mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-24 19:44:49 +00:00
2f7322b348
This patch introduces a new pass that computes the safe point to insert the prologue and epilogue of the function. The interest is to find safe points that are cheaper than the entry and exits blocks. As an example and to avoid regressions to be introduce, this patch also implements the required bits to enable the shrink-wrapping pass for AArch64. ** Context ** Currently we insert the prologue and epilogue of the method/function in the entry and exits blocks. Although this is correct, we can do a better job when those are not immediately required and insert them at less frequently executed places. The job of the shrink-wrapping pass is to identify such places. ** Motivating example ** Let us consider the following function that perform a call only in one branch of a if: define i32 @f(i32 %a, i32 %b) { %tmp = alloca i32, align 4 %tmp2 = icmp slt i32 %a, %b br i1 %tmp2, label %true, label %false true: store i32 %a, i32* %tmp, align 4 %tmp4 = call i32 @doSomething(i32 0, i32* %tmp) br label %false false: %tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ] ret i32 %tmp.0 } On AArch64 this code generates (removing the cfi directives to ease readabilities): _f: ; @f ; BB#0: stp x29, x30, [sp, #-16]! mov x29, sp sub sp, sp, #16 ; =16 cmp w0, w1 b.ge LBB0_2 ; BB#1: ; %true stur w0, [x29, #-4] sub x1, x29, #4 ; =4 mov w0, wzr bl _doSomething LBB0_2: ; %false mov sp, x29 ldp x29, x30, [sp], #16 ret With shrink-wrapping we could generate: _f: ; @f ; BB#0: cmp w0, w1 b.ge LBB0_2 ; BB#1: ; %true stp x29, x30, [sp, #-16]! mov x29, sp sub sp, sp, #16 ; =16 stur w0, [x29, #-4] sub x1, x29, #4 ; =4 mov w0, wzr bl _doSomething add sp, x29, #16 ; =16 ldp x29, x30, [sp], #16 LBB0_2: ; %false ret Therefore, we would pay the overhead of setting up/destroying the frame only if we actually do the call. ** Proposed Solution ** This patch introduces a new machine pass that perform the shrink-wrapping analysis (See the comments at the beginning of ShrinkWrap.cpp for more details). It then stores the safe save and restore point into the MachineFrameInfo attached to the MachineFunction. This information is then used by the PrologEpilogInserter (PEI) to place the related code at the right place. This pass runs right before the PEI. Unlike the original paper of Chow from PLDI’88, this implementation of shrink-wrapping does not use expensive data-flow analysis and does not need hack to properly avoid frequently executed point. Instead, it relies on dominance and loop properties. The pass is off by default and each target can opt-in by setting the EnableShrinkWrap boolean to true in their derived class of TargetPassConfig. This setting can also be overwritten on the command line by using -enable-shrink-wrap. Before you try out the pass for your target, make sure you properly fix your emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not necessarily the entry block. ** Design Decisions ** 1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but for debugging and clarity I thought it was best to have its own file. 2. Right now, we only support one save point and one restore point. At some point we can expand this to several save point and restore point, the impacted component would then be: - The pass itself: New algorithm needed. - MachineFrameInfo: Hold a list or set of Save/Restore point instead of one pointer. - PEI: Should loop over the save point and restore point. Anyhow, at least for this first iteration, I do not believe this is interesting to support the complex cases. We should revisit that when we motivating examples. Differential Revision: http://reviews.llvm.org/D9210 <rdar://problem/3201744> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236507 91177308-0d34-0410-b5e6-96231b3b80d8
791 lines
30 KiB
C++
791 lines
30 KiB
C++
//===-- Passes.cpp - Target independent code generation passes ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines interfaces to access the target independent code
|
|
// generation passes provided by the LLVM backend.
