|
|
case Instruction::Load: {
|
|
// Check if the loads are consecutive or of we need to swizzle them.
|
|
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
|
|
LoadInst *L = cast<LoadInst>(VL[i]);
|
|
if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
|
|
newTreeEntry(VL, false);
|
|
DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
|
|
return;
|
|
}
|
|
}
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
|
|
return;
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
Type *SrcTy = VL0->getOperand(0)->getType();
|
|
for (unsigned i = 0; i < VL.size(); ++i) {
|
|
Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
|
|
if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
|
|
newTreeEntry(VL, false);
|
|
DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
|
|
return;
|
|
}
|
|
}
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of casts.\n");
|
|
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth+1);
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
// Check that all of the compares have the same predicate.
|
|
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
|
|
Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i) {
|
|
CmpInst *Cmp = cast<CmpInst>(VL[i]);
|
|
if (Cmp->getPredicate() != P0 ||
|
|
Cmp->getOperand(0)->getType() != ComparedTy) {
|
|
newTreeEntry(VL, false);
|
|
DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of compares.\n");
|
|
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth+1);
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::Select:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
|
|
|
|
// Sort operands of the instructions so that each side is more likely to
|
|
// have the same opcode.
|
|
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
|
|
ValueList Left, Right;
|
|
reorderInputsAccordingToOpcode(VL, Left, Right);
|
|
buildTree_rec(Left, Depth + 1);
|
|
buildTree_rec(Right, Depth + 1);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
|
|
ValueList Operands;
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
|
|
|
|
buildTree_rec(Operands, Depth+1);
|
|
}
|
|
return;
|
|
}
|
|
case Instruction::Store: {
|
|
// Check if the stores are consecutive or of we need to swizzle them.
|
|
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
|
|
if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
|
|
newTreeEntry(VL, false);
|
|
DEBUG(dbgs() << "SLP: Non consecutive store.\n");
|
|
return;
|
|
}
|
|
|
|
newTreeEntry(VL, true);
|
|
DEBUG(dbgs() << "SLP: added a vector of stores.\n");
|
|
|
|
ValueList Operands;
|
|
for (unsigned j = 0; j < VL.size(); ++j)
|
|
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
|
|
|
|
// We can ignore these values because we are sinking them down.
|
|
MemBarrierIgnoreList.insert(VL.begin(), VL.end());
|
|
buildTree_rec(Operands, Depth + 1);
|
|
return;
|
|
}
|
|
default:
|
|
newTreeEntry(VL, false);
|
|
DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
int BoUpSLP::getEntryCost(TreeEntry *E) {
|
|
ArrayRef<Value*> VL = E->Scalars;
|
|
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
if (E->NeedToGather) {
|
|
if (allConstant(VL))
|
|
return 0;
|
|
if (isSplat(VL)) {
|
|
return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
|
|
}
|
|
return getGatherCost(E->Scalars);
|
|
}
|
|
|
|
assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
|
|
"Invalid VL");
|
|
Instruction *VL0 = cast<Instruction>(VL[0]);
|
|
unsigned Opcode = VL0->getOpcode();
|
|
switch (Opcode) {
|
|
case Instruction::PHI: {
|
|
return 0;
|
|
}
|
|
case Instruction::ExtractElement: {
|
|
if (CanReuseExtract(VL))
|
|
return 0;
|
|
return getGatherCost(VecTy);
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
Type *SrcTy = VL0->getOperand(0)->getType();
|
|
|
|
// Calculate the cost of this instruction.
|
|
int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
|
|
VL0->getType(), SrcTy);
|
|
|
|
VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
|
|
int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
|
|
return VecCost - ScalarCost;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp:
|
|
case Instruction::Select:
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
// Calculate the cost of this instruction.
|
|
int ScalarCost = 0;
|
|
int VecCost = 0;
|
|
if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
|
|
Opcode == Instruction::Select) {
|
|
VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
|
|
ScalarCost = VecTy->getNumElements() *
|
|
TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
|
|
VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
|
|
} else {
|
|
// Certain instructions can be cheaper to vectorize if they have a
|
|
// constant second vector operand.
|
|
TargetTransformInfo::OperandValueKind Op1VK =
|
|
TargetTransformInfo::OK_AnyValue;
|
|
TargetTransformInfo::OperandValueKind Op2VK =
|
|
TargetTransformInfo::OK_UniformConstantValue;
|
|
|
|
// Check whether all second operands are constant.
|
|
for (unsigned i = 0; i < VL.size(); ++i)
|
|
if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
|
|
Op2VK = TargetTransformInfo::OK_AnyValue;
|
|
break;
|
|
}
|
|
|
|
ScalarCost =
|
|
VecTy->getNumElements() *
|
|
TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
|
|
VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
|
|
}
|
|
return VecCost - ScalarCost;
|
|
}
|
|
case Instruction::Load: {
|
|
// Cost of wide load - cost of scalar loads.
|
|
int ScalarLdCost = VecTy->getNumElements() *
|
|
TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
|
|
int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
|
|
return VecLdCost - ScalarLdCost;
|
|
}
|
|
case Instruction::Store: {
|
|
// We know that we can merge the stores. Calculate the cost.
|
|
int ScalarStCost = VecTy->getNumElements() *
|
|
TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
|
|
int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
|
|
return VecStCost - ScalarStCost;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown instruction");
|
|
}
|
|
}
|
|
|
|
bool BoUpSLP::isFullyVectorizableTinyTree() {
|
|
DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
|
|
VectorizableTree.size() << " is fully vectorizable .\n");
|
|
|
|
// We only handle trees of height 2.
|
|
if (VectorizableTree.size() != 2)
|
|
return false;
|
|
|
|
// Gathering cost would be too much for tiny trees.
|
|
if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int BoUpSLP::getTreeCost() {
|
|
int Cost = 0;
|
|
DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
|
|
VectorizableTree.size() << ".\n");
|
|
|
|
// We only vectorize tiny trees if it is fully vectorizable.
|
|
if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
|
|
if (!VectorizableTree.size()) {
|
|
assert(!ExternalUses.size() && "We should not have any external users");
|
|
}
|
|
return INT_MAX;
|
|
}
|
|
|
|
unsigned BundleWidth = VectorizableTree[0].Scalars.size();
|
|
|
|
for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
|
|
int C = getEntryCost(&VectorizableTree[i]);
|
|
DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
|
|
<< *VectorizableTree[i].Scalars[0] << " .\n");
|
|
Cost += C;
|
|
}
|
|
|
|
int ExtractCost = 0;
|
|
for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
|
|
I != E; ++I) {
|
|
|
|
VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
|
|
ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
|
|
I->Lane);
|
|
}
|
|
|
|
|
|
DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
|
|
return Cost + ExtractCost;
|
|
}
|
|
|
|
int BoUpSLP::getGatherCost(Type *Ty) {
|
|
int Cost = 0;
|
|
for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
|
|
Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
return Cost;
|
|
}
|
|
|
|
int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
|
|
// Find the type of the operands in VL.
