mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-24 19:44:49 +00:00
9de77c7eca
Canonicalize access to function attributes to use the simpler API. getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind) => getFnAttribute(Kind) getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind) => hasFnAttribute(Kind) Also, add `Function::getFnStackAlignment()`, and canonicalize: getAttributes().getStackAlignment(AttributeSet::FunctionIndex) => getFnStackAlignment() git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229208 91177308-0d34-0410-b5e6-96231b3b80d8
432 lines
18 KiB
C++
432 lines
18 KiB
C++
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The machine combiner pass uses machine trace metrics to ensure the combined
|
|
// instructions does not lengthen the critical path or the resource depth.
|
|
//===----------------------------------------------------------------------===//
|
|
#define DEBUG_TYPE "machine-combiner"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineTraceMetrics.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumInstCombined, "Number of machineinst combined");
|
|
|
|
namespace {
|
|
class MachineCombiner : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MCSchedModel SchedModel;
|
|
MachineRegisterInfo *MRI;
|
|
MachineTraceMetrics *Traces;
|
|
MachineTraceMetrics::Ensemble *MinInstr;
|
|
|
|
TargetSchedModel TSchedModel;
|
|
|
|
/// True if optimizing for code size.
|
|
bool OptSize;
|
|
|
|
public:
|
|
static char ID;
|
|
MachineCombiner() : MachineFunctionPass(ID) {
|
|
initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
const char *getPassName() const override { return "Machine InstCombiner"; }
|
|
|
|
private:
|
|
bool doSubstitute(unsigned NewSize, unsigned OldSize);
|
|
bool combineInstructions(MachineBasicBlock *);
|
|
MachineInstr *getOperandDef(const MachineOperand &MO);
|
|
unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineTraceMetrics::Trace BlockTrace);
|
|
unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
|
|
MachineTraceMetrics::Trace BlockTrace);
|
|
bool
|
|
preservesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg);
|
|
bool preservesResourceLen(MachineBasicBlock *MBB,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs);
|
|
void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
|
|
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
|
|
};
|
|
}
|
|
|
|
char MachineCombiner::ID = 0;
|
|
char &llvm::MachineCombinerID = MachineCombiner::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
|
|
"Machine InstCombiner", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
|
|
INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
|
|
false, false)
|
|
|
|
void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addRequired<MachineTraceMetrics>();
|
|
AU.addPreserved<MachineTraceMetrics>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
|
|
MachineInstr *DefInstr = nullptr;
|
|
// We need a virtual register definition.
|
|
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
DefInstr = MRI->getUniqueVRegDef(MO.getReg());
|
|
// PHI's have no depth etc.
|
|
if (DefInstr && DefInstr->isPHI())
|
|
DefInstr = nullptr;
|
|
return DefInstr;
|
|
}
|
|
|
|
/// Computes depth of instructions in vector \InsInstr.
|
|
///
|
|
/// \param InsInstrs is a vector of machine instructions
|
|
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
|
|
/// of defining machine instruction in \p InsInstrs
|
|
/// \param BlockTrace is a trace of machine instructions
|
|
///
|
|
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
|
|
unsigned
|
|
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineTraceMetrics::Trace BlockTrace) {
|
|
|
|
SmallVector<unsigned, 16> InstrDepth;
|
|
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
|
|
|
|
// For each instruction in the new sequence compute the depth based on the
|
|
// operands. Use the trace information when possible. For new operands which
|
|
// are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
|
|
for (auto *InstrPtr : InsInstrs) { // for each Use
|
|
unsigned IDepth = 0;
|
|
DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
|
|
for (unsigned i = 0, e = InstrPtr->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = InstrPtr->getOperand(i);
|
|
// Check for virtual register operand.
|
|
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
|
|
continue;
|
|
if (!MO.isUse())
|
|
continue;
|
|
unsigned DepthOp = 0;
|
|
unsigned LatencyOp = 0;
|
|
DenseMap<unsigned, unsigned>::iterator II =
|
|
InstrIdxForVirtReg.find(MO.getReg());
|
|
if (II != InstrIdxForVirtReg.end()) {
|
|
// Operand is new virtual register not in trace
|
|
assert(II->second < InstrDepth.size() && "Bad Index");
|
|
MachineInstr *DefInstr = InsInstrs[II->second];
|
|
assert(DefInstr &&
|
|
"There must be a definition for a new virtual register");
|
|
DepthOp = InstrDepth[II->second];
|
|
LatencyOp = TSchedModel.computeOperandLatency(
|
|
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
|
|
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
|
|
} else {
|
|
MachineInstr *DefInstr = getOperandDef(MO);
|
|
if (DefInstr) {
|
|
DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth;
|
|
LatencyOp = TSchedModel.computeOperandLatency(
|
|
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
|
|
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
|
|
}
|
|
}
|
|
IDepth = std::max(IDepth, DepthOp + LatencyOp);
|
|
}
|
|
InstrDepth.push_back(IDepth);
|
|
}
|
|
unsigned NewRootIdx = InsInstrs.size() - 1;
|
|
return InstrDepth[NewRootIdx];
|
|
}
|
|
|
|
/// Computes instruction latency as max of latency of defined operands.