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/SymbolRewriter.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden,
|
|
cl::desc("Disable Post Regalloc"));
|
|
static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
|
|
cl::desc("Disable branch folding"));
|
|
static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
|
|
cl::desc("Disable tail duplication"));
|
|
static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden,
|
|
cl::desc("Disable pre-register allocation tail duplication"));
|
|
static cl::opt<bool> DisableBlockPlacement("disable-block-placement",
|
|
cl::Hidden, cl::desc("Disable probability-driven block placement"));
|
|
static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats",
|
|
cl::Hidden, cl::desc("Collect probability-driven block placement stats"));
|
|
static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden,
|
|
cl::desc("Disable Stack Slot Coloring"));
|
|
static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden,
|
|
cl::desc("Disable Machine Dead Code Elimination"));
|
|
static cl::opt<bool> DisableEarlyIfConversion("disable-early-ifcvt", cl::Hidden,
|
|
cl::desc("Disable Early If-conversion"));
|
|
static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden,
|
|
cl::desc("Disable Machine LICM"));
|
|
static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden,
|
|
cl::desc("Disable Machine Common Subexpression Elimination"));
|
|
static cl::opt<cl::boolOrDefault>
|
|
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
|
|
cl::desc("enable the shrink-wrapping pass"));
|
|
static cl::opt<cl::boolOrDefault> OptimizeRegAlloc(
|
|
"optimize-regalloc", cl::Hidden,
|
|
cl::desc("Enable optimized register allocation compilation path."));
|
|
static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
|
|
cl::Hidden,
|
|
cl::desc("Disable Machine LICM"));
|
|
static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden,
|
|
cl::desc("Disable Machine Sinking"));
|
|
static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden,
|
|
cl::desc("Disable Loop Strength Reduction Pass"));
|
|
static cl::opt<bool> DisableConstantHoisting("disable-constant-hoisting",
|
|
cl::Hidden, cl::desc("Disable ConstantHoisting"));
|
|
static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
|
|
cl::desc("Disable Codegen Prepare"));
|
|
static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
|
|
cl::desc("Disable Copy Propagation pass"));
|
|
static cl::opt<bool> DisablePartialLibcallInlining("disable-partial-libcall-inlining",
|
|
cl::Hidden, cl::desc("Disable Partial Libcall Inlining"));
|
|
static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
|
|
cl::desc("Print LLVM IR produced by the loop-reduce pass"));
|
|
static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
|
|
cl::desc("Print LLVM IR input to isel pass"));
|
|
static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
|
|
cl::desc("Dump garbage collector data"));
|
|
static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
|
|
cl::desc("Verify generated machine code"),
|
|
cl::init(false),
|
|
cl::ZeroOrMore);
|
|
|
|
static cl::opt<std::string>
|
|
PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
|
|
cl::desc("Print machine instrs"),
|
|
cl::value_desc("pass-name"), cl::init("option-unspecified"));
|
|
|
|
// Temporary option to allow experimenting with MachineScheduler as a post-RA
|
|
// scheduler. Targets can "properly" enable this with
|
|
// substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); Ideally it
|
|
// wouldn't be part of the standard pass pipeline, and the target would just add
|
|
// a PostRA scheduling pass wherever it wants.
|
|
static cl::opt<bool> MISchedPostRA("misched-postra", cl::Hidden,
|
|
cl::desc("Run MachineScheduler post regalloc (independent of preRA sched)"));
|
|
|
|
// Experimental option to run live interval analysis early.
|
|
static cl::opt<bool> EarlyLiveIntervals("early-live-intervals", cl::Hidden,
|
|
cl::desc("Run live interval analysis earlier in the pipeline"));
|
|
|
|
static cl::opt<bool> UseCFLAA("use-cfl-aa-in-codegen",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the new, experimental CFL alias analysis in CodeGen"));
|
|
|
|
/// Allow standard passes to be disabled by command line options. This supports
|
|
/// simple binary flags that either suppress the pass or do nothing.
|
|
/// i.e. -disable-mypass=false has no effect.
|
|
/// These should be converted to boolOrDefault in order to use applyOverride.
|
|
static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID,
|
|
bool Override) {
|
|
if (Override)
|
|
return IdentifyingPassPtr();
|
|
return PassID;
|
|
}
|
|
|
|
/// Allow standard passes to be disabled by the command line, regardless of who
|
|
/// is adding the pass.
|
|
///
|
|
/// StandardID is the pass identified in the standard pass pipeline and provided
|
|
/// to addPass(). It may be a target-specific ID in the case that the target
|
|
/// directly adds its own pass, but in that case we harmlessly fall through.
|
|
///
|
|
/// TargetID is the pass that the target has configured to override StandardID.
|
|
///
|
|
/// StandardID may be a pseudo ID. In that case TargetID is the name of the real
|
|
/// pass to run. This allows multiple options to control a single pass depending
|
|
/// on where in the pipeline that pass is added.