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
// Find the cost of inserting/extracting values from the vector.
|
|
return getGatherCost(VecTy);
|
|
}
|
|
|
|
AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return AA->getLocation(SI);
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return AA->getLocation(LI);
|
|
return AliasAnalysis::Location();
|
|
}
|
|
|
|
Value *BoUpSLP::getPointerOperand(Value *I) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return LI->getPointerOperand();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->getPointerOperand();
|
|
return 0;
|
|
}
|
|
|
|
unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
return L->getPointerAddressSpace();
|
|
if (StoreInst *S = dyn_cast<StoreInst>(I))
|
|
return S->getPointerAddressSpace();
|
|
return -1;
|
|
}
|
|
|
|
bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
|
|
Value *PtrA = getPointerOperand(A);
|
|
Value *PtrB = getPointerOperand(B);
|
|
unsigned ASA = getAddressSpaceOperand(A);
|
|
unsigned ASB = getAddressSpaceOperand(B);
|
|
|
|
// Check that the address spaces match and that the pointers are valid.
|
|
if (!PtrA || !PtrB || (ASA != ASB))
|
|
return false;
|
|
|
|
// Make sure that A and B are different pointers of the same type.
|
|
if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
|
|
return false;
|
|
|
|
unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
|
|
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
|
|
APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
|
|
|
|
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
|
|
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
|
|
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
|
|
|
|
APInt OffsetDelta = OffsetB - OffsetA;
|
|
|
|
// Check if they are based on the same pointer. That makes the offsets
|
|
// sufficient.
|
|
if (PtrA == PtrB)
|
|
return OffsetDelta == Size;
|
|
|
|
// Compute the necessary base pointer delta to have the necessary final delta
|
|
// equal to the size.
|
|
APInt BaseDelta = Size - OffsetDelta;
|
|
|
|
// Otherwise compute the distance with SCEV between the base pointers.
|
|
const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
|
|
const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
|
|
const SCEV *C = SE->getConstant(BaseDelta);
|
|
const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
|
|
return X == PtrSCEVB;
|
|
}
|
|
|
|
Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
|
|
assert(Src->getParent() == Dst->getParent() && "Not the same BB");
|
|
BasicBlock::iterator I = Src, E = Dst;
|
|
/// Scan all of the instruction from SRC to DST and check if
|
|
/// the source may alias.
|
|
for (++I; I != E; ++I) {
|
|
// Ignore store instructions that are marked as 'ignore'.
|
|
if (MemBarrierIgnoreList.count(I))
|
|
continue;
|
|
if (Src->mayWriteToMemory()) /* Write */ {
|
|
if (!I->mayReadOrWriteMemory())
|
|
continue;
|
|
} else /* Read */ {
|
|
if (!I->mayWriteToMemory())
|
|
continue;
|
|
}
|
|
AliasAnalysis::Location A = getLocation(&*I);
|
|
AliasAnalysis::Location B = getLocation(Src);
|
|
|
|
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
|
|
return I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
|
|
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
|
|
int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i)
|
|
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
|
|
return MaxIdx;
|
|
}
|
|
|
|
Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
|
|
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
|
|
assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
|
|
BlockNumbering &BN = BlocksNumbers[BB];
|
|
|
|
int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
|
|
for (unsigned i = 1, e = VL.size(); i < e; ++i)
|
|
MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
|
|
Instruction *I = BN.getInstruction(MaxIdx);
|
|
assert(I && "bad location");
|
|
return I;
|
|
}
|
|
|
|
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
|
|
Instruction *VL0 = cast<Instruction>(VL[0]);
|
|
Instruction *LastInst = getLastInstruction(VL);
|
|
BasicBlock::iterator NextInst = LastInst;
|
|
++NextInst;
|
|
Builder.SetInsertPoint(VL0->getParent(), NextInst);
|
|
Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
|
|
}
|
|
|
|
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
|
|
Value *Vec = UndefValue::get(Ty);
|
|
// Generate the 'InsertElement' instruction.
|
|
for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
|
|
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
|
|
if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
|
|
GatherSeq.insert(Insrt);
|
|
|
|
// Add to our 'need-to-extract' list.
|
|
if (ScalarToTreeEntry.count(VL[i])) {
|
|
int Idx = ScalarToTreeEntry[VL[i]];
|
|
TreeEntry *E = &VectorizableTree[Idx];
|
|
// Find which lane we need to extract.
|
|
int FoundLane = -1;
|
|
for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
|
|
// Is this the lane of the scalar that we are looking for ?
