mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-05 02:07:16 +00:00
50a6102397
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166719 91177308-0d34-0410-b5e6-96231b3b80d8
3512 lines
127 KiB
C++
3512 lines
127 KiB
C++
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CodeGenDAGPatterns class, which is used to read and
|
|
// represent the patterns present in a .td file for instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EEVT::TypeSet Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline bool isInteger(MVT::SimpleValueType VT) {
|
|
return EVT(VT).isInteger();
|
|
}
|
|
static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
|
|
return EVT(VT).isFloatingPoint();
|
|
}
|
|
static inline bool isVector(MVT::SimpleValueType VT) {
|
|
return EVT(VT).isVector();
|
|
}
|
|
static inline bool isScalar(MVT::SimpleValueType VT) {
|
|
return !EVT(VT).isVector();
|
|
}
|
|
|
|
EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
|
|
if (VT == MVT::iAny)
|
|
EnforceInteger(TP);
|
|
else if (VT == MVT::fAny)
|
|
EnforceFloatingPoint(TP);
|
|
else if (VT == MVT::vAny)
|
|
EnforceVector(TP);
|
|
else {
|
|
assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
|
|
VT == MVT::iPTRAny) && "Not a concrete type!");
|
|
TypeVec.push_back(VT);
|
|
}
|
|
}
|
|
|
|
|
|
EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
|
|
assert(!VTList.empty() && "empty list?");
|
|
TypeVec.append(VTList.begin(), VTList.end());
|
|
|
|
if (!VTList.empty())
|
|
assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
|
|
VTList[0] != MVT::fAny);
|
|
|
|
// Verify no duplicates.
|
|
array_pod_sort(TypeVec.begin(), TypeVec.end());
|
|
assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
|
|
}
|
|
|
|
/// FillWithPossibleTypes - Set to all legal types and return true, only valid
|
|
/// on completely unknown type sets.
|
|
bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
|
|
bool (*Pred)(MVT::SimpleValueType),
|
|
const char *PredicateName) {
|
|
assert(isCompletelyUnknown());
|
|
const std::vector<MVT::SimpleValueType> &LegalTypes =
|
|
TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
|
|
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
|
|
if (Pred == 0 || Pred(LegalTypes[i]))
|
|
TypeVec.push_back(LegalTypes[i]);
|
|
|
|
// If we have nothing that matches the predicate, bail out.
|
|
if (TypeVec.empty()) {
|
|
TP.error("Type inference contradiction found, no " +
|
|
std::string(PredicateName) + " types found");
|
|
return false;
|
|
}
|
|
// No need to sort with one element.
|
|
if (TypeVec.size() == 1) return true;
|
|
|
|
// Remove duplicates.
|
|
array_pod_sort(TypeVec.begin(), TypeVec.end());
|
|
TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
|
|
/// integer value type.
|
|
bool EEVT::TypeSet::hasIntegerTypes() const {
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
|
|
if (isInteger(TypeVec[i]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
|
|
/// a floating point value type.
|
|
bool EEVT::TypeSet::hasFloatingPointTypes() const {
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
|
|
if (isFloatingPoint(TypeVec[i]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
|
|
/// value type.
|
|
bool EEVT::TypeSet::hasVectorTypes() const {
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
|
|
if (isVector(TypeVec[i]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
std::string EEVT::TypeSet::getName() const {
|
|
if (TypeVec.empty()) return "<empty>";
|
|
|
|
std::string Result;
|
|
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
|
|
std::string VTName = llvm::getEnumName(TypeVec[i]);
|
|
// Strip off MVT:: prefix if present.
|
|
if (VTName.substr(0,5) == "MVT::")
|
|
VTName = VTName.substr(5);
|
|
if (i) Result += ':';
|
|
Result += VTName;
|
|
}
|
|
|
|
if (TypeVec.size() == 1)
|
|
return Result;
|
|
return "{" + Result + "}";
|
|
}
|
|
|
|
/// MergeInTypeInfo - This merges in type information from the specified
|
|
/// argument. If 'this' changes, it returns true. If the two types are
|
|
/// contradictory (e.g. merge f32 into i32) then this flags an error.
|
|
bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
|
|
if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
|
|
return false;
|
|
|
|
if (isCompletelyUnknown()) {
|
|
*this = InVT;
|
|
return true;
|
|
}
|
|
|
|
assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
|
|
|
|
// Handle the abstract cases, seeing if we can resolve them better.
|
|
switch (TypeVec[0]) {
|
|
default: break;
|
|
case MVT::iPTR:
|
|
case MVT::iPTRAny:
|
|
if (InVT.hasIntegerTypes()) {
|
|
EEVT::TypeSet InCopy(InVT);
|
|
InCopy.EnforceInteger(TP);
|
|
InCopy.EnforceScalar(TP);
|
|
|
|
if (InCopy.isConcrete()) {
|
|
// If the RHS has one integer type, upgrade iPTR to i32.
|
|
TypeVec[0] = InVT.TypeVec[0];
|
|
return true;
|
|
}
|
|
|
|
// If the input has multiple scalar integers, this doesn't add any info.
|
|
if (!InCopy.isCompletelyUnknown())
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If the input constraint is iAny/iPTR and this is an integer type list,
|
|
// remove non-integer types from the list.
|
|
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
|
|
hasIntegerTypes()) {
|
|
bool MadeChange = EnforceInteger(TP);
|
|
|
|
// If we're merging in iPTR/iPTRAny and the node currently has a list of
|
|
// multiple different integer types, replace them with a single iPTR.
|
|
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
|
|
TypeVec.size() != 1) {
|
|
TypeVec.resize(1);
|
|
TypeVec[0] = InVT.TypeVec[0];
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// If this is a type list and the RHS is a typelist as well, eliminate entries
|
|
// from this list that aren't in the other one.
|
|
bool MadeChange = false;
|
|
TypeSet InputSet(*this);
|
|
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i) {
|
|
bool InInVT = false;
|
|
for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
|
|
if (TypeVec[i] == InVT.TypeVec[j]) {
|
|
InInVT = true;
|
|
break;
|
|
}
|
|
|
|
if (InInVT) continue;
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
MadeChange = true;
|
|
}
|
|
|
|
// If we removed all of our types, we have a type contradiction.
|
|
if (!TypeVec.empty())
|
|
return MadeChange;
|
|
|
|
// FIXME: Really want an SMLoc here!
|
|
TP.error("Type inference contradiction found, merging '" +
|
|
InVT.getName() + "' into '" + InputSet.getName() + "'");
|
|
return false;
|
|
}
|
|
|
|
/// EnforceInteger - Remove all non-integer types from this set.
|
|
bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
// If we know nothing, then get the full set.
|
|
if (TypeVec.empty())
|
|
return FillWithPossibleTypes(TP, isInteger, "integer");
|
|
if (!hasFloatingPointTypes())
|
|
return false;
|
|
|
|
TypeSet InputSet(*this);
|
|
|
|
// Filter out all the fp types.
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i)
|
|
if (!isInteger(TypeVec[i]))
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
|
|
if (TypeVec.empty()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
InputSet.getName() + "' needs to be integer");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// EnforceFloatingPoint - Remove all integer types from this set.
|
|
bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
// If we know nothing, then get the full set.
|
|
if (TypeVec.empty())
|
|
return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
|
|
|
|
if (!hasIntegerTypes())
|
|
return false;
|
|
|
|
TypeSet InputSet(*this);
|
|
|
|
// Filter out all the fp types.
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i)
|
|
if (!isFloatingPoint(TypeVec[i]))
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
|
|
if (TypeVec.empty()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
InputSet.getName() + "' needs to be floating point");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// EnforceScalar - Remove all vector types from this.
|
|
bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
// If we know nothing, then get the full set.
|
|
if (TypeVec.empty())
|
|
return FillWithPossibleTypes(TP, isScalar, "scalar");
|
|
|
|
if (!hasVectorTypes())
|
|
return false;
|
|
|
|
TypeSet InputSet(*this);
|
|
|
|
// Filter out all the vector types.