|
|
static IdentifyingPassPtr overridePass(AnalysisID StandardID,
|
|
IdentifyingPassPtr TargetID) {
|
|
if (StandardID == &PostRASchedulerID)
|
|
return applyDisable(TargetID, DisablePostRA);
|
|
|
|
if (StandardID == &BranchFolderPassID)
|
|
return applyDisable(TargetID, DisableBranchFold);
|
|
|
|
if (StandardID == &TailDuplicateID)
|
|
return applyDisable(TargetID, DisableTailDuplicate);
|
|
|
|
if (StandardID == &TargetPassConfig::EarlyTailDuplicateID)
|
|
return applyDisable(TargetID, DisableEarlyTailDup);
|
|
|
|
if (StandardID == &MachineBlockPlacementID)
|
|
return applyDisable(TargetID, DisableBlockPlacement);
|
|
|
|
if (StandardID == &StackSlotColoringID)
|
|
return applyDisable(TargetID, DisableSSC);
|
|
|
|
if (StandardID == &DeadMachineInstructionElimID)
|
|
return applyDisable(TargetID, DisableMachineDCE);
|
|
|
|
if (StandardID == &EarlyIfConverterID)
|
|
return applyDisable(TargetID, DisableEarlyIfConversion);
|
|
|
|
if (StandardID == &MachineLICMID)
|
|
return applyDisable(TargetID, DisableMachineLICM);
|
|
|
|
if (StandardID == &MachineCSEID)
|
|
return applyDisable(TargetID, DisableMachineCSE);
|
|
|
|
if (StandardID == &TargetPassConfig::PostRAMachineLICMID)
|
|
return applyDisable(TargetID, DisablePostRAMachineLICM);
|
|
|
|
if (StandardID == &MachineSinkingID)
|
|
return applyDisable(TargetID, DisableMachineSink);
|
|
|
|
if (StandardID == &MachineCopyPropagationID)
|
|
return applyDisable(TargetID, DisableCopyProp);
|
|
|
|
return TargetID;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
/// TargetPassConfig
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
INITIALIZE_PASS(TargetPassConfig, "targetpassconfig",
|
|
"Target Pass Configuration", false, false)
|
|
char TargetPassConfig::ID = 0;
|
|
|
|
// Pseudo Pass IDs.
|
|
char TargetPassConfig::EarlyTailDuplicateID = 0;
|
|
char TargetPassConfig::PostRAMachineLICMID = 0;
|
|
|
|
namespace llvm {
|
|
class PassConfigImpl {
|
|
public:
|
|
// List of passes explicitly substituted by this target. Normally this is
|
|
// empty, but it is a convenient way to suppress or replace specific passes
|
|
// that are part of a standard pass pipeline without overridding the entire
|
|
// pipeline. This mechanism allows target options to inherit a standard pass's
|
|
// user interface. For example, a target may disable a standard pass by
|
|
// default by substituting a pass ID of zero, and the user may still enable
|
|
// that standard pass with an explicit command line option.
|
|
DenseMap<AnalysisID,IdentifyingPassPtr> TargetPasses;
|
|
|
|
/// Store the pairs of <AnalysisID, AnalysisID> of which the second pass
|
|
/// is inserted after each instance of the first one.
|
|
SmallVector<std::pair<AnalysisID, IdentifyingPassPtr>, 4> InsertedPasses;
|
|
};
|
|
} // namespace llvm
|
|
|
|
// Out of line virtual method.
|
|
TargetPassConfig::~TargetPassConfig() {
|
|
delete Impl;
|
|
}
|
|
|
|
// Out of line constructor provides default values for pass options and
|
|
// registers all common codegen passes.
|
|
TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
|
|
: ImmutablePass(ID), PM(&pm), StartAfter(nullptr), StopAfter(nullptr),
|
|
Started(true), Stopped(false), AddingMachinePasses(false), TM(tm),
|
|
Impl(nullptr), Initialized(false), DisableVerify(false),
|
|
EnableTailMerge(true), EnableShrinkWrap(false) {
|
|
|
|
Impl = new PassConfigImpl();
|
|
|
|
// Register all target independent codegen passes to activate their PassIDs,
|
|
// including this pass itself.
|
|
initializeCodeGen(*PassRegistry::getPassRegistry());
|
|
|
|
// Substitute Pseudo Pass IDs for real ones.
|
|
substitutePass(&EarlyTailDuplicateID, &TailDuplicateID);
|
|
substitutePass(&PostRAMachineLICMID, &MachineLICMID);
|
|
}
|
|
|
|
/// Insert InsertedPassID pass after TargetPassID.
|
|
void TargetPassConfig::insertPass(AnalysisID TargetPassID,
|
|
IdentifyingPassPtr InsertedPassID) {
|
|
assert(((!InsertedPassID.isInstance() &&
|
|
TargetPassID != InsertedPassID.getID()) ||
|
|
(InsertedPassID.isInstance() &&
|
|
TargetPassID != InsertedPassID.getInstance()->getPassID())) &&
|
|
"Insert a pass after itself!");
|
|
std::pair<AnalysisID, IdentifyingPassPtr> P(TargetPassID, InsertedPassID);
|
|
Impl->InsertedPasses.push_back(P);
|
|
}
|
|
|
|
/// createPassConfig - Create a pass configuration object to be used by
|
|
/// addPassToEmitX methods for generating a pipeline of CodeGen passes.