|
|
if (E->Scalars[Lane] == VL[i]) {
|
|
FoundLane = Lane;
|
|
break;
|
|
}
|
|
}
|
|
assert(FoundLane >= 0 && "Could not find the correct lane");
|
|
ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
|
|
SmallDenseMap<Value*, int>::const_iterator Entry
|
|
= ScalarToTreeEntry.find(VL[0]);
|
|
if (Entry != ScalarToTreeEntry.end()) {
|
|
int Idx = Entry->second;
|
|
const TreeEntry *En = &VectorizableTree[Idx];
|
|
if (En->isSame(VL) && En->VectorizedValue)
|
|
return En->VectorizedValue;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
|
|
if (ScalarToTreeEntry.count(VL[0])) {
|
|
int Idx = ScalarToTreeEntry[VL[0]];
|
|
TreeEntry *E = &VectorizableTree[Idx];
|
|
if (E->isSame(VL))
|
|
return vectorizeTree(E);
|
|
}
|
|
|
|
Type *ScalarTy = VL[0]->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
|
|
|
|
return Gather(VL, VecTy);
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
|
IRBuilder<>::InsertPointGuard Guard(Builder);
|
|
|
|
if (E->VectorizedValue) {
|
|
DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
|
|
return E->VectorizedValue;
|
|
}
|
|
|
|
Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
|
|
Type *ScalarTy = VL0->getType();
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
|
|
ScalarTy = SI->getValueOperand()->getType();
|
|
VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
|
|
|
|
if (E->NeedToGather) {
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
return Gather(E->Scalars, VecTy);
|
|
}
|
|
|
|
unsigned Opcode = VL0->getOpcode();
|
|
assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
|
|
|
|
switch (Opcode) {
|
|
case Instruction::PHI: {
|
|
PHINode *PH = dyn_cast<PHINode>(VL0);
|
|
Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
|
|
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
|
|
PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
|
|
E->VectorizedValue = NewPhi;
|
|
|
|
// PHINodes may have multiple entries from the same block. We want to
|
|
// visit every block once.
|
|
SmallSet<BasicBlock*, 4> VisitedBBs;
|
|
|
|
for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
|
|
ValueList Operands;
|
|
BasicBlock *IBB = PH->getIncomingBlock(i);
|
|
|
|
if (!VisitedBBs.insert(IBB)) {
|
|
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
|
|
continue;
|
|
}
|
|
|
|
// Prepare the operand vector.
|
|
for (unsigned j = 0; j < E->Scalars.size(); ++j)
|
|
Operands.push_back(cast<PHINode>(E->Scalars[j])->
|
|
getIncomingValueForBlock(IBB));
|
|
|
|
Builder.SetInsertPoint(IBB->getTerminator());
|
|
Builder.SetCurrentDebugLocation(PH->getDebugLoc());
|
|
Value *Vec = vectorizeTree(Operands);
|
|
NewPhi->addIncoming(Vec, IBB);
|
|
}
|
|
|
|
assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
|
|
"Invalid number of incoming values");
|
|
return NewPhi;
|
|
}
|
|
|
|
case Instruction::ExtractElement: {
|
|
if (CanReuseExtract(E->Scalars)) {
|
|
Value *V = VL0->getOperand(0);
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
return Gather(E->Scalars, VecTy);
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
ValueList INVL;
|
|
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
|
|
INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
|
|
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
Value *InVec = vectorizeTree(INVL);
|
|
|
|
if (Value *V = alreadyVectorized(E->Scalars))
|
|
return V;
|
|
|
|
CastInst *CI = dyn_cast<CastInst>(VL0);
|
|
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
case Instruction::FCmp:
|
|
case Instruction::ICmp: {
|
|
ValueList LHSV, RHSV;
|
|
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
|
|
LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
|
|
RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
|
|
}
|
|
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
Value *L = vectorizeTree(LHSV);
|
|
Value *R = vectorizeTree(RHSV);
|
|
|
|
if (Value *V = alreadyVectorized(E->Scalars))
|
|
return V;
|
|
|
|
CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
|
|
Value *V;
|
|
if (Opcode == Instruction::FCmp)
|
|
V = Builder.CreateFCmp(P0, L, R);
|
|
else
|
|
V = Builder.CreateICmp(P0, L, R);
|
|
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
case Instruction::Select: {
|
|
ValueList TrueVec, FalseVec, CondVec;
|
|
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
|
|
CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
|
|
TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
|
|
FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
|
|
}
|
|
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
Value *Cond = vectorizeTree(CondVec);
|
|
Value *True = vectorizeTree(TrueVec);
|
|
Value *False = vectorizeTree(FalseVec);
|
|
|
|
if (Value *V = alreadyVectorized(E->Scalars))
|
|
return V;
|
|
|
|
Value *V = Builder.CreateSelect(Cond, True, False);
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
ValueList LHSVL, RHSVL;
|
|
if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
|
|
reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
|
|
else
|
|
for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
|
|
LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
|
|
RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
|
|
}
|
|
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
Value *LHS = vectorizeTree(LHSVL);
|
|
Value *RHS = vectorizeTree(RHSVL);
|
|
|
|
if (LHS == RHS && isa<Instruction>(LHS)) {
|
|
assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
|
|
}
|
|
|
|
if (Value *V = alreadyVectorized(E->Scalars))
|
|
return V;
|
|
|
|
BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
|
|
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
|
|
E->VectorizedValue = V;
|
|
return V;
|
|
}
|
|
case Instruction::Load: {
|
|
// Loads are inserted at the head of the tree because we don't want to
|
|
// sink them all the way down past store instructions.
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
LoadInst *LI = cast<LoadInst>(VL0);
|
|
unsigned AS = LI->getPointerAddressSpace();
|
|
|
|
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
|
|
VecTy->getPointerTo(AS));
|
|
unsigned Alignment = LI->getAlignment();
|
|
LI = Builder.CreateLoad(VecPtr);
|
|
LI->setAlignment(Alignment);
|
|
E->VectorizedValue = LI;
|
|
return LI;
|
|
}
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(VL0);
|
|
unsigned Alignment = SI->getAlignment();
|
|
unsigned AS = SI->getPointerAddressSpace();
|
|
|
|
ValueList ValueOp;
|
|
for (int i = 0, e = E->Scalars.size(); i < e; ++i)
|
|
ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
|
|
|
|
setInsertPointAfterBundle(E->Scalars);
|
|
|
|
Value *VecValue = vectorizeTree(ValueOp);
|
|
Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
|
|
VecTy->getPointerTo(AS));
|
|
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
|
|
S->setAlignment(Alignment);
|
|
E->VectorizedValue = S;
|
|
return S;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown inst");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Value *BoUpSLP::vectorizeTree() {
|
|
Builder.SetInsertPoint(F->getEntryBlock().begin());
|
|
vectorizeTree(&VectorizableTree[0]);
|
|
|
|
DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
|
|
|
|
// Extract all of the elements with the external uses.