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i)
|
|
if (!isScalar(TypeVec[i]))
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
|
|
if (TypeVec.empty()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
InputSet.getName() + "' needs to be scalar");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// EnforceVector - Remove all vector types from this.
|
|
bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
// If we know nothing, then get the full set.
|
|
if (TypeVec.empty())
|
|
return FillWithPossibleTypes(TP, isVector, "vector");
|
|
|
|
TypeSet InputSet(*this);
|
|
bool MadeChange = false;
|
|
|
|
// Filter out all the scalar types.
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i)
|
|
if (!isVector(TypeVec[i])) {
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (TypeVec.empty()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
InputSet.getName() + "' needs to be a vector");
|
|
return false;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
|
|
/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
|
|
/// this an other based on this information.
|
|
bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
// Both operands must be integer or FP, but we don't care which.
|
|
bool MadeChange = false;
|
|
|
|
if (isCompletelyUnknown())
|
|
MadeChange = FillWithPossibleTypes(TP);
|
|
|
|
if (Other.isCompletelyUnknown())
|
|
MadeChange = Other.FillWithPossibleTypes(TP);
|
|
|
|
// If one side is known to be integer or known to be FP but the other side has
|
|
// no information, get at least the type integrality info in there.
|
|
if (!hasFloatingPointTypes())
|
|
MadeChange |= Other.EnforceInteger(TP);
|
|
else if (!hasIntegerTypes())
|
|
MadeChange |= Other.EnforceFloatingPoint(TP);
|
|
if (!Other.hasFloatingPointTypes())
|
|
MadeChange |= EnforceInteger(TP);
|
|
else if (!Other.hasIntegerTypes())
|
|
MadeChange |= EnforceFloatingPoint(TP);
|
|
|
|
assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
|
|
"Should have a type list now");
|
|
|
|
// If one contains vectors but the other doesn't pull vectors out.
|
|
if (!hasVectorTypes())
|
|
MadeChange |= Other.EnforceScalar(TP);
|
|
if (!hasVectorTypes())
|
|
MadeChange |= EnforceScalar(TP);
|
|
|
|
if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
|
|
// If we are down to concrete types, this code does not currently
|
|
// handle nodes which have multiple types, where some types are
|
|
// integer, and some are fp. Assert that this is not the case.
|
|
assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
|
|
!(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
|
|
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
|
|
|
|
// Otherwise, if these are both vector types, either this vector
|
|
// must have a larger bitsize than the other, or this element type
|
|
// must be larger than the other.
|
|
EVT Type(TypeVec[0]);
|
|
EVT OtherType(Other.TypeVec[0]);
|
|
|
|
if (hasVectorTypes() && Other.hasVectorTypes()) {
|
|
if (Type.getSizeInBits() >= OtherType.getSizeInBits())
|
|
if (Type.getVectorElementType().getSizeInBits()
|
|
>= OtherType.getVectorElementType().getSizeInBits()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
getName() + "' element type not smaller than '" +
|
|
Other.getName() +"'!");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
// For scalar types, the bitsize of this type must be larger
|
|
// than that of the other.
|
|
if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
getName() + "' is not smaller than '" +
|
|
Other.getName() +"'!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Handle int and fp as disjoint sets. This won't work for patterns
|
|
// that have mixed fp/int types but those are likely rare and would
|
|
// not have been accepted by this code previously.
|
|
|
|
// Okay, find the smallest type from the current set and remove it from the
|
|
// largest set.
|
|
MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
|
|
if (isInteger(TypeVec[i])) {
|
|
SmallestInt = TypeVec[i];
|
|
break;
|
|
}
|
|
for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
|
|
if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
|
|
SmallestInt = TypeVec[i];
|
|
|
|
MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
|
|
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
|
|
if (isFloatingPoint(TypeVec[i])) {
|
|
SmallestFP = TypeVec[i];
|
|
break;
|
|
}
|
|
for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
|
|
if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
|
|
SmallestFP = TypeVec[i];
|
|
|
|
int OtherIntSize = 0;
|
|
int OtherFPSize = 0;
|
|
for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
|
|
Other.TypeVec.begin();
|
|
TVI != Other.TypeVec.end();
|
|
/* NULL */) {
|
|
if (isInteger(*TVI)) {
|
|
++OtherIntSize;
|
|
if (*TVI == SmallestInt) {
|
|
TVI = Other.TypeVec.erase(TVI);
|
|
--OtherIntSize;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
else if (isFloatingPoint(*TVI)) {
|
|
++OtherFPSize;
|
|
if (*TVI == SmallestFP) {
|
|
TVI = Other.TypeVec.erase(TVI);
|
|
--OtherFPSize;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
++TVI;
|
|
}
|
|
|
|
// If this is the only type in the large set, the constraint can never be
|
|
// satisfied.
|
|
if ((Other.hasIntegerTypes() && OtherIntSize == 0)
|
|
|| (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
Other.getName() + "' has nothing larger than '" + getName() +"'!");
|
|
return false;
|
|
}
|
|
|
|
// Okay, find the largest type in the Other set and remove it from the
|
|
// current set.
|
|
MVT::SimpleValueType LargestInt = MVT::Other;
|
|
for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
|
|
if (isInteger(Other.TypeVec[i])) {
|
|
LargestInt = Other.TypeVec[i];
|
|
break;
|
|
}
|
|
for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
|
|
if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
|
|
LargestInt = Other.TypeVec[i];
|
|
|
|
MVT::SimpleValueType LargestFP = MVT::Other;
|
|
for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
|
|
if (isFloatingPoint(Other.TypeVec[i])) {
|
|
LargestFP = Other.TypeVec[i];
|
|
break;
|
|
}
|
|
for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
|
|
if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
|
|
LargestFP = Other.TypeVec[i];
|
|
|
|
int IntSize = 0;
|
|
int FPSize = 0;
|
|
for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
|
|
TypeVec.begin();
|
|
TVI != TypeVec.end();
|
|
/* NULL */) {
|
|
if (isInteger(*TVI)) {
|
|
++IntSize;
|
|
if (*TVI == LargestInt) {
|
|
TVI = TypeVec.erase(TVI);
|
|
--IntSize;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
else if (isFloatingPoint(*TVI)) {
|
|
++FPSize;
|
|
if (*TVI == LargestFP) {
|
|
TVI = TypeVec.erase(TVI);
|
|
--FPSize;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
++TVI;
|
|
}
|
|
|
|
// If this is the only type in the small set, the constraint can never be
|
|
// satisfied.
|
|
if ((hasIntegerTypes() && IntSize == 0)
|
|
|| (hasFloatingPointTypes() && FPSize == 0)) {
|
|
TP.error("Type inference contradiction found, '" +
|
|
getName() + "' has nothing smaller than '" + Other.getName()+"'!");
|
|
return false;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
|
|
/// whose element is specified by VTOperand.
|
|
bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
|
|
TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
// "This" must be a vector and "VTOperand" must be a scalar.
|
|
bool MadeChange = false;
|
|
MadeChange |= EnforceVector(TP);
|
|
MadeChange |= VTOperand.EnforceScalar(TP);
|
|
|
|
// If we know the vector type, it forces the scalar to agree.
|
|
if (isConcrete()) {
|
|
EVT IVT = getConcrete();
|
|
IVT = IVT.getVectorElementType();
|
|
return MadeChange |
|
|
VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
|
|
}
|
|
|
|
// If the scalar type is known, filter out vector types whose element types
|
|
// disagree.