|
|
///
|
|
/// Targets may override this to extend TargetPassConfig.
|
|
TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new TargetPassConfig(this, PM);
|
|
}
|
|
|
|
TargetPassConfig::TargetPassConfig()
|
|
: ImmutablePass(ID), PM(nullptr) {
|
|
llvm_unreachable("TargetPassConfig should not be constructed on-the-fly");
|
|
}
|
|
|
|
// Helper to verify the analysis is really immutable.
|
|
void TargetPassConfig::setOpt(bool &Opt, bool Val) {
|
|
assert(!Initialized && "PassConfig is immutable");
|
|
Opt = Val;
|
|
}
|
|
|
|
void TargetPassConfig::substitutePass(AnalysisID StandardID,
|
|
IdentifyingPassPtr TargetID) {
|
|
Impl->TargetPasses[StandardID] = TargetID;
|
|
}
|
|
|
|
IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
|
|
DenseMap<AnalysisID, IdentifyingPassPtr>::const_iterator
|
|
I = Impl->TargetPasses.find(ID);
|
|
if (I == Impl->TargetPasses.end())
|
|
return ID;
|
|
return I->second;
|
|
}
|
|
|
|
/// Add a pass to the PassManager if that pass is supposed to be run. If the
|
|
/// Started/Stopped flags indicate either that the compilation should start at
|
|
/// a later pass or that it should stop after an earlier pass, then do not add
|
|
/// the pass. Finally, compare the current pass against the StartAfter
|
|
/// and StopAfter options and change the Started/Stopped flags accordingly.
|
|
void TargetPassConfig::addPass(Pass *P, bool verifyAfter, bool printAfter) {
|
|
assert(!Initialized && "PassConfig is immutable");
|
|
|
|
// Cache the Pass ID here in case the pass manager finds this pass is
|
|
// redundant with ones already scheduled / available, and deletes it.
|
|
// Fundamentally, once we add the pass to the manager, we no longer own it
|
|
// and shouldn't reference it.
|
|
AnalysisID PassID = P->getPassID();
|
|
|
|
if (Started && !Stopped) {
|
|
std::string Banner;
|
|
// Construct banner message before PM->add() as that may delete the pass.
|
|
if (AddingMachinePasses && (printAfter || verifyAfter))
|
|
Banner = std::string("After ") + std::string(P->getPassName());
|
|
PM->add(P);
|
|
if (AddingMachinePasses) {
|
|
if (printAfter)
|
|
addPrintPass(Banner);
|
|
if (verifyAfter)
|
|
addVerifyPass(Banner);
|
|
}
|
|
} else {
|
|
delete P;
|
|
}
|
|
if (StopAfter == PassID)
|
|
Stopped = true;
|
|
if (StartAfter == PassID)
|
|
Started = true;
|
|
if (Stopped && !Started)
|
|
report_fatal_error("Cannot stop compilation after pass that is not run");
|
|
}
|
|
|
|
/// Add a CodeGen pass at this point in the pipeline after checking for target
|
|
/// and command line overrides.
|
|
///
|
|
/// addPass cannot return a pointer to the pass instance because is internal the
|
|
/// PassManager and the instance we create here may already be freed.
|
|
AnalysisID TargetPassConfig::addPass(AnalysisID PassID, bool verifyAfter,
|
|
bool printAfter) {
|
|
IdentifyingPassPtr TargetID = getPassSubstitution(PassID);
|
|
IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID);
|
|
if (!FinalPtr.isValid())
|
|
return nullptr;
|
|
|
|
Pass *P;
|
|
if (FinalPtr.isInstance())
|
|
P = FinalPtr.getInstance();
|
|
else {
|
|
P = Pass::createPass(FinalPtr.getID());
|
|
if (!P)
|
|
llvm_unreachable("Pass ID not registered");
|
|
}
|
|
AnalysisID FinalID = P->getPassID();
|
|
addPass(P, verifyAfter, printAfter); // Ends the lifetime of P.
|
|
|
|
// Add the passes after the pass P if there is any.