|
|
for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
|
|
it != e; ++it) {
|
|
Value *Scalar = it->Scalar;
|
|
llvm::User *User = it->User;
|
|
|
|
// Skip users that we already RAUW. This happens when one instruction
|
|
// has multiple uses of the same value.
|
|
if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
|
|
Scalar->use_end())
|
|
continue;
|
|
assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
|
|
|
|
int Idx = ScalarToTreeEntry[Scalar];
|
|
TreeEntry *E = &VectorizableTree[Idx];
|
|
assert(!E->NeedToGather && "Extracting from a gather list");
|
|
|
|
Value *Vec = E->VectorizedValue;
|
|
assert(Vec && "Can't find vectorizable value");
|
|
|
|
Value *Lane = Builder.getInt32(it->Lane);
|
|
// Generate extracts for out-of-tree users.
|
|
// Find the insertion point for the extractelement lane.
|
|
if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
|
|
Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
User->replaceUsesOfWith(Scalar, Ex);
|
|
} else if (isa<Instruction>(Vec)){
|
|
if (PHINode *PH = dyn_cast<PHINode>(User)) {
|
|
for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
|
|
if (PH->getIncomingValue(i) == Scalar) {
|
|
Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
PH->setOperand(i, Ex);
|
|
}
|
|
}
|
|
} else {
|
|
Builder.SetInsertPoint(cast<Instruction>(User));
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
User->replaceUsesOfWith(Scalar, Ex);
|
|
}
|
|
} else {
|
|
Builder.SetInsertPoint(F->getEntryBlock().begin());
|
|
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
|
|
User->replaceUsesOfWith(Scalar, Ex);
|
|
}
|
|
|
|
DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
|
|
}
|
|
|
|
// For each vectorized value:
|
|
for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
|
|
TreeEntry *Entry = &VectorizableTree[EIdx];
|
|
|
|
// For each lane:
|
|
for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
|
|
Value *Scalar = Entry->Scalars[Lane];
|
|
|
|
// No need to handle users of gathered values.
|
|
if (Entry->NeedToGather)
|
|
continue;
|
|
|
|
assert(Entry->VectorizedValue && "Can't find vectorizable value");
|
|
|
|
Type *Ty = Scalar->getType();
|
|
if (!Ty->isVoidTy()) {
|
|
for (Value::use_iterator User = Scalar->use_begin(),
|
|
UE = Scalar->use_end(); User != UE; ++User) {
|
|
DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
|
|
assert(!MustGather.count(*User) &&
|
|
"Replacing gathered value with undef");
|
|
|
|
assert((ScalarToTreeEntry.count(*User) ||
|
|
// It is legal to replace the reduction users by undef.
|
|
(RdxOps && RdxOps->count(*User))) &&
|
|
"Replacing out-of-tree value with undef");
|
|
}
|
|
Value *Undef = UndefValue::get(Ty);
|
|
Scalar->replaceAllUsesWith(Undef);
|
|
}
|
|
DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
|
|
cast<Instruction>(Scalar)->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
|
|
BlocksNumbers[it].forget();
|
|
}
|
|
Builder.ClearInsertionPoint();
|
|
|
|
return VectorizableTree[0].VectorizedValue;
|
|
}
|
|
|
|
void BoUpSLP::optimizeGatherSequence() {
|
|
DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
|
|
<< " gather sequences instructions.\n");
|
|
// LICM InsertElementInst sequences.
|
|
for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
|
|
e = GatherSeq.end(); it != e; ++it) {
|
|
InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
|
|
|
|
if (!Insert)
|
|
continue;
|
|
|
|
// Check if this block is inside a loop.
|
|
Loop *L = LI->getLoopFor(Insert->getParent());
|
|
if (!L)
|
|
continue;
|
|
|
|
// Check if it has a preheader.
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
if (!PreHeader)
|
|
continue;
|
|
|
|
// If the vector or the element that we insert into it are
|
|
// instructions that are defined in this basic block then we can't
|
|
// hoist this instruction.
|
|
Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
|
|
Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
|
|
if (CurrVec && L->contains(CurrVec))
|
|
continue;
|
|
if (NewElem && L->contains(NewElem))
|
|
continue;
|
|
|
|
// We can hoist this instruction. Move it to the pre-header.
|
|
Insert->moveBefore(PreHeader->getTerminator());
|
|
}
|
|
|
|
// Perform O(N^2) search over the gather sequences and merge identical
|
|
// instructions. TODO: We can further optimize this scan if we split the
|
|
// instructions into different buckets based on the insert lane.
|
|
SmallPtrSet<Instruction*, 16> Visited;
|
|
SmallVector<Instruction*, 16> ToRemove;
|
|
ReversePostOrderTraversal<Function*> RPOT(F);
|
|
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
|
|
E = RPOT.end(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
// For all instructions in the function:
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
Instruction *In = it;
|
|
if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
|
|
!GatherSeq.count(In))
|
|
continue;
|
|
|
|
// Check if we can replace this instruction with any of the
|
|
// visited instructions.
|
|
for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
|
|
ve = Visited.end(); v != ve; ++v) {
|
|
if (In->isIdenticalTo(*v) &&
|
|
DT->dominates((*v)->getParent(), In->getParent())) {
|
|
In->replaceAllUsesWith(*v);
|
|
ToRemove.push_back(In);
|
|
In = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (In)
|
|
Visited.insert(In);
|
|
}
|
|
}
|
|
|
|
// Erase all of the instructions that we RAUWed.
|
|
for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(),
|
|
ve = ToRemove.end(); v != ve; ++v) {
|
|
assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
|
|
(*v)->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// The SLPVectorizer Pass.
|
|
struct SLPVectorizer : public FunctionPass {
|
|
typedef SmallVector<StoreInst *, 8> StoreList;
|
|
typedef MapVector<Value *, StoreList> StoreListMap;
|
|
|
|
/// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
explicit SLPVectorizer() : FunctionPass(ID) {
|
|
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
ScalarEvolution *SE;
|
|
DataLayout *DL;
|
|
TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
|
|
virtual bool runOnFunction(Function &F) {
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
DL = getAnalysisIfAvailable<DataLayout>();
|
|
TTI = &getAnalysis<TargetTransformInfo>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
StoreRefs.clear();
|
|
bool Changed = false;
|
|
|
|
// If the target claims to have no vector registers don't attempt
|
|
// vectorization.