|
|
if (!VTOperand.isConcrete())
|
|
return MadeChange;
|
|
|
|
MVT::SimpleValueType VT = VTOperand.getConcrete();
|
|
|
|
TypeSet InputSet(*this);
|
|
|
|
// Filter out all the types which don't have the right element type.
|
|
for (unsigned i = 0; i != TypeVec.size(); ++i) {
|
|
assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
|
|
if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
|
|
TypeVec.erase(TypeVec.begin()+i--);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
|
|
if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
|
|
TP.error("Type inference contradiction found, forcing '" +
|
|
InputSet.getName() + "' to have a vector element");
|
|
return false;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
|
|
/// vector type specified by VTOperand.
|
|
bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
|
|
TreePattern &TP) {
|
|
// "This" must be a vector and "VTOperand" must be a vector.
|
|
bool MadeChange = false;
|
|
MadeChange |= EnforceVector(TP);
|
|
MadeChange |= VTOperand.EnforceVector(TP);
|
|
|
|
// "This" must be larger than "VTOperand."
|
|
MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
|
|
|
|
// If we know the vector type, it forces the scalar types to agree.
|
|
if (isConcrete()) {
|
|
EVT IVT = getConcrete();
|
|
IVT = IVT.getVectorElementType();
|
|
|
|
EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
|
|
MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
|
|
} else if (VTOperand.isConcrete()) {
|
|
EVT IVT = VTOperand.getConcrete();
|
|
IVT = IVT.getVectorElementType();
|
|
|
|
EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
|
|
MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helpers for working with extended types.
|
|
|
|
/// Dependent variable map for CodeGenDAGPattern variant generation
|
|
typedef std::map<std::string, int> DepVarMap;
|
|
|
|
/// Const iterator shorthand for DepVarMap
|
|
typedef DepVarMap::const_iterator DepVarMap_citer;
|
|
|
|
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
|
|
if (N->isLeaf()) {
|
|
if (isa<DefInit>(N->getLeafValue()))
|
|
DepMap[N->getName()]++;
|
|
} else {
|
|
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
FindDepVarsOf(N->getChild(i), DepMap);
|
|
}
|
|
}
|
|
|
|
/// Find dependent variables within child patterns
|
|
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
|
|
DepVarMap depcounts;
|
|
FindDepVarsOf(N, depcounts);
|
|
for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
|
|
if (i->second > 1) // std::pair<std::string, int>
|
|
DepVars.insert(i->first);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Dump the dependent variable set:
|
|
static void DumpDepVars(MultipleUseVarSet &DepVars) {
|
|
if (DepVars.empty()) {
|
|
DEBUG(errs() << "<empty set>");
|
|
} else {
|
|
DEBUG(errs() << "[ ");
|
|
for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
|
|
e = DepVars.end(); i != e; ++i) {
|
|
DEBUG(errs() << (*i) << " ");
|
|
}
|
|
DEBUG(errs() << "]");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePredicateFn Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
|
|
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
|
|
assert((getPredCode().empty() || getImmCode().empty()) &&
|
|
".td file corrupt: can't have a node predicate *and* an imm predicate");
|
|
}
|
|
|
|
std::string TreePredicateFn::getPredCode() const {
|
|
return PatFragRec->getRecord()->getValueAsString("PredicateCode");
|
|
}
|
|
|
|
std::string TreePredicateFn::getImmCode() const {
|
|
return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
|
|
}
|
|
|
|
|
|
/// isAlwaysTrue - Return true if this is a noop predicate.
|
|
bool TreePredicateFn::isAlwaysTrue() const {
|
|
return getPredCode().empty() && getImmCode().empty();
|
|
}
|
|
|
|
/// Return the name to use in the generated code to reference this, this is
|
|
/// "Predicate_foo" if from a pattern fragment "foo".
|
|
std::string TreePredicateFn::getFnName() const {
|
|
return "Predicate_" + PatFragRec->getRecord()->getName();
|
|
}
|
|
|
|
/// getCodeToRunOnSDNode - Return the code for the function body that
|
|
/// evaluates this predicate. The argument is expected to be in "Node",
|
|
/// not N. This handles casting and conversion to a concrete node type as
|
|
/// appropriate.
|
|
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
|
|
// Handle immediate predicates first.
|
|
std::string ImmCode = getImmCode();
|
|
if (!ImmCode.empty()) {
|
|
std::string Result =
|
|
" int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
|
|
return Result + ImmCode;
|
|
}
|
|
|
|
// Handle arbitrary node predicates.
|
|
assert(!getPredCode().empty() && "Don't have any predicate code!");
|
|
std::string ClassName;
|
|
if (PatFragRec->getOnlyTree()->isLeaf())
|
|
ClassName = "SDNode";
|
|
else {
|
|
Record *Op = PatFragRec->getOnlyTree()->getOperator();
|
|
ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
|
|
}
|
|
std::string Result;
|
|
if (ClassName == "SDNode")
|
|
Result = " SDNode *N = Node;\n";
|
|
else
|
|
Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
|
|
|
|
return Result + getPredCode();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PatternToMatch implementation
|
|
//
|
|
|
|
|
|
/// getPatternSize - Return the 'size' of this pattern. We want to match large
|
|
/// patterns before small ones. This is used to determine the size of a
|
|
/// pattern.
|
|
static unsigned getPatternSize(const TreePatternNode *P,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
unsigned Size = 3; // The node itself.
|
|
// If the root node is a ConstantSDNode, increases its size.
|
|
// e.g. (set R32:$dst, 0).
|
|
if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
|
|
Size += 2;
|
|
|
|
// FIXME: This is a hack to statically increase the priority of patterns
|
|
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
|
|
// Later we can allow complexity / cost for each pattern to be (optionally)
|
|
// specified. To get best possible pattern match we'll need to dynamically
|
|
// calculate the complexity of all patterns a dag can potentially map to.
|
|
const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
|
|
if (AM)
|
|
Size += AM->getNumOperands() * 3;
|
|
|
|
// If this node has some predicate function that must match, it adds to the
|
|
// complexity of this node.
|
|
if (!P->getPredicateFns().empty())
|
|
++Size;
|
|
|
|
// Count children in the count if they are also nodes.
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = P->getChild(i);
|
|
if (!Child->isLeaf() && Child->getNumTypes() &&
|
|
Child->getType(0) != MVT::Other)
|
|
Size += getPatternSize(Child, CGP);
|
|
else if (Child->isLeaf()) {
|
|
if (isa<IntInit>(Child->getLeafValue()))
|
|
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
|
|
else if (Child->getComplexPatternInfo(CGP))
|
|
Size += getPatternSize(Child, CGP);
|
|
else if (!Child->getPredicateFns().empty())
|
|
++Size;
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// Compute the complexity metric for the input pattern. This roughly
|
|
/// corresponds to the number of nodes that are covered.
|
|
unsigned PatternToMatch::
|
|
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
|
|
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
|
|
}
|
|
|
|
|
|
/// getPredicateCheck - Return a single string containing all of this
|
|
/// pattern's predicates concatenated with "&&" operators.