|
|
for (SmallVectorImpl<std::pair<AnalysisID, IdentifyingPassPtr> >::iterator
|
|
I = Impl->InsertedPasses.begin(), E = Impl->InsertedPasses.end();
|
|
I != E; ++I) {
|
|
if ((*I).first == PassID) {
|
|
assert((*I).second.isValid() && "Illegal Pass ID!");
|
|
Pass *NP;
|
|
if ((*I).second.isInstance())
|
|
NP = (*I).second.getInstance();
|
|
else {
|
|
NP = Pass::createPass((*I).second.getID());
|
|
assert(NP && "Pass ID not registered");
|
|
}
|
|
addPass(NP, false, false);
|
|
}
|
|
}
|
|
return FinalID;
|
|
}
|
|
|
|
void TargetPassConfig::printAndVerify(const std::string &Banner) {
|
|
addPrintPass(Banner);
|
|
addVerifyPass(Banner);
|
|
}
|
|
|
|
void TargetPassConfig::addPrintPass(const std::string &Banner) {
|
|
if (TM->shouldPrintMachineCode())
|
|
PM->add(createMachineFunctionPrinterPass(dbgs(), Banner));
|
|
}
|
|
|
|
void TargetPassConfig::addVerifyPass(const std::string &Banner) {
|
|
if (VerifyMachineCode)
|
|
PM->add(createMachineVerifierPass(Banner));
|
|
}
|
|
|
|
/// Add common target configurable passes that perform LLVM IR to IR transforms
|
|
/// following machine independent optimization.
|
|
void TargetPassConfig::addIRPasses() {
|
|
// Basic AliasAnalysis support.
|
|
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
|
|
// BasicAliasAnalysis wins if they disagree. This is intended to help
|
|
// support "obvious" type-punning idioms.
|
|
if (UseCFLAA)
|
|
addPass(createCFLAliasAnalysisPass());
|
|
addPass(createTypeBasedAliasAnalysisPass());
|
|
addPass(createScopedNoAliasAAPass());
|
|
addPass(createBasicAliasAnalysisPass());
|
|
|
|
// Before running any passes, run the verifier to determine if the input
|
|
// coming from the front-end and/or optimizer is valid.
|
|
if (!DisableVerify)
|
|
addPass(createVerifierPass());
|
|
|
|
// Run loop strength reduction before anything else.
|
|
if (getOptLevel() != CodeGenOpt::None && !DisableLSR) {
|
|
addPass(createLoopStrengthReducePass());
|
|
if (PrintLSR)
|
|
addPass(createPrintFunctionPass(dbgs(), "\n\n*** Code after LSR ***\n"));
|
|
}
|
|
|
|
// Run GC lowering passes for builtin collectors
|
|
// TODO: add a pass insertion point here
|
|
addPass(createGCLoweringPass());
|
|
addPass(createShadowStackGCLoweringPass());
|
|
|
|
// Make sure that no unreachable blocks are instruction selected.
|
|
addPass(createUnreachableBlockEliminationPass());
|
|
|
|
// Prepare expensive constants for SelectionDAG.
|
|
if (getOptLevel() != CodeGenOpt::None && !DisableConstantHoisting)
|
|
addPass(createConstantHoistingPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining)
|
|
addPass(createPartiallyInlineLibCallsPass());
|
|
}
|
|
|
|
/// Turn exception handling constructs into something the code generators can
|
|
/// handle.
|
|
void TargetPassConfig::addPassesToHandleExceptions() {
|
|
switch (TM->getMCAsmInfo()->getExceptionHandlingType()) {
|
|
case ExceptionHandling::SjLj:
|
|
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
|
|
// Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
|
|
// catch info can get misplaced when a selector ends up more than one block
|
|
// removed from the parent invoke(s). This could happen when a landing
|
|
// pad is shared by multiple invokes and is also a target of a normal
|
|
// edge from elsewhere.
|
|
addPass(createSjLjEHPreparePass(TM));
|
|
// FALLTHROUGH
|
|
case ExceptionHandling::DwarfCFI:
|
|
case ExceptionHandling::ARM:
|
|
addPass(createDwarfEHPass(TM));
|
|
break;
|
|
case ExceptionHandling::WinEH:
|
|
// We support using both GCC-style and MSVC-style exceptions on Windows, so
|
|
// add both preparation passes. Each pass will only actually run if it
|
|
// recognizes the personality function.
|
|
addPass(createWinEHPass(TM));
|
|
addPass(createDwarfEHPass(TM));
|
|
break;
|
|
case ExceptionHandling::None:
|
|
addPass(createLowerInvokePass());
|
|
|
|
// The lower invoke pass may create unreachable code. Remove it.
|
|
addPass(createUnreachableBlockEliminationPass());
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Add pass to prepare the LLVM IR for code generation. This should be done
|
|
/// before exception handling preparation passes.
|
|
void TargetPassConfig::addCodeGenPrepare() {
|
|
if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
|
|
addPass(createCodeGenPreparePass(TM));
|
|
addPass(createRewriteSymbolsPass());
|
|
}
|
|
|
|
/// Add common passes that perform LLVM IR to IR transforms in preparation for
|
|
/// instruction selection.