|
|
if (!TTI->getNumberOfRegisters(true))
|
|
return false;
|
|
|
|
// Must have DataLayout. We can't require it because some tests run w/o
|
|
// triple.
|
|
if (!DL)
|
|
return false;
|
|
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
|
|
|
|
// Use the bollom up slp vectorizer to construct chains that start with
|
|
// he store instructions.
|
|
BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
|
|
|
|
// Scan the blocks in the function in post order.
|
|
for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
|
|
e = po_end(&F.getEntryBlock()); it != e; ++it) {
|
|
BasicBlock *BB = *it;
|
|
|
|
// Vectorize trees that end at stores.
|
|
if (unsigned count = collectStores(BB, R)) {
|
|
(void)count;
|
|
DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
|
|
Changed |= vectorizeStoreChains(R);
|
|
}
|
|
|
|
// Vectorize trees that end at reductions.
|
|
Changed |= vectorizeChainsInBlock(BB, R);
|
|
}
|
|
|
|
if (Changed) {
|
|
R.optimizeGatherSequence();
|
|
DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
|
|
DEBUG(verifyFunction(F));
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<TargetTransformInfo>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addPreserved<LoopInfo>();
|
|
AU.addPreserved<DominatorTree>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
private:
|
|
|
|
/// \brief Collect memory references and sort them according to their base
|
|
/// object. We sort the stores to their base objects to reduce the cost of the
|
|
/// quadratic search on the stores. TODO: We can further reduce this cost
|
|
/// if we flush the chain creation every time we run into a memory barrier.
|
|
unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
|
|
|
|
/// \brief Try to vectorize a chain that starts at two arithmetic instrs.
|
|
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
|
|
|
|
/// \brief Try to vectorize a list of operands.
|
|
/// \returns true if a value was vectorized.
|
|
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
|
|
|
|
/// \brief Try to vectorize a chain that may start at the operands of \V;
|
|
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
|
|
|
|
/// \brief Vectorize the stores that were collected in StoreRefs.
|
|
bool vectorizeStoreChains(BoUpSLP &R);
|
|
|
|
/// \brief Scan the basic block and look for patterns that are likely to start
|
|
/// a vectorization chain.
|
|
bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
|
|
|
|
bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
|
|
BoUpSLP &R);
|
|
|
|
bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
|
|
BoUpSLP &R);
|
|
private:
|
|
StoreListMap StoreRefs;
|
|
};
|
|
|
|
bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
|
|
int CostThreshold, BoUpSLP &R) {
|
|
unsigned ChainLen = Chain.size();
|
|
DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
|
|
<< "\n");
|
|
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
|
|
unsigned Sz = DL->getTypeSizeInBits(StoreTy);
|
|
unsigned VF = MinVecRegSize / Sz;
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
// Look for profitable vectorizable trees at all offsets, starting at zero.
|
|
for (unsigned i = 0, e = ChainLen; i < e; ++i) {
|
|
if (i + VF > e)
|
|
break;
|
|
DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
|
|
<< "\n");
|
|
ArrayRef<Value *> Operands = Chain.slice(i, VF);
|
|
|
|
R.buildTree(Operands);
|
|
|
|
int Cost = R.getTreeCost();
|
|
|
|
DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
|
|
if (Cost < CostThreshold) {
|
|
DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
|
|
R.vectorizeTree();
|
|
|
|
// Move to the next bundle.
|
|
i += VF - 1;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
|
|
int costThreshold, BoUpSLP &R) {
|
|
SetVector<Value *> Heads, Tails;
|
|
SmallDenseMap<Value *, Value *> ConsecutiveChain;
|
|
|
|
// We may run into multiple chains that merge into a single chain. We mark the
|
|
// stores that we vectorized so that we don't visit the same store twice.
|
|
BoUpSLP::ValueSet VectorizedStores;
|
|
bool Changed = false;
|
|
|
|
// Do a quadratic search on all of the given stores and find
|
|
// all of the pairs of stores that follow each other.
|
|
for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
|
|
for (unsigned j = 0; j < e; ++j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
|
|
Tails.insert(Stores[j]);
|
|
Heads.insert(Stores[i]);
|
|
ConsecutiveChain[Stores[i]] = Stores[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// For stores that start but don't end a link in the chain:
|
|
for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
|
|
it != e; ++it) {
|
|
if (Tails.count(*it))
|
|
continue;
|
|
|
|
// We found a store instr that starts a chain. Now follow the chain and try
|
|
// to vectorize it.
|
|
BoUpSLP::ValueList Operands;
|
|
Value *I = *it;
|
|
// Collect the chain into a list.
|
|
while (Tails.count(I) || Heads.count(I)) {
|
|
if (VectorizedStores.count(I))
|
|
break;
|
|
Operands.push_back(I);
|
|
// Move to the next value in the chain.
|
|
I = ConsecutiveChain[I];
|
|
}
|
|
|
|
bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
|
|
|
|
// Mark the vectorized stores so that we don't vectorize them again.
|
|
if (Vectorized)
|
|
VectorizedStores.insert(Operands.begin(), Operands.end());
|
|
Changed |= Vectorized;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
|
|
unsigned count = 0;
|
|
StoreRefs.clear();
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
|
|
StoreInst *SI = dyn_cast<StoreInst>(it);
|
|
if (!SI)
|
|
continue;
|
|
|
|
// Don't touch volatile stores.
|
|
if (!SI->isSimple())
|
|
continue;
|
|
|
|
// Check that the pointer points to scalars.
|
|
Type *Ty = SI->getValueOperand()->getType();
|
|
if (Ty->isAggregateType() || Ty->isVectorTy())
|
|
return 0;
|
|
|
|
// Find the base pointer.
|
|
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
|
|
|
|
// Save the store locations.