|
|
///
|
|
std::string PatternToMatch::getPredicateCheck() const {
|
|
std::string PredicateCheck;
|
|
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
|
|
if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
|
|
Record *Def = Pred->getDef();
|
|
if (!Def->isSubClassOf("Predicate")) {
|
|
#ifndef NDEBUG
|
|
Def->dump();
|
|
#endif
|
|
llvm_unreachable("Unknown predicate type!");
|
|
}
|
|
if (!PredicateCheck.empty())
|
|
PredicateCheck += " && ";
|
|
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
|
|
}
|
|
}
|
|
|
|
return PredicateCheck;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDTypeConstraint implementation
|
|
//
|
|
|
|
SDTypeConstraint::SDTypeConstraint(Record *R) {
|
|
OperandNo = R->getValueAsInt("OperandNum");
|
|
|
|
if (R->isSubClassOf("SDTCisVT")) {
|
|
ConstraintType = SDTCisVT;
|
|
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
|
|
if (x.SDTCisVT_Info.VT == MVT::isVoid)
|
|
PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
|
|
|
|
} else if (R->isSubClassOf("SDTCisPtrTy")) {
|
|
ConstraintType = SDTCisPtrTy;
|
|
} else if (R->isSubClassOf("SDTCisInt")) {
|
|
ConstraintType = SDTCisInt;
|
|
} else if (R->isSubClassOf("SDTCisFP")) {
|
|
ConstraintType = SDTCisFP;
|
|
} else if (R->isSubClassOf("SDTCisVec")) {
|
|
ConstraintType = SDTCisVec;
|
|
} else if (R->isSubClassOf("SDTCisSameAs")) {
|
|
ConstraintType = SDTCisSameAs;
|
|
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
|
|
ConstraintType = SDTCisVTSmallerThanOp;
|
|
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
|
|
ConstraintType = SDTCisOpSmallerThanOp;
|
|
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
|
|
R->getValueAsInt("BigOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
|
|
ConstraintType = SDTCisEltOfVec;
|
|
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
|
|
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
|
|
ConstraintType = SDTCisSubVecOfVec;
|
|
x.SDTCisSubVecOfVec_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOpNum");
|
|
} else {
|
|
errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
|
|
/// N, and the result number in ResNo.
|
|
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
unsigned &ResNo) {
|
|
unsigned NumResults = NodeInfo.getNumResults();
|
|
if (OpNo < NumResults) {
|
|
ResNo = OpNo;
|
|
return N;
|
|
}
|
|
|
|
OpNo -= NumResults;
|
|
|
|
if (OpNo >= N->getNumChildren()) {
|
|
errs() << "Invalid operand number in type constraint "
|
|
<< (OpNo+NumResults) << " ";
|
|
N->dump();
|
|
errs() << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
return N->getChild(OpNo);
|
|
}
|
|
|
|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
|
|
/// constraint to the nodes operands. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, flag an error.
|
|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
TreePattern &TP) const {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
unsigned ResNo = 0; // The result number being referenced.
|
|
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
|
|
|
|
switch (ConstraintType) {
|
|
case SDTCisVT:
|
|
// Operand must be a particular type.
|
|
return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
|
|
case SDTCisPtrTy:
|
|
// Operand must be same as target pointer type.
|
|
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
|
|
case SDTCisInt:
|
|
// Require it to be one of the legal integer VTs.
|
|
return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
|
|
case SDTCisFP:
|
|
// Require it to be one of the legal fp VTs.
|
|
return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
|
|
case SDTCisVec:
|
|
// Require it to be one of the legal vector VTs.
|
|
return NodeToApply->getExtType(ResNo).EnforceVector(TP);
|
|
case SDTCisSameAs: {
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
|
|
return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
|
|
OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
|
|
}
|
|
case SDTCisVTSmallerThanOp: {
|
|
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
|
|
// have an integer type that is smaller than the VT.
|
|
if (!NodeToApply->isLeaf() ||
|
|
!isa<DefInit>(NodeToApply->getLeafValue()) ||
|
|
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
|
|
->isSubClassOf("ValueType")) {
|
|
TP.error(N->getOperator()->getName() + " expects a VT operand!");
|
|
return false;
|
|
}
|
|
MVT::SimpleValueType VT =
|
|
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
|
|
|
|
EEVT::TypeSet TypeListTmp(VT, TP);
|
|
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
|
|
OResNo);
|
|
|
|
return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
|
|
}
|
|
case SDTCisOpSmallerThanOp: {
|
|
unsigned BResNo = 0;
|
|
TreePatternNode *BigOperand =
|
|
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
|
|
BResNo);
|
|
return NodeToApply->getExtType(ResNo).
|
|
EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
|
|
}
|
|
case SDTCisEltOfVec: {
|
|
unsigned VResNo = 0;
|
|
TreePatternNode *VecOperand =
|
|
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
|
|
VResNo);
|
|
|
|
// Filter vector types out of VecOperand that don't have the right element
|
|
// type.
|
|
return VecOperand->getExtType(VResNo).
|
|
EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
|
|
}
|
|
case SDTCisSubVecOfVec: {
|
|
unsigned VResNo = 0;
|
|
TreePatternNode *BigVecOperand =
|
|
getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
|
|
VResNo);
|
|
|
|
// Filter vector types out of BigVecOperand that don't have the
|
|
// right subvector type.
|
|
return BigVecOperand->getExtType(VResNo).
|
|
EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid ConstraintType!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNodeInfo implementation
|
|
//
|
|
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
|
|
EnumName = R->getValueAsString("Opcode");
|
|
SDClassName = R->getValueAsString("SDClass");
|
|
Record *TypeProfile = R->getValueAsDef("TypeProfile");
|
|
NumResults = TypeProfile->getValueAsInt("NumResults");
|
|
NumOperands = TypeProfile->getValueAsInt("NumOperands");
|
|
|
|
// Parse the properties.
|
|
Properties = 0;
|
|
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
|
|
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
|
|
if (PropList[i]->getName() == "SDNPCommutative") {
|
|
Properties |= 1 << SDNPCommutative;
|
|
} else if (PropList[i]->getName() == "SDNPAssociative") {
|
|
Properties |= 1 << SDNPAssociative;
|
|
} else if (PropList[i]->getName() == "SDNPHasChain") {
|
|
Properties |= 1 << SDNPHasChain;
|
|
} else if (PropList[i]->getName() == "SDNPOutGlue") {
|
|
Properties |= 1 << SDNPOutGlue;
|
|
} else if (PropList[i]->getName() == "SDNPInGlue") {
|
|
Properties |= 1 << SDNPInGlue;
|
|
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
|
|
Properties |= 1 << SDNPOptInGlue;
|
|
} else if (PropList[i]->getName() == "SDNPMayStore") {
|
|
Properties |= 1 << SDNPMayStore;
|
|
} else if (PropList[i]->getName() == "SDNPMayLoad") {
|
|
Properties |= 1 << SDNPMayLoad;
|
|
} else if (PropList[i]->getName() == "SDNPSideEffect") {
|
|
Properties |= 1 << SDNPSideEffect;
|
|
} else if (PropList[i]->getName() == "SDNPMemOperand") {
|
|
Properties |= 1 << SDNPMemOperand;
|
|
} else if (PropList[i]->getName() == "SDNPVariadic") {
|
|
Properties |= 1 << SDNPVariadic;
|
|
} else {
|
|
errs() << "Unknown SD Node property '" << PropList[i]->getName()
|
|
<< "' on node '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
// Parse the type constraints.
|
|
std::vector<Record*> ConstraintList =
|
|
TypeProfile->getValueAsListOfDefs("Constraints");
|
|
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
|
|
}
|
|
|
|
/// getKnownType - If the type constraints on this node imply a fixed type
|
|
/// (e.g. all stores return void, etc), then return it as an
|
|
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
|
|
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
|
|
unsigned NumResults = getNumResults();
|
|
assert(NumResults <= 1 &&
|
|
"We only work with nodes with zero or one result so far!");
|
|
assert(ResNo == 0 && "Only handles single result nodes so far");
|
|
|
|
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
|
|
// Make sure that this applies to the correct node result.
|
|
if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
|
|
continue;
|
|
|
|
switch (TypeConstraints[i].ConstraintType) {
|
|
default: break;
|
|
case SDTypeConstraint::SDTCisVT:
|
|
return TypeConstraints[i].x.SDTCisVT_Info.VT;
|
|
case SDTypeConstraint::SDTCisPtrTy:
|
|
return MVT::iPTR;
|
|
}
|
|
}
|
|
return MVT::Other;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePatternNode implementation
|
|
//
|
|
|
|
TreePatternNode::~TreePatternNode() {
|
|
#if 0 // FIXME: implement refcounted tree nodes!