|
|
void TargetPassConfig::addISelPrepare() {
|
|
addPreISel();
|
|
|
|
addPass(createStackProtectorPass(TM));
|
|
|
|
if (PrintISelInput)
|
|
addPass(createPrintFunctionPass(
|
|
dbgs(), "\n\n*** Final LLVM Code input to ISel ***\n"));
|
|
|
|
// All passes which modify the LLVM IR are now complete; run the verifier
|
|
// to ensure that the IR is valid.
|
|
if (!DisableVerify)
|
|
addPass(createVerifierPass());
|
|
}
|
|
|
|
/// Add the complete set of target-independent postISel code generator passes.
|
|
///
|
|
/// This can be read as the standard order of major LLVM CodeGen stages. Stages
|
|
/// with nontrivial configuration or multiple passes are broken out below in
|
|
/// add%Stage routines.
|
|
///
|
|
/// Any TargetPassConfig::addXX routine may be overriden by the Target. The
|
|
/// addPre/Post methods with empty header implementations allow injecting
|
|
/// target-specific fixups just before or after major stages. Additionally,
|
|
/// targets have the flexibility to change pass order within a stage by
|
|
/// overriding default implementation of add%Stage routines below. Each
|
|
/// technique has maintainability tradeoffs because alternate pass orders are
|
|
/// not well supported. addPre/Post works better if the target pass is easily
|
|
/// tied to a common pass. But if it has subtle dependencies on multiple passes,
|
|
/// the target should override the stage instead.
|
|
///
|
|
/// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
|
|
/// before/after any target-independent pass. But it's currently overkill.
|
|
void TargetPassConfig::addMachinePasses() {
|
|
AddingMachinePasses = true;
|
|
|
|
// Insert a machine instr printer pass after the specified pass.
|
|
// If -print-machineinstrs specified, print machineinstrs after all passes.
|
|
if (StringRef(PrintMachineInstrs.getValue()).equals(""))
|
|
TM->Options.PrintMachineCode = true;
|
|
else if (!StringRef(PrintMachineInstrs.getValue())
|
|
.equals("option-unspecified")) {
|
|
const PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue());
|
|
const PassInfo *IPI = PR->getPassInfo(StringRef("machineinstr-printer"));
|
|
assert (TPI && IPI && "Pass ID not registered!");
|
|
const char *TID = (const char *)(TPI->getTypeInfo());
|
|
const char *IID = (const char *)(IPI->getTypeInfo());
|
|
insertPass(TID, IID);
|
|
}
|
|
|
|
// Print the instruction selected machine code...
|
|
printAndVerify("After Instruction Selection");
|
|
|
|
// Expand pseudo-instructions emitted by ISel.
|
|
addPass(&ExpandISelPseudosID);
|
|
|
|
// Add passes that optimize machine instructions in SSA form.
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addMachineSSAOptimization();
|
|
} else {
|
|
// If the target requests it, assign local variables to stack slots relative
|
|
// to one another and simplify frame index references where possible.
|
|
addPass(&LocalStackSlotAllocationID, false);
|
|
}
|
|
|
|
// Run pre-ra passes.
|
|
addPreRegAlloc();
|
|
|
|
// Run register allocation and passes that are tightly coupled with it,
|
|
// including phi elimination and scheduling.
|
|
if (getOptimizeRegAlloc())
|
|
addOptimizedRegAlloc(createRegAllocPass(true));
|
|
else
|
|
addFastRegAlloc(createRegAllocPass(false));
|
|
|
|
// Run post-ra passes.
|
|
addPostRegAlloc();
|
|
|
|
// Insert prolog/epilog code. Eliminate abstract frame index references...
|
|
if (getEnableShrinkWrap())
|
|
addPass(&ShrinkWrapID);
|
|
addPass(&PrologEpilogCodeInserterID);
|
|
|
|
/// Add passes that optimize machine instructions after register allocation.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addMachineLateOptimization();
|
|
|
|
// Expand pseudo instructions before second scheduling pass.
|
|
addPass(&ExpandPostRAPseudosID);
|
|
|
|
// Run pre-sched2 passes.
|
|
addPreSched2();
|
|
|
|
// Second pass scheduler.