|
|
StoreRefs[Ptr].push_back(SI);
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
|
|
if (!A || !B)
|
|
return false;
|
|
Value *VL[] = { A, B };
|
|
return tryToVectorizeList(VL, R);
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
|
|
if (VL.size() < 2)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
|
|
|
|
// Check that all of the parts are scalar instructions of the same type.
|
|
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
|
|
if (!I0)
|
|
return false;
|
|
|
|
unsigned Opcode0 = I0->getOpcode();
|
|
|
|
Type *Ty0 = I0->getType();
|
|
unsigned Sz = DL->getTypeSizeInBits(Ty0);
|
|
unsigned VF = MinVecRegSize / Sz;
|
|
|
|
for (int i = 0, e = VL.size(); i < e; ++i) {
|
|
Type *Ty = VL[i]->getType();
|
|
if (Ty->isAggregateType() || Ty->isVectorTy())
|
|
return false;
|
|
Instruction *Inst = dyn_cast<Instruction>(VL[i]);
|
|
if (!Inst || Inst->getOpcode() != Opcode0)
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
|
|
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
|
|
unsigned OpsWidth = 0;
|
|
|
|
if (i + VF > e)
|
|
OpsWidth = e - i;
|
|
else
|
|
OpsWidth = VF;
|
|
|
|
if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
|
|
break;
|
|
|
|
DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n");
|
|
ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
|
|
|
|
R.buildTree(Ops);
|
|
int Cost = R.getTreeCost();
|
|
|
|
if (Cost < -SLPCostThreshold) {
|
|
DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
|
|
R.vectorizeTree();
|
|
|
|
// Move to the next bundle.
|
|
i += VF - 1;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
|
|
if (!V)
|
|
return false;
|
|
|
|
// Try to vectorize V.
|
|
if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
|
|
return true;
|
|
|
|
BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
|
|
BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
|
|
// Try to skip B.
|
|
if (B && B->hasOneUse()) {
|
|
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
|
|
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
|
|
if (tryToVectorizePair(A, B0, R)) {
|
|
B->moveBefore(V);
|
|
return true;
|
|
}
|
|
if (tryToVectorizePair(A, B1, R)) {
|
|
B->moveBefore(V);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Try to skip A.
|
|
if (A && A->hasOneUse()) {
|
|
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
|
|
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
|
|
if (tryToVectorizePair(A0, B, R)) {
|
|
A->moveBefore(V);
|
|
return true;
|
|
}
|
|
if (tryToVectorizePair(A1, B, R)) {
|
|
A->moveBefore(V);
|
|
return true;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Generate a shuffle mask to be used in a reduction tree.
|
|
///
|
|
/// \param VecLen The length of the vector to be reduced.
|
|
/// \param NumEltsToRdx The number of elements that should be reduced in the
|
|
/// vector.
|
|
/// \param IsPairwise Whether the reduction is a pairwise or splitting
|
|
/// reduction. A pairwise reduction will generate a mask of
|
|
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
|
|
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
|
|
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
|
|
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
|
|
bool IsPairwise, bool IsLeft,
|
|
IRBuilder<> &Builder) {
|
|
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
|
|
|
|
SmallVector<Constant *, 32> ShuffleMask(
|
|
VecLen, UndefValue::get(Builder.getInt32Ty()));
|
|
|
|
if (IsPairwise)
|
|
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
|
|
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
|
ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
|
|
else
|
|
// Move the upper half of the vector to the lower half.
|
|
for (unsigned i = 0; i != NumEltsToRdx; ++i)
|
|
ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
|
|
|
|
return ConstantVector::get(ShuffleMask);
|
|
}
|
|
|
|
|
|
/// Model horizontal reductions.
|
|
///
|
|
/// A horizontal reduction is a tree of reduction operations (currently add and
|
|
/// fadd) that has operations that can be put into a vector as its leaf.
|
|
/// For example, this tree:
|
|
///
|
|
/// mul mul mul mul
|
|
/// \ / \ /
|
|
/// + +
|
|
/// \ /
|
|
/// +
|
|
/// This tree has "mul" as its reduced values and "+" as its reduction
|
|
/// operations. A reduction might be feeding into a store or a binary operation
|
|
/// feeding a phi.
|
|
/// ...
|
|
/// \ /
|
|
/// +
|
|
/// |
|
|
/// phi +=
|
|
///
|
|
/// Or:
|
|
/// ...
|
|
/// \ /
|
|
/// +
|
|
/// |
|
|
/// *p =
|
|
///
|
|
class HorizontalReduction {
|
|
SmallPtrSet<Value *, 16> ReductionOps;
|
|
SmallVector<Value *, 32> ReducedVals;
|
|
|
|
BinaryOperator *ReductionRoot;
|
|
PHINode *ReductionPHI;
|
|
|
|
/// The opcode of the reduction.
|
|
unsigned ReductionOpcode;
|
|
/// The opcode of the values we perform a reduction on.
|
|
unsigned ReducedValueOpcode;
|
|
/// The width of one full horizontal reduction operation.
|
|
unsigned ReduxWidth;
|
|
/// Should we model this reduction as a pairwise reduction tree or a tree that
|
|
/// splits the vector in halves and adds those halves.
|
|
bool IsPairwiseReduction;
|
|
|
|
public:
|
|
HorizontalReduction()
|
|
: ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
|
|
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
|
|
|
|
/// \brief Try to find a reduction tree.
|
|
bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
|
|
DataLayout *DL) {
|
|
assert((!Phi ||
|
|
std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
|
|
"Thi phi needs to use the binary operator");
|
|
|
|
// We could have a initial reductions that is not an add.
|
|
// r *= v1 + v2 + v3 + v4
|
|
// In such a case start looking for a tree rooted in the first '+'.
|
|
if (Phi) {
|
|
if (B->getOperand(0) == Phi) {
|
|
Phi = 0;
|
|
B = dyn_cast<BinaryOperator>(B->getOperand(1));
|
|
} else if (B->getOperand(1) == Phi) {
|
|
Phi = 0;
|
|
B = dyn_cast<BinaryOperator>(B->getOperand(0));
|
|
}
|
|
}
|
|
|
|
if (!B)
|
|
return false;
|
|
|
|
Type *Ty = B->getType();
|
|
if (Ty->isVectorTy())
|
|
return false;
|
|
|
|
ReductionOpcode = B->getOpcode();
|
|
ReducedValueOpcode = 0;
|
|
ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
|
|
ReductionRoot = B;
|
|
ReductionPHI = Phi;
|
|
|
|
if (ReduxWidth < 4)
|
|
return false;
|
|
|
|
// We currently only support adds.