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
delete getChild(i);
|
|
#endif
|
|
}
|
|
|
|
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
|
|
if (Operator->getName() == "set" ||
|
|
Operator->getName() == "implicit")
|
|
return 0; // All return nothing.
|
|
|
|
if (Operator->isSubClassOf("Intrinsic"))
|
|
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
|
|
|
|
if (Operator->isSubClassOf("SDNode"))
|
|
return CDP.getSDNodeInfo(Operator).getNumResults();
|
|
|
|
if (Operator->isSubClassOf("PatFrag")) {
|
|
// If we've already parsed this pattern fragment, get it. Otherwise, handle
|
|
// the forward reference case where one pattern fragment references another
|
|
// before it is processed.
|
|
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
|
|
return PFRec->getOnlyTree()->getNumTypes();
|
|
|
|
// Get the result tree.
|
|
DagInit *Tree = Operator->getValueAsDag("Fragment");
|
|
Record *Op = 0;
|
|
if (Tree)
|
|
if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
|
|
Op = DI->getDef();
|
|
assert(Op && "Invalid Fragment");
|
|
return GetNumNodeResults(Op, CDP);
|
|
}
|
|
|
|
if (Operator->isSubClassOf("Instruction")) {
|
|
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
|
|
|
|
// FIXME: Should allow access to all the results here.
|
|
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
|
|
|
|
// Add on one implicit def if it has a resolvable type.
|
|
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
|
|
++NumDefsToAdd;
|
|
return NumDefsToAdd;
|
|
}
|
|
|
|
if (Operator->isSubClassOf("SDNodeXForm"))
|
|
return 1; // FIXME: Generalize SDNodeXForm
|
|
|
|
Operator->dump();
|
|
errs() << "Unhandled node in GetNumNodeResults\n";
|
|
exit(1);
|
|
}
|
|
|
|
void TreePatternNode::print(raw_ostream &OS) const {
|
|
if (isLeaf())
|
|
OS << *getLeafValue();
|
|
else
|
|
OS << '(' << getOperator()->getName();
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
OS << ':' << getExtType(i).getName();
|
|
|
|
if (!isLeaf()) {
|
|
if (getNumChildren() != 0) {
|
|
OS << " ";
|
|
getChild(0)->print(OS);
|
|
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
|
|
OS << ", ";
|
|
getChild(i)->print(OS);
|
|
}
|
|
}
|
|
OS << ")";
|
|
}
|
|
|
|
for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
|
|
OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
|
|
if (TransformFn)
|
|
OS << "<<X:" << TransformFn->getName() << ">>";
|
|
if (!getName().empty())
|
|
OS << ":$" << getName();
|
|
|
|
}
|
|
void TreePatternNode::dump() const {
|
|
print(errs());
|
|
}
|
|
|
|
/// isIsomorphicTo - Return true if this node is recursively
|
|
/// isomorphic to the specified node. For this comparison, the node's
|
|
/// entire state is considered. The assigned name is ignored, since
|
|
/// nodes with differing names are considered isomorphic. However, if
|
|
/// the assigned name is present in the dependent variable set, then
|
|
/// the assigned name is considered significant and the node is
|
|
/// isomorphic if the names match.
|
|
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
|
|
const MultipleUseVarSet &DepVars) const {
|
|
if (N == this) return true;
|
|
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
|
|
getPredicateFns() != N->getPredicateFns() ||
|
|
getTransformFn() != N->getTransformFn())
|
|
return false;
|
|
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
|
|
if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
|
|
return ((DI->getDef() == NDI->getDef())
|
|
&& (DepVars.find(getName()) == DepVars.end()
|
|
|| getName() == N->getName()));
|
|
}
|
|
}
|
|
return getLeafValue() == N->getLeafValue();
|
|
}
|
|
|
|
if (N->getOperator() != getOperator() ||
|
|
N->getNumChildren() != getNumChildren()) return false;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// clone - Make a copy of this tree and all of its children.
|
|
///
|
|
TreePatternNode *TreePatternNode::clone() const {
|
|
TreePatternNode *New;
|
|
if (isLeaf()) {
|
|
New = new TreePatternNode(getLeafValue(), getNumTypes());
|
|
} else {
|
|
std::vector<TreePatternNode*> CChildren;
|
|
CChildren.reserve(Children.size());
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
CChildren.push_back(getChild(i)->clone());
|
|
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
|
|
}
|
|
New->setName(getName());
|
|
New->Types = Types;
|
|
New->setPredicateFns(getPredicateFns());
|
|
New->setTransformFn(getTransformFn());
|
|
return New;
|
|
}
|
|
|
|
/// RemoveAllTypes - Recursively strip all the types of this tree.
|
|
void TreePatternNode::RemoveAllTypes() {
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
Types[i] = EEVT::TypeSet(); // Reset to unknown type.
|
|
if (isLeaf()) return;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
getChild(i)->RemoveAllTypes();
|
|
}
|
|
|
|
|
|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
|
|
/// with actual values specified by ArgMap.
|
|
void TreePatternNode::
|
|
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
|
|
if (isLeaf()) return;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
if (Child->isLeaf()) {
|
|
Init *Val = Child->getLeafValue();
|
|
if (isa<DefInit>(Val) &&
|
|
cast<DefInit>(Val)->getDef()->getName() == "node") {
|
|
// We found a use of a formal argument, replace it with its value.
|
|
TreePatternNode *NewChild = ArgMap[Child->getName()];
|
|
assert(NewChild && "Couldn't find formal argument!");
|
|
assert((Child->getPredicateFns().empty() ||
|
|
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
|
|
"Non-empty child predicate clobbered!");
|
|
setChild(i, NewChild);
|
|
}
|
|
} else {
|
|
getChild(i)->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// InlinePatternFragments - If this pattern refers to any pattern
|
|
/// fragments, inline them into place, giving us a pattern without any
|
|
/// PatFrag references.
|
|
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return 0;
|
|
|
|
if (isLeaf())
|
|
return this; // nothing to do.
|
|
Record *Op = getOperator();
|
|
|
|
if (!Op->isSubClassOf("PatFrag")) {
|
|
// Just recursively inline children nodes.
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
|
|
|
|
assert((Child->getPredicateFns().empty() ||
|
|
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
|
|
"Non-empty child predicate clobbered!");
|
|
|
|
setChild(i, NewChild);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Otherwise, we found a reference to a fragment. First, look up its
|
|
// TreePattern record.
|
|
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
|
|
|
|
// Verify that we are passing the right number of operands.
|
|
if (Frag->getNumArgs() != Children.size()) {
|
|
TP.error("'" + Op->getName() + "' fragment requires " +
|
|
utostr(Frag->getNumArgs()) + " operands!");
|
|
return 0;
|
|
}
|
|
|
|
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
|
|
|
|
TreePredicateFn PredFn(Frag);
|
|
if (!PredFn.isAlwaysTrue())
|
|
FragTree->addPredicateFn(PredFn);
|
|
|
|
// Resolve formal arguments to their actual value.
|
|
if (Frag->getNumArgs()) {
|
|
// Compute the map of formal to actual arguments.
|
|
std::map<std::string, TreePatternNode*> ArgMap;
|
|
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
|
|
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
|
|
|
|
FragTree->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
|
|
FragTree->setName(getName());
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
FragTree->UpdateNodeType(i, getExtType(i), TP);
|
|
|
|
// Transfer in the old predicates.
|
|
for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
|
|
FragTree->addPredicateFn(getPredicateFns()[i]);
|
|
|
|
// Get a new copy of this fragment to stitch into here.
|
|
//delete this; // FIXME: implement refcounting!