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
if (MISchedPostRA)
|
|
addPass(&PostMachineSchedulerID);
|
|
else
|
|
addPass(&PostRASchedulerID);
|
|
}
|
|
|
|
// GC
|
|
if (addGCPasses()) {
|
|
if (PrintGCInfo)
|
|
addPass(createGCInfoPrinter(dbgs()), false, false);
|
|
}
|
|
|
|
// Basic block placement.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addBlockPlacement();
|
|
|
|
addPreEmitPass();
|
|
|
|
addPass(&StackMapLivenessID, false);
|
|
|
|
AddingMachinePasses = false;
|
|
}
|
|
|
|
/// Add passes that optimize machine instructions in SSA form.
|
|
void TargetPassConfig::addMachineSSAOptimization() {
|
|
// Pre-ra tail duplication.
|
|
addPass(&EarlyTailDuplicateID);
|
|
|
|
// Optimize PHIs before DCE: removing dead PHI cycles may make more
|
|
// instructions dead.
|
|
addPass(&OptimizePHIsID, false);
|
|
|
|
// This pass merges large allocas. StackSlotColoring is a different pass
|
|
// which merges spill slots.
|
|
addPass(&StackColoringID, false);
|
|
|
|
// If the target requests it, assign local variables to stack slots relative
|
|
// to one another and simplify frame index references where possible.
|
|
addPass(&LocalStackSlotAllocationID, false);
|
|
|
|
// With optimization, dead code should already be eliminated. However
|
|
// there is one known exception: lowered code for arguments that are only
|
|
// used by tail calls, where the tail calls reuse the incoming stack
|
|
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
|
|
addPass(&DeadMachineInstructionElimID);
|
|
|
|
// Allow targets to insert passes that improve instruction level parallelism,
|
|
// like if-conversion. Such passes will typically need dominator trees and
|
|
// loop info, just like LICM and CSE below.
|
|
addILPOpts();
|
|
|
|
addPass(&MachineLICMID, false);
|
|
addPass(&MachineCSEID, false);
|
|
addPass(&MachineSinkingID);
|
|
|
|
addPass(&PeepholeOptimizerID, false);
|
|
// Clean-up the dead code that may have been generated by peephole
|
|
// rewriting.
|
|
addPass(&DeadMachineInstructionElimID);
|
|
}
|
|
|
|
bool TargetPassConfig::getEnableShrinkWrap() const {
|
|
switch (EnableShrinkWrapOpt) {
|
|
case cl::BOU_UNSET:
|
|
return EnableShrinkWrap && getOptLevel() != CodeGenOpt::None;
|
|
// If EnableShrinkWrap is set, it takes precedence on whatever the
|
|
// target sets. The rational is that we assume we want to test
|
|
// something related to shrink-wrapping.
|
|
case cl::BOU_TRUE:
|
|
return true;
|
|
case cl::BOU_FALSE:
|
|
return false;
|
|
}
|
|
llvm_unreachable("Invalid shrink-wrapping state");
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
/// Register Allocation Pass Configuration
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
bool TargetPassConfig::getOptimizeRegAlloc() const {
|
|
switch (OptimizeRegAlloc) {
|
|
case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None;
|
|
case cl::BOU_TRUE: return true;
|
|
case cl::BOU_FALSE: return false;
|
|
}
|
|
llvm_unreachable("Invalid optimize-regalloc state");
|
|
}
|
|
|
|
/// RegisterRegAlloc's global Registry tracks allocator registration.
|
|
MachinePassRegistry RegisterRegAlloc::Registry;
|
|
|
|
/// A dummy default pass factory indicates whether the register allocator is
|
|
/// overridden on the command line.
|
|
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
|
|
static RegisterRegAlloc
|
|
defaultRegAlloc("default",
|
|
"pick register allocator based on -O option",
|
|
useDefaultRegisterAllocator);
|
|
|
|
/// -regalloc=... command line option.
|
|
static cl::opt<RegisterRegAlloc::FunctionPassCtor, false,
|
|
RegisterPassParser<RegisterRegAlloc> >
|
|
RegAlloc("regalloc",
|
|
cl::init(&useDefaultRegisterAllocator),
|
|
cl::desc("Register allocator to use"));
|
|
|
|
|
|
/// Instantiate the default register allocator pass for this target for either
|
|
/// the optimized or unoptimized allocation path. This will be added to the pass
|
|
/// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
|
|
/// in the optimized case.
|
|
///
|
|
/// A target that uses the standard regalloc pass order for fast or optimized
|
|
/// allocation may still override this for per-target regalloc
|
|
/// selection. But -regalloc=... always takes precedence.
|
|
FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) {
|
|
if (Optimized)
|
|
return createGreedyRegisterAllocator();
|
|
else
|
|
return createFastRegisterAllocator();
|
|
}
|
|
|
|
/// Find and instantiate the register allocation pass requested by this target
|
|
/// at the current optimization level. Different register allocators are
|
|
/// defined as separate passes because they may require different analysis.
|
|
///
|
|
/// This helper ensures that the regalloc= option is always available,
|
|
/// even for targets that override the default allocator.