|
|
if (ReductionOpcode != Instruction::Add &&
|
|
ReductionOpcode != Instruction::FAdd)
|
|
return false;
|
|
|
|
// Post order traverse the reduction tree starting at B. We only handle true
|
|
// trees containing only binary operators.
|
|
SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
|
|
Stack.push_back(std::make_pair(B, 0));
|
|
while (!Stack.empty()) {
|
|
BinaryOperator *TreeN = Stack.back().first;
|
|
unsigned EdgeToVist = Stack.back().second++;
|
|
bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
|
|
|
|
// Only handle trees in the current basic block.
|
|
if (TreeN->getParent() != B->getParent())
|
|
return false;
|
|
|
|
// Each tree node needs to have one user except for the ultimate
|
|
// reduction.
|
|
if (!TreeN->hasOneUse() && TreeN != B)
|
|
return false;
|
|
|
|
// Postorder vist.
|
|
if (EdgeToVist == 2 || IsReducedValue) {
|
|
if (IsReducedValue) {
|
|
// Make sure that the opcodes of the operations that we are going to
|
|
// reduce match.
|
|
if (!ReducedValueOpcode)
|
|
ReducedValueOpcode = TreeN->getOpcode();
|
|
else if (ReducedValueOpcode != TreeN->getOpcode())
|
|
return false;
|
|
ReducedVals.push_back(TreeN);
|
|
} else {
|
|
// We need to be able to reassociate the adds.
|
|
if (!TreeN->isAssociative())
|
|
return false;
|
|
ReductionOps.insert(TreeN);
|
|
}
|
|
// Retract.
|
|
Stack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Visit left or right.
|
|
Value *NextV = TreeN->getOperand(EdgeToVist);
|
|
BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
|
|
if (Next)
|
|
Stack.push_back(std::make_pair(Next, 0));
|
|
else if (NextV != Phi)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Attempt to vectorize the tree found by
|
|
/// matchAssociativeReduction.
|
|
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
|
|
if (ReducedVals.empty())
|
|
return false;
|
|
|
|
unsigned NumReducedVals = ReducedVals.size();
|
|
if (NumReducedVals < ReduxWidth)
|
|
return false;
|
|
|
|
Value *VectorizedTree = 0;
|
|
IRBuilder<> Builder(ReductionRoot);
|
|
FastMathFlags Unsafe;
|
|
Unsafe.setUnsafeAlgebra();
|
|
Builder.SetFastMathFlags(Unsafe);
|
|
unsigned i = 0;
|
|
|
|
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
|
|
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
|
|
V.buildTree(ValsToReduce, &ReductionOps);
|
|
|
|
// Estimate cost.
|
|
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
|
|
if (Cost >= -SLPCostThreshold)
|
|
break;
|
|
|
|
DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
|
|
<< ". (HorRdx)\n");
|
|
|
|
// Vectorize a tree.
|
|
DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
|
|
Value *VectorizedRoot = V.vectorizeTree();
|
|
|
|
// Emit a reduction.
|
|
Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
|
|
if (VectorizedTree) {
|
|
Builder.SetCurrentDebugLocation(Loc);
|
|
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
|
|
ReducedSubTree, "bin.rdx");
|
|
} else
|
|
VectorizedTree = ReducedSubTree;
|
|
}
|
|
|
|
if (VectorizedTree) {
|
|
// Finish the reduction.
|
|
for (; i < NumReducedVals; ++i) {
|
|
Builder.SetCurrentDebugLocation(
|
|
cast<Instruction>(ReducedVals[i])->getDebugLoc());
|
|
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
|
|
ReducedVals[i]);
|
|
}
|
|
// Update users.
|
|
if (ReductionPHI) {
|
|
assert(ReductionRoot != NULL && "Need a reduction operation");
|
|
ReductionRoot->setOperand(0, VectorizedTree);
|
|
ReductionRoot->setOperand(1, ReductionPHI);
|
|
} else
|
|
ReductionRoot->replaceAllUsesWith(VectorizedTree);
|
|
}
|
|
return VectorizedTree != 0;
|
|
}
|
|
|
|
private:
|
|
|
|
/// \brief Calcuate the cost of a reduction.
|
|
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
|
|
Type *ScalarTy = FirstReducedVal->getType();
|
|
Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
|
|
|
|
int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
|
|
int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
|
|
|
|
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
|
|
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
|
|
|
|
int ScalarReduxCost =
|
|
ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
|
|
|
|
DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
|
|
<< " for reduction that starts with " << *FirstReducedVal
|
|
<< " (It is a "
|
|
<< (IsPairwiseReduction ? "pairwise" : "splitting")
|
|
<< " reduction)\n");
|
|
|
|
return VecReduxCost - ScalarReduxCost;
|
|
}
|
|
|
|
static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
|
|
Value *R, const Twine &Name = "") {
|
|
if (Opcode == Instruction::FAdd)
|
|
return Builder.CreateFAdd(L, R, Name);
|
|
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
|
|
}
|
|
|
|
/// \brief Emit a horizontal reduction of the vectorized value.
|
|
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
|
|
assert(VectorizedValue && "Need to have a vectorized tree node");
|
|
Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
|
|
assert(isPowerOf2_32(ReduxWidth) &&
|
|
"We only handle power-of-two reductions for now");
|
|
|
|
Value *TmpVec = ValToReduce;
|
|
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
|
|
if (IsPairwiseReduction) {
|
|
Value *LeftMask =
|
|
createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
|
|
Value *RightMask =
|
|
createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
|
|
|
|
Value *LeftShuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
|
|
Value *RightShuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
|
|
"rdx.shuf.r");
|
|
TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
|
|
"bin.rdx");
|
|
} else {
|
|
Value *UpperHalf =
|
|
createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
|
|
Value *Shuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
|
|
TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
|
|
}
|
|
}
|
|
|
|
// The result is in the first element of the vector.