|
|
|
|
// The fragment we inlined could have recursive inlining that is needed. See
|
|
// if there are any pattern fragments in it and inline them as needed.
|
|
return FragTree->InlinePatternFragments(TP);
|
|
}
|
|
|
|
/// getImplicitType - Check to see if the specified record has an implicit
|
|
/// type which should be applied to it. This will infer the type of register
|
|
/// references from the register file information, for example.
|
|
///
|
|
static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
|
|
bool NotRegisters, TreePattern &TP) {
|
|
// Check to see if this is a register operand.
|
|
if (R->isSubClassOf("RegisterOperand")) {
|
|
assert(ResNo == 0 && "Regoperand ref only has one result!");
|
|
if (NotRegisters)
|
|
return EEVT::TypeSet(); // Unknown.
|
|
Record *RegClass = R->getValueAsDef("RegClass");
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
|
|
}
|
|
|
|
// Check to see if this is a register or a register class.
|
|
if (R->isSubClassOf("RegisterClass")) {
|
|
assert(ResNo == 0 && "Regclass ref only has one result!");
|
|
if (NotRegisters)
|
|
return EEVT::TypeSet(); // Unknown.
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
|
|
}
|
|
|
|
if (R->isSubClassOf("PatFrag")) {
|
|
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
|
|
// Pattern fragment types will be resolved when they are inlined.
|
|
return EEVT::TypeSet(); // Unknown.
|
|
}
|
|
|
|
if (R->isSubClassOf("Register")) {
|
|
assert(ResNo == 0 && "Registers only produce one result!");
|
|
if (NotRegisters)
|
|
return EEVT::TypeSet(); // Unknown.
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return EEVT::TypeSet(T.getRegisterVTs(R));
|
|
}
|
|
|
|
if (R->isSubClassOf("SubRegIndex")) {
|
|
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
|
|
return EEVT::TypeSet();
|
|
}
|
|
|
|
if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
|
|
assert(ResNo == 0 && "This node only has one result!");
|
|
// Using a VTSDNode or CondCodeSDNode.
|
|
return EEVT::TypeSet(MVT::Other, TP);
|
|
}
|
|
|
|
if (R->isSubClassOf("ComplexPattern")) {
|
|
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
|
|
if (NotRegisters)
|
|
return EEVT::TypeSet(); // Unknown.
|
|
return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
|
|
TP);
|
|
}
|
|
if (R->isSubClassOf("PointerLikeRegClass")) {
|
|
assert(ResNo == 0 && "Regclass can only have one result!");
|
|
return EEVT::TypeSet(MVT::iPTR, TP);
|
|
}
|
|
|
|
if (R->getName() == "node" || R->getName() == "srcvalue" ||
|
|
R->getName() == "zero_reg") {
|
|
// Placeholder.
|
|
return EEVT::TypeSet(); // Unknown.
|
|
}
|
|
|
|
TP.error("Unknown node flavor used in pattern: " + R->getName());
|
|
return EEVT::TypeSet(MVT::Other, TP);
|
|
}
|
|
|
|
|
|
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
|
|
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
|
|
const CodeGenIntrinsic *TreePatternNode::
|
|
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
|
|
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
|
|
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
|
|
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
|
|
return 0;
|
|
|
|
unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
|
|
return &CDP.getIntrinsicInfo(IID);
|
|
}
|
|
|
|
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
|
|
/// return the ComplexPattern information, otherwise return null.
|
|
const ComplexPattern *
|
|
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
|
|
if (!isLeaf()) return 0;
|
|
|
|
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
|
|
if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
|
|
return &CGP.getComplexPattern(DI->getDef());
|
|
return 0;
|
|
}
|
|
|
|
/// NodeHasProperty - Return true if this node has the specified property.
|
|
bool TreePatternNode::NodeHasProperty(SDNP Property,
|
|
const CodeGenDAGPatterns &CGP) const {
|
|
if (isLeaf()) {
|
|
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
|
|
return CP->hasProperty(Property);
|
|
return false;
|
|
}
|
|
|
|
Record *Operator = getOperator();
|
|
if (!Operator->isSubClassOf("SDNode")) return false;
|
|
|
|
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// TreeHasProperty - Return true if any node in this tree has the specified
|
|
/// property.
|
|
bool TreePatternNode::TreeHasProperty(SDNP Property,
|
|
const CodeGenDAGPatterns &CGP) const {
|
|
if (NodeHasProperty(Property, CGP))
|
|
return true;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (getChild(i)->TreeHasProperty(Property, CGP))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isCommutativeIntrinsic - Return true if the node corresponds to a
|
|
/// commutative intrinsic.
|
|
bool
|
|
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
|
|
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
|
|
return Int->isCommutative;
|
|
return false;
|
|
}
|
|
|
|
|
|
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
|
|
/// this node and its children in the tree. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, flag an error.
|
|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
|
|
// If it's a regclass or something else known, include the type.
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
|
|
NotRegisters, TP), TP);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
|
|
assert(Types.size() == 1 && "Invalid IntInit");
|
|
|
|
// Int inits are always integers. :)
|
|
bool MadeChange = Types[0].EnforceInteger(TP);
|
|
|
|
if (!Types[0].isConcrete())
|
|
return MadeChange;
|
|
|
|
MVT::SimpleValueType VT = getType(0);
|
|
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
|
|
return MadeChange;
|
|
|
|
unsigned Size = EVT(VT).getSizeInBits();
|
|
// Make sure that the value is representable for this type.
|
|
if (Size >= 32) return MadeChange;
|
|
|
|
// Check that the value doesn't use more bits than we have. It must either
|
|
// be a sign- or zero-extended equivalent of the original.
|
|
int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
|
|
if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
|
|
return MadeChange;
|
|
|
|
TP.error("Integer value '" + itostr(II->getValue()) +
|
|
"' is out of range for type '" + getEnumName(getType(0)) + "'!");
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// special handling for set, which isn't really an SDNode.
|
|
if (getOperator()->getName() == "set") {
|
|
assert(getNumTypes() == 0 && "Set doesn't produce a value");
|
|
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
|
|
unsigned NC = getNumChildren();
|
|
|
|
TreePatternNode *SetVal = getChild(NC-1);
|
|
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
for (unsigned i = 0; i < NC-1; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
// Types of operands must match.
|
|
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
|
|
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->getName() == "implicit") {
|
|
assert(getNumTypes() == 0 && "Node doesn't produce a value");
|
|
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0; i < getNumChildren(); ++i)
|
|
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->getName() == "COPY_TO_REGCLASS") {
|
|
bool MadeChange = false;
|
|
MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
|
|
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
assert(getChild(0)->getNumTypes() == 1 &&
|
|
getChild(1)->getNumTypes() == 1 && "Unhandled case");
|
|
|
|
// child #1 of COPY_TO_REGCLASS should be a register class. We don't care
|
|
// what type it gets, so if it didn't get a concrete type just give it the
|
|
// first viable type from the reg class.
|
|
if (!getChild(1)->hasTypeSet(0) &&
|
|
!getChild(1)->getExtType(0).isCompletelyUnknown()) {
|
|
MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
|
|
MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
|
|
bool MadeChange = false;
|
|
|
|
// Apply the result type to the node.
|
|
unsigned NumRetVTs = Int->IS.RetVTs.size();
|
|
unsigned NumParamVTs = Int->IS.ParamVTs.size();
|
|
|
|
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
|
|
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
|
|
|
|
if (getNumChildren() != NumParamVTs + 1) {
|
|
TP.error("Intrinsic '" + Int->Name + "' expects " +
|
|
utostr(NumParamVTs) + " operands, not " +
|
|
utostr(getNumChildren() - 1) + " operands!");
|
|
return false;
|
|
}
|
|
|
|
// Apply type info to the intrinsic ID.