|
|
///
|
|
/// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs,
|
|
/// this can be folded into addPass.
|
|
FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
|
|
RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
|
|
|
|
// Initialize the global default.
|
|
if (!Ctor) {
|
|
Ctor = RegAlloc;
|
|
RegisterRegAlloc::setDefault(RegAlloc);
|
|
}
|
|
if (Ctor != useDefaultRegisterAllocator)
|
|
return Ctor();
|
|
|
|
// With no -regalloc= override, ask the target for a regalloc pass.
|
|
return createTargetRegisterAllocator(Optimized);
|
|
}
|
|
|
|
/// Return true if the default global register allocator is in use and
|
|
/// has not be overriden on the command line with '-regalloc=...'
|
|
bool TargetPassConfig::usingDefaultRegAlloc() const {
|
|
return RegAlloc.getNumOccurrences() == 0;
|
|
}
|
|
|
|
/// Add the minimum set of target-independent passes that are required for
|
|
/// register allocation. No coalescing or scheduling.
|
|
void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
|
|
addPass(&PHIEliminationID, false);
|
|
addPass(&TwoAddressInstructionPassID, false);
|
|
|
|
addPass(RegAllocPass);
|
|
}
|
|
|
|
/// Add standard target-independent passes that are tightly coupled with
|
|
/// optimized register allocation, including coalescing, machine instruction
|
|
/// scheduling, and register allocation itself.
|
|
void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
|
|
addPass(&ProcessImplicitDefsID, false);
|
|
|
|
// LiveVariables currently requires pure SSA form.
|
|
//
|
|
// FIXME: Once TwoAddressInstruction pass no longer uses kill flags,
|
|
// LiveVariables can be removed completely, and LiveIntervals can be directly
|
|
// computed. (We still either need to regenerate kill flags after regalloc, or
|
|
// preferably fix the scavenger to not depend on them).
|
|
addPass(&LiveVariablesID, false);
|
|
|
|
// Edge splitting is smarter with machine loop info.
|
|
addPass(&MachineLoopInfoID, false);
|
|
addPass(&PHIEliminationID, false);
|
|
|
|
// Eventually, we want to run LiveIntervals before PHI elimination.
|
|
if (EarlyLiveIntervals)
|
|
addPass(&LiveIntervalsID, false);
|
|
|
|
addPass(&TwoAddressInstructionPassID, false);
|
|
addPass(&RegisterCoalescerID);
|
|
|
|
// PreRA instruction scheduling.
|
|
addPass(&MachineSchedulerID);
|
|
|
|
// Add the selected register allocation pass.
|
|
addPass(RegAllocPass);
|
|
|
|
// Allow targets to change the register assignments before rewriting.
|
|
addPreRewrite();
|
|
|
|
// Finally rewrite virtual registers.
|
|
addPass(&VirtRegRewriterID);
|
|
|
|
// Perform stack slot coloring and post-ra machine LICM.
|
|
//
|
|
// FIXME: Re-enable coloring with register when it's capable of adding
|
|
// kill markers.
|
|
addPass(&StackSlotColoringID);
|
|
|
|
// Run post-ra machine LICM to hoist reloads / remats.
|
|
//
|
|
// FIXME: can this move into MachineLateOptimization?
|
|
addPass(&PostRAMachineLICMID);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
/// Post RegAlloc Pass Configuration
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
/// Add passes that optimize machine instructions after register allocation.
|
|
void TargetPassConfig::addMachineLateOptimization() {
|
|
// Branch folding must be run after regalloc and prolog/epilog insertion.
|
|
addPass(&BranchFolderPassID);
|
|
|
|
// Tail duplication.
|
|
// Note that duplicating tail just increases code size and degrades
|
|
// performance for targets that require Structured Control Flow.
|
|
// In addition it can also make CFG irreducible. Thus we disable it.
|
|
if (!TM->requiresStructuredCFG())
|
|
addPass(&TailDuplicateID);
|
|
|
|
// Copy propagation.
|
|
addPass(&MachineCopyPropagationID);
|
|
}
|
|
|
|
/// Add standard GC passes.
|
|
bool TargetPassConfig::addGCPasses() {
|
|
addPass(&GCMachineCodeAnalysisID, false);
|
|
return true;
|
|
}
|
|
|
|
/// Add standard basic block placement passes.
|
|
void TargetPassConfig::addBlockPlacement() {
|
|
if (addPass(&MachineBlockPlacementID, false)) {
|
|
// Run a separate pass to collect block placement statistics.
|
|
if (EnableBlockPlacementStats)
|
|
addPass(&MachineBlockPlacementStatsID);
|
|
}
|
|
}
|