|
|
///
|
|
/// \param Root is a machine instruction that could be replaced by NewRoot.
|
|
/// It is used to compute a more accurate latency information for NewRoot in
|
|
/// case there is a dependent instruction in the same trace (\p BlockTrace)
|
|
/// \param NewRoot is the instruction for which the latency is computed
|
|
/// \param BlockTrace is a trace of machine instructions
|
|
///
|
|
/// \returns Latency of \p NewRoot
|
|
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
|
|
MachineTraceMetrics::Trace BlockTrace) {
|
|
|
|
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
|
|
|
|
// Check each definition in NewRoot and compute the latency
|
|
unsigned NewRootLatency = 0;
|
|
|
|
for (unsigned i = 0, e = NewRoot->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = NewRoot->getOperand(i);
|
|
// Check for virtual register operand.
|
|
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
|
|
continue;
|
|
if (!MO.isDef())
|
|
continue;
|
|
// Get the first instruction that uses MO
|
|
MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
|
|
RI++;
|
|
MachineInstr *UseMO = RI->getParent();
|
|
unsigned LatencyOp = 0;
|
|
if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) {
|
|
LatencyOp = TSchedModel.computeOperandLatency(
|
|
NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
|
|
UseMO->findRegisterUseOperandIdx(MO.getReg()));
|
|
} else {
|
|
LatencyOp = TSchedModel.computeInstrLatency(NewRoot->getOpcode());
|
|
}
|
|
NewRootLatency = std::max(NewRootLatency, LatencyOp);
|
|
}
|
|
return NewRootLatency;
|
|
}
|
|
|
|
/// True when the new instruction sequence does not
|
|
/// lengthen the critical path. The DAGCombine code sequence ends in MI
|
|
/// (Machine Instruction) Root. The new code sequence ends in MI NewRoot. A
|
|
/// necessary condition for the new sequence to replace the old sequence is that
|
|
/// it cannot lengthen the critical path. This is decided by the formula
|
|
/// (NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)).
|
|
/// The slack is the number of cycles Root can be delayed before the critical
|
|
/// patch becomes longer.
|
|
bool MachineCombiner::preservesCriticalPathLen(
|
|
MachineBasicBlock *MBB, MachineInstr *Root,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
|
|
|
|
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
|
|
// NewRoot is the last instruction in the \p InsInstrs vector
|
|
// Get depth and latency of NewRoot
|
|
unsigned NewRootIdx = InsInstrs.size() - 1;
|
|
MachineInstr *NewRoot = InsInstrs[NewRootIdx];
|
|
unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
|
|
unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
|
|
|
|
// Get depth, latency and slack of Root
|
|
unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth;
|
|
unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
|
|
unsigned RootSlack = BlockTrace.getInstrSlack(Root);
|
|
|
|
DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
|
|
dbgs() << " NewRootDepth: " << NewRootDepth
|
|
<< " NewRootLatency: " << NewRootLatency << "\n";
|
|
dbgs() << " RootDepth: " << RootDepth << " RootLatency: " << RootLatency
|
|
<< " RootSlack: " << RootSlack << "\n";
|
|
dbgs() << " NewRootDepth + NewRootLatency "
|
|
<< NewRootDepth + NewRootLatency << "\n";
|
|
dbgs() << " RootDepth + RootLatency + RootSlack "
|
|
<< RootDepth + RootLatency + RootSlack << "\n";);
|
|
|
|
/// True when the new sequence does not lenghten the critical path.
|
|
return ((NewRootDepth + NewRootLatency) <=
|
|
(RootDepth + RootLatency + RootSlack));
|
|
}
|
|
|
|
/// helper routine to convert instructions into SC
|
|
void MachineCombiner::instr2instrSC(
|
|
SmallVectorImpl<MachineInstr *> &Instrs,
|
|
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
|
|
for (auto *InstrPtr : Instrs) {
|
|
unsigned Opc = InstrPtr->getOpcode();
|
|
unsigned Idx = TII->get(Opc).getSchedClass();
|
|
const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
|
|
InstrsSC.push_back(SC);
|
|
}
|
|
}
|
|
/// True when the new instructions do not increase resource length
|
|
bool MachineCombiner::preservesResourceLen(
|
|
MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs) {
|
|
|
|
// Compute current resource length
|
|
|
|
//ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
|
|
SmallVector <const MachineBasicBlock *, 1> MBBarr;
|
|
MBBarr.push_back(MBB);
|
|
unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
|
|
|
|
// Deal with SC rather than Instructions.