|
|
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
|
|
|
|
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
|
|
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
|
|
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
|
|
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("SDNode")) {
|
|
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
|
|
|
|
// Check that the number of operands is sane. Negative operands -> varargs.
|
|
if (NI.getNumOperands() >= 0 &&
|
|
getNumChildren() != (unsigned)NI.getNumOperands()) {
|
|
TP.error(getOperator()->getName() + " node requires exactly " +
|
|
itostr(NI.getNumOperands()) + " operands!");
|
|
return false;
|
|
}
|
|
|
|
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("Instruction")) {
|
|
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
|
|
CodeGenInstruction &InstInfo =
|
|
CDP.getTargetInfo().getInstruction(getOperator());
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Apply the result types to the node, these come from the things in the
|
|
// (outs) list of the instruction.
|
|
// FIXME: Cap at one result so far.
|
|
unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
|
|
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
|
|
Record *ResultNode = Inst.getResult(ResNo);
|
|
|
|
if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
|
|
MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
|
|
} else if (ResultNode->isSubClassOf("RegisterOperand")) {
|
|
Record *RegClass = ResultNode->getValueAsDef("RegClass");
|
|
const CodeGenRegisterClass &RC =
|
|
CDP.getTargetInfo().getRegisterClass(RegClass);
|
|
MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
|
|
} else if (ResultNode->isSubClassOf("unknown_class")) {
|
|
// Nothing to do.
|
|
} else {
|
|
assert(ResultNode->isSubClassOf("RegisterClass") &&
|
|
"Operands should be register classes!");
|
|
const CodeGenRegisterClass &RC =
|
|
CDP.getTargetInfo().getRegisterClass(ResultNode);
|
|
MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
|
|
}
|
|
}
|
|
|
|
// If the instruction has implicit defs, we apply the first one as a result.
|
|
// FIXME: This sucks, it should apply all implicit defs.
|
|
if (!InstInfo.ImplicitDefs.empty()) {
|
|
unsigned ResNo = NumResultsToAdd;
|
|
|
|
// FIXME: Generalize to multiple possible types and multiple possible
|
|
// ImplicitDefs.
|
|
MVT::SimpleValueType VT =
|
|
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
|
|
|
|
if (VT != MVT::Other)
|
|
MadeChange |= UpdateNodeType(ResNo, VT, TP);
|
|
}
|
|
|
|
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
|
|
// be the same.
|
|
if (getOperator()->getName() == "INSERT_SUBREG") {
|
|
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
|
|
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
|
|
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
|
|
}
|
|
|
|
unsigned ChildNo = 0;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
|
|
Record *OperandNode = Inst.getOperand(i);
|
|
|
|
// If the instruction expects a predicate or optional def operand, we
|
|
// codegen this by setting the operand to it's default value if it has a
|
|
// non-empty DefaultOps field.
|
|
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
|
|
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
|
|
continue;
|
|
|
|
// Verify that we didn't run out of provided operands.
|
|
if (ChildNo >= getNumChildren()) {
|
|
TP.error("Instruction '" + getOperator()->getName() +
|
|
"' expects more operands than were provided.");
|
|
return false;
|
|
}
|
|
|
|
MVT::SimpleValueType VT;
|
|
TreePatternNode *Child = getChild(ChildNo++);
|
|
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
|
|
|
|
if (OperandNode->isSubClassOf("RegisterClass")) {
|
|
const CodeGenRegisterClass &RC =
|
|
CDP.getTargetInfo().getRegisterClass(OperandNode);
|
|
MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
|
|
} else if (OperandNode->isSubClassOf("RegisterOperand")) {
|
|
Record *RegClass = OperandNode->getValueAsDef("RegClass");
|
|
const CodeGenRegisterClass &RC =
|
|
CDP.getTargetInfo().getRegisterClass(RegClass);
|
|
MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
|
|
} else if (OperandNode->isSubClassOf("Operand")) {
|
|
VT = getValueType(OperandNode->getValueAsDef("Type"));
|
|
MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
|
|
} else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
|
|
MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
|
|
} else if (OperandNode->isSubClassOf("unknown_class")) {
|
|
// Nothing to do.
|
|
} else
|
|
llvm_unreachable("Unknown operand type!");
|
|
|
|
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
|
|
}
|
|
|
|
if (ChildNo != getNumChildren()) {
|
|
TP.error("Instruction '" + getOperator()->getName() +
|
|
"' was provided too many operands!");
|
|
return false;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
|
|
|
|
// Node transforms always take one operand.
|
|
if (getNumChildren() != 1) {
|
|
TP.error("Node transform '" + getOperator()->getName() +
|
|
"' requires one operand!");
|
|
return false;
|
|
}
|
|
|
|
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
|
|
// If either the output or input of the xform does not have exact
|
|
// type info. We assume they must be the same. Otherwise, it is perfectly
|
|
// legal to transform from one type to a completely different type.
|
|
#if 0
|
|
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
|
|
bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
|
|
MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
|
|
return MadeChange;
|
|
}
|
|
#endif
|
|
return MadeChange;
|
|
}
|
|
|
|
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
|
|
/// RHS of a commutative operation, not the on LHS.
|
|
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
|
|
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
|
|
return true;
|
|
if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/// canPatternMatch - If it is impossible for this pattern to match on this
|
|
/// target, fill in Reason and return false. Otherwise, return true. This is
|
|
/// used as a sanity check for .td files (to prevent people from writing stuff
|
|
/// that can never possibly work), and to prevent the pattern permuter from
|
|
/// generating stuff that is useless.
|
|
bool TreePatternNode::canPatternMatch(std::string &Reason,
|
|
const CodeGenDAGPatterns &CDP) {
|
|
if (isLeaf()) return true;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->canPatternMatch(Reason, CDP))
|
|
return false;
|
|
|
|
// If this is an intrinsic, handle cases that would make it not match. For
|
|
// example, if an operand is required to be an immediate.
|
|
if (getOperator()->isSubClassOf("Intrinsic")) {
|
|
// TODO:
|
|
return true;
|
|
}
|
|
|
|
// If this node is a commutative operator, check that the LHS isn't an
|
|
// immediate.
|
|
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
|
|
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
|
|
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
|
|
// Scan all of the operands of the node and make sure that only the last one
|
|
// is a constant node, unless the RHS also is.
|
|
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
|
|
bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
|
|
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
|
|
if (OnlyOnRHSOfCommutative(getChild(i))) {
|
|
Reason="Immediate value must be on the RHS of commutative operators!";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePattern implementation
|
|
//
|
|
|
|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false) {
|
|
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
|
|
Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false) {
|
|
Trees.push_back(ParseTreePattern(Pat, ""));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false) {
|
|
Trees.push_back(Pat);
|
|
}
|
|
|
|
void TreePattern::error(const std::string &Msg) {
|
|
if (HasError)
|
|
return;
|
|
dump();
|
|
PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
|
|
HasError = true;
|
|
}
|
|
|
|
void TreePattern::ComputeNamedNodes() {
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
ComputeNamedNodes(Trees[i]);
|
|
}
|
|
|
|
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
|
|
if (!N->getName().empty())
|
|
NamedNodes[N->getName()].push_back(N);
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
ComputeNamedNodes(N->getChild(i));
|
|
}
|
|
|
|
|
|
TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
|
|
if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
|
|
Record *R = DI->getDef();
|
|
|
|
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
|
|
// TreePatternNode of its own. For example:
|
|
/// (foo GPR, imm) -> (foo GPR, (imm))
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
|
|
return ParseTreePattern(
|
|
DagInit::get(DI, "",
|
|
std::vector<std::pair<Init*, std::string> >()),
|
|
OpName);
|
|
|
|
// Input argument?