|
|
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
|
|
}
|
|
};
|
|
|
|
/// \brief Recognize construction of vectors like
|
|
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
|
|
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
|
|
/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
|
|
/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
|
|
///
|
|
/// Returns true if it matches
|
|
///
|
|
static bool findBuildVector(InsertElementInst *IE,
|
|
SmallVectorImpl<Value *> &Ops) {
|
|
if (!isa<UndefValue>(IE->getOperand(0)))
|
|
return false;
|
|
|
|
while (true) {
|
|
Ops.push_back(IE->getOperand(1));
|
|
|
|
if (IE->use_empty())
|
|
return false;
|
|
|
|
InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
|
|
if (!NextUse)
|
|
return true;
|
|
|
|
// If this isn't the final use, make sure the next insertelement is the only
|
|
// use. It's OK if the final constructed vector is used multiple times
|
|
if (!IE->hasOneUse())
|
|
return false;
|
|
|
|
IE = NextUse;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool PhiTypeSorterFunc(Value *V, Value *V2) {
|
|
return V->getType() < V2->getType();
|
|
}
|
|
|
|
bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
|
|
bool Changed = false;
|
|
SmallVector<Value *, 4> Incoming;
|
|
SmallSet<Value *, 16> VisitedInstrs;
|
|
|
|
bool HaveVectorizedPhiNodes = true;
|
|
while (HaveVectorizedPhiNodes) {
|
|
HaveVectorizedPhiNodes = false;
|
|
|
|
// Collect the incoming values from the PHIs.
|
|
Incoming.clear();
|
|
for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
|
|
++instr) {
|
|
PHINode *P = dyn_cast<PHINode>(instr);
|
|
if (!P)
|
|
break;
|
|
|
|
if (!VisitedInstrs.count(P))
|
|
Incoming.push_back(P);
|
|
}
|
|
|
|
// Sort by type.
|
|
std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
|
|
|
|
// Try to vectorize elements base on their type.
|
|
for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
|
|
E = Incoming.end();
|
|
IncIt != E;) {
|
|
|
|
// Look for the next elements with the same type.
|
|
SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
|
|
while (SameTypeIt != E &&
|
|
(*SameTypeIt)->getType() == (*IncIt)->getType()) {
|
|
VisitedInstrs.insert(*SameTypeIt);
|
|
++SameTypeIt;
|
|
}
|
|
|
|
// Try to vectorize them.
|
|
unsigned NumElts = (SameTypeIt - IncIt);
|
|
DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
|
|
if (NumElts > 1 &&
|
|
tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
|
|
// Success start over because instructions might have been changed.
|
|
HaveVectorizedPhiNodes = true;
|
|
Changed = true;
|
|
break;
|
|
}
|
|
|
|
// Start over at the next instruction of a differnt type (or the end).
|
|
IncIt = SameTypeIt;
|
|
}
|
|
}
|
|
|
|
VisitedInstrs.clear();
|
|
|
|
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
|
|
// We may go through BB multiple times so skip the one we have checked.
|
|
if (!VisitedInstrs.insert(it))
|
|
continue;
|
|
|
|
if (isa<DbgInfoIntrinsic>(it))
|
|
continue;
|
|
|
|
// Try to vectorize reductions that use PHINodes.
|
|
if (PHINode *P = dyn_cast<PHINode>(it)) {
|
|
// Check that the PHI is a reduction PHI.
|
|
if (P->getNumIncomingValues() != 2)
|
|
return Changed;
|
|
Value *Rdx =
|
|
(P->getIncomingBlock(0) == BB
|
|
? (P->getIncomingValue(0))
|
|
: (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
|
|
// Check if this is a Binary Operator.
|
|
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
|
|
if (!BI)
|
|
continue;
|
|
|
|
// Try to match and vectorize a horizontal reduction.
|
|
HorizontalReduction HorRdx;
|
|
if (ShouldVectorizeHor &&
|
|
HorRdx.matchAssociativeReduction(P, BI, DL) &&
|
|
HorRdx.tryToReduce(R, TTI)) {
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
|
|
Value *Inst = BI->getOperand(0);
|
|
if (Inst == P)
|
|
Inst = BI->getOperand(1);
|
|
|
|
if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
|
|
// We would like to start over since some instructions are deleted
|
|
// and the iterator may become invalid value.
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Try to vectorize horizontal reductions feeding into a store.
|
|
if (ShouldStartVectorizeHorAtStore)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(it))
|
|
if (BinaryOperator *BinOp =
|
|
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
|
|
HorizontalReduction HorRdx;
|
|
if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
|
|
HorRdx.tryToReduce(R, TTI)) ||
|
|
tryToVectorize(BinOp, R))) {
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Try to vectorize trees that start at compare instructions.
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
|
|
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
|
|
Changed = true;
|
|
// We would like to start over since some instructions are deleted
|
|
// and the iterator may become invalid value.
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
continue;
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
|
|
if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
|
|
Changed = true;
|
|
// We would like to start over since some instructions are deleted
|
|
// and the iterator may become invalid value.
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Try to vectorize trees that start at insertelement instructions.
|
|
if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
|
|
SmallVector<Value *, 8> Ops;
|
|
if (!findBuildVector(IE, Ops))
|
|
continue;
|
|
|
|
if (tryToVectorizeList(Ops, R)) {
|
|
Changed = true;
|
|
it = BB->begin();
|
|
e = BB->end();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
|
|
bool Changed = false;
|
|
// Attempt to sort and vectorize each of the store-groups.
|
|
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
|
|
it != e; ++it) {
|
|
if (it->second.size() < 2)
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
|
|
<< it->second.size() << ".\n");
|
|
|
|
// Process the stores in chunks of 16.
|
|
for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
|
|
unsigned Len = std::min<unsigned>(CE - CI, 16);
|
|
ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
|
|
Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
char SLPVectorizer::ID = 0;
|
|
static const char lv_name[] = "SLP Vectorizer";
|
|
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
|
|
|
|
namespace llvm {
|
|
Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
|
|
}
|