|
|
SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
|
|
SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
|
|
|
|
instr2instrSC(InsInstrs, InsInstrsSC);
|
|
instr2instrSC(DelInstrs, DelInstrsSC);
|
|
|
|
ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
|
|
ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
|
|
|
|
// Compute new resource length
|
|
unsigned ResLenAfterCombine =
|
|
BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
|
|
|
|
DEBUG(dbgs() << "RESOURCE DATA: \n";
|
|
dbgs() << " resource len before: " << ResLenBeforeCombine
|
|
<< " after: " << ResLenAfterCombine << "\n";);
|
|
|
|
return ResLenAfterCombine <= ResLenBeforeCombine;
|
|
}
|
|
|
|
/// \returns true when new instruction sequence should be generated
|
|
/// independent if it lengthens critical path or not
|
|
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
|
|
if (OptSize && (NewSize < OldSize))
|
|
return true;
|
|
if (!TSchedModel.hasInstrSchedModel())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Substitute a slow code sequence with a faster one by
|
|
/// evaluating instruction combining pattern.
|
|
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
|
|
/// combining based on machine trace metrics. Only combine a sequence of
|
|
/// instructions when this neither lengthens the critical path nor increases
|
|
/// resource pressure. When optimizing for codesize always combine when the new
|
|
/// sequence is shorter.
|
|
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
|
|
|
|
auto BlockIter = MBB->begin();
|
|
|
|
while (BlockIter != MBB->end()) {
|
|
auto &MI = *BlockIter++;
|
|
|
|
DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
|
|
SmallVector<MachineCombinerPattern::MC_PATTERN, 16> Pattern;
|
|
// The motivating example is:
|
|
//
|
|
// MUL Other MUL_op1 MUL_op2 Other
|
|
// \ / \ | /
|
|
// ADD/SUB => MADD/MSUB
|
|
// (=Root) (=NewRoot)
|
|
|
|
// The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
|
|
// usually beneficial for code size it unfortunately can hurt performance
|
|
// when the ADD is on the critical path, but the MUL is not. With the
|
|
// substitution the MUL becomes part of the critical path (in form of the
|
|
// MADD) and can lengthen it on architectures where the MADD latency is
|
|
// longer than the ADD latency.
|
|
//
|
|
// For each instruction we check if it can be the root of a combiner
|
|
// pattern. Then for each pattern the new code sequence in form of MI is
|
|
// generated and evaluated. When the efficiency criteria (don't lengthen
|
|
// critical path, don't use more resources) is met the new sequence gets
|
|
// hooked up into the basic block before the old sequence is removed.
|
|
//
|
|
// The algorithm does not try to evaluate all patterns and pick the best.
|
|
// This is only an artificial restriction though. In practice there is
|
|
// mostly one pattern and hasPattern() can order patterns based on an
|
|
// internal cost heuristic.
|
|
|
|
if (TII->hasPattern(MI, Pattern)) {
|
|
for (auto P : Pattern) {
|
|
SmallVector<MachineInstr *, 16> InsInstrs;
|
|
SmallVector<MachineInstr *, 16> DelInstrs;
|
|
DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
|
|
if (!MinInstr)
|
|
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
|
|
MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
|
|
Traces->verifyAnalysis();
|
|
TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
|
|
InstrIdxForVirtReg);
|
|
// Found pattern, but did not generate alternative sequence.
|
|
// This can happen e.g. when an immediate could not be materialized
|
|
// in a single instruction.
|
|
if (!InsInstrs.size())
|
|
continue;
|
|
// Substitute when we optimize for codesize and the new sequence has
|
|
// fewer instructions OR
|
|
// the new sequence neither lenghten the critical path nor increases
|
|
// resource pressure.
|
|
if (doSubstitute(InsInstrs.size(), DelInstrs.size()) ||
|
|
(preservesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
|
|
InstrIdxForVirtReg) &&
|
|
preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
|
|
for (auto *InstrPtr : InsInstrs)
|
|
MBB->insert((MachineBasicBlock::iterator) & MI,
|
|
(MachineInstr *)InstrPtr);
|
|
for (auto *InstrPtr : DelInstrs)
|
|
InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
|
|
|
|
Changed = true;
|
|
++NumInstCombined;
|
|
|
|
Traces->invalidate(MBB);
|
|
Traces->verifyAnalysis();
|
|
// Eagerly stop after the first pattern fired
|
|
break;
|
|
} else {
|
|
// Cleanup instructions of the alternative code sequence. There is no
|
|
// use for them.
|
|
for (auto *InstrPtr : InsInstrs) {
|
|
MachineFunction *MF = MBB->getParent();
|
|
MF->DeleteMachineInstr((MachineInstr *)InstrPtr);
|
|
}
|
|
}
|
|
InstrIdxForVirtReg.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
TII = STI.getInstrInfo();
|
|
TRI = STI.getRegisterInfo();
|
|
SchedModel = STI.getSchedModel();
|
|
TSchedModel.init(SchedModel, &STI, TII);
|
|
MRI = &MF.getRegInfo();
|
|
Traces = &getAnalysis<MachineTraceMetrics>();
|
|
MinInstr = 0;
|
|
|
|
OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
|
|
|
|
DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
|
|
if (!TII->useMachineCombiner()) {
|
|
DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
|
|
// Try to combine instructions.
|
|
for (auto &MBB : MF)
|
|
Changed |= combineInstructions(&MBB);
|
|
|
|
return Changed;
|
|
}
|