|
|
TreePatternNode *Res = new TreePatternNode(DI, 1);
|
|
if (R->getName() == "node" && !OpName.empty()) {
|
|
if (OpName.empty())
|
|
error("'node' argument requires a name to match with operand list");
|
|
Args.push_back(OpName);
|
|
}
|
|
|
|
Res->setName(OpName);
|
|
return Res;
|
|
}
|
|
|
|
if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
|
|
if (!OpName.empty())
|
|
error("Constant int argument should not have a name!");
|
|
return new TreePatternNode(II, 1);
|
|
}
|
|
|
|
if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
|
|
// Turn this into an IntInit.
|
|
Init *II = BI->convertInitializerTo(IntRecTy::get());
|
|
if (II == 0 || !isa<IntInit>(II))
|
|
error("Bits value must be constants!");
|
|
return ParseTreePattern(II, OpName);
|
|
}
|
|
|
|
DagInit *Dag = dyn_cast<DagInit>(TheInit);
|
|
if (!Dag) {
|
|
TheInit->dump();
|
|
error("Pattern has unexpected init kind!");
|
|
}
|
|
DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
|
|
if (!OpDef) error("Pattern has unexpected operator type!");
|
|
Record *Operator = OpDef->getDef();
|
|
|
|
if (Operator->isSubClassOf("ValueType")) {
|
|
// If the operator is a ValueType, then this must be "type cast" of a leaf
|
|
// node.
|
|
if (Dag->getNumArgs() != 1)
|
|
error("Type cast only takes one operand!");
|
|
|
|
TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
|
|
|
|
// Apply the type cast.
|
|
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
|
|
New->UpdateNodeType(0, getValueType(Operator), *this);
|
|
|
|
if (!OpName.empty())
|
|
error("ValueType cast should not have a name!");
|
|
return New;
|
|
}
|
|
|
|
// Verify that this is something that makes sense for an operator.
|
|
if (!Operator->isSubClassOf("PatFrag") &&
|
|
!Operator->isSubClassOf("SDNode") &&
|
|
!Operator->isSubClassOf("Instruction") &&
|
|
!Operator->isSubClassOf("SDNodeXForm") &&
|
|
!Operator->isSubClassOf("Intrinsic") &&
|
|
Operator->getName() != "set" &&
|
|
Operator->getName() != "implicit")
|
|
error("Unrecognized node '" + Operator->getName() + "'!");
|
|
|
|
// Check to see if this is something that is illegal in an input pattern.
|
|
if (isInputPattern) {
|
|
if (Operator->isSubClassOf("Instruction") ||
|
|
Operator->isSubClassOf("SDNodeXForm"))
|
|
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
|
|
} else {
|
|
if (Operator->isSubClassOf("Intrinsic"))
|
|
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
|
|
|
|
if (Operator->isSubClassOf("SDNode") &&
|
|
Operator->getName() != "imm" &&
|
|
Operator->getName() != "fpimm" &&
|
|
Operator->getName() != "tglobaltlsaddr" &&
|
|
Operator->getName() != "tconstpool" &&
|
|
Operator->getName() != "tjumptable" &&
|
|
Operator->getName() != "tframeindex" &&
|
|
Operator->getName() != "texternalsym" &&
|
|
Operator->getName() != "tblockaddress" &&
|
|
Operator->getName() != "tglobaladdr" &&
|
|
Operator->getName() != "bb" &&
|
|
Operator->getName() != "vt")
|
|
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
|
|
}
|
|
|
|
std::vector<TreePatternNode*> Children;
|
|
|
|
// Parse all the operands.
|
|
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
|
|
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
|
|
|
|
// If the operator is an intrinsic, then this is just syntactic sugar for for
|
|
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
|
|
// convert the intrinsic name to a number.
|
|
if (Operator->isSubClassOf("Intrinsic")) {
|
|
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
|
|
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
|
|
|
|
// If this intrinsic returns void, it must have side-effects and thus a
|
|
// chain.
|
|
if (Int.IS.RetVTs.empty())
|
|
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
|
|
else if (Int.ModRef != CodeGenIntrinsic::NoMem)
|
|
// Has side-effects, requires chain.
|
|
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
|
|
else // Otherwise, no chain.
|
|
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
|
|
|
|
TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
|
|
Children.insert(Children.begin(), IIDNode);
|
|
}
|
|
|
|
unsigned NumResults = GetNumNodeResults(Operator, CDP);
|
|
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
|
|
Result->setName(OpName);
|
|
|
|
if (!Dag->getName().empty()) {
|
|
assert(Result->getName().empty());
|
|
Result->setName(Dag->getName());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// SimplifyTree - See if we can simplify this tree to eliminate something that
|
|
/// will never match in favor of something obvious that will. This is here
|
|
/// strictly as a convenience to target authors because it allows them to write
|
|
/// more type generic things and have useless type casts fold away.
|
|
///
|
|
/// This returns true if any change is made.
|
|
static bool SimplifyTree(TreePatternNode *&N) {
|
|
if (N->isLeaf())
|
|
return false;
|
|
|
|
// If we have a bitconvert with a resolved type and if the source and
|
|
// destination types are the same, then the bitconvert is useless, remove it.
|
|
if (N->getOperator()->getName() == "bitconvert" &&
|
|
N->getExtType(0).isConcrete() &&
|
|
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
|
|
N->getName().empty()) {
|
|
N = N->getChild(0);
|
|
SimplifyTree(N);
|
|
return true;
|
|
}
|
|
|
|
// Walk all children.
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
MadeChange |= SimplifyTree(Child);
|
|
N->setChild(i, Child);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
|
|
/// InferAllTypes - Infer/propagate as many types throughout the expression
|
|
/// patterns as possible. Return true if all types are inferred, false
|
|
/// otherwise. Flags an error if a type contradiction is found.
|
|
bool TreePattern::
|
|
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
|
|
if (NamedNodes.empty())
|
|
ComputeNamedNodes();
|
|
|
|
bool MadeChange = true;
|
|
while (MadeChange) {
|
|
MadeChange = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
|
|
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
|
|
MadeChange |= SimplifyTree(Trees[i]);
|
|
}
|
|
|
|
// If there are constraints on our named nodes, apply them.
|
|
for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
|
|
I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
|
|
SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
|
|
|
|
// If we have input named node types, propagate their types to the named
|
|
// values here.
|
|
if (InNamedTypes) {
|
|
// FIXME: Should be error?
|
|
assert(InNamedTypes->count(I->getKey()) &&
|
|
"Named node in output pattern but not input pattern?");
|
|
|
|
const SmallVectorImpl<TreePatternNode*> &InNodes =
|
|
InNamedTypes->find(I->getKey())->second;
|
|
|
|
// The input types should be fully resolved by now.
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
// If this node is a register class, and it is the root of the pattern
|
|
// then we're mapping something onto an input register. We allow
|
|
// changing the type of the input register in this case. This allows
|
|
// us to match things like:
|
|
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
|
|
if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
|
|
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
|
|
DI->getDef()->isSubClassOf("RegisterOperand")))
|
|
continue;
|
|
}
|
|
|
|
assert(Nodes[i]->getNumTypes() == 1 &&
|
|
InNodes[0]->getNumTypes() == 1 &&
|
|
"FIXME: cannot name multiple result nodes yet");
|
|
MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
|
|
*this);
|
|
}
|
|
}
|
|
|
|
// If there are multiple nodes with the same name, they must all have the
|
|
// same type.
|
|
if (I->second.size() > 1) {
|
|
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
|
|
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
|
|
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
|
|
"FIXME: cannot name multiple result nodes yet");
|
|
|
|
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
|
|
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HasUnresolvedTypes = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
|
|
return !HasUnresolvedTypes;
|
|
}
|
|
|
|
void TreePattern::print(raw_ostream &OS) const {
|
|
OS << getRecord()->getName();
|
|
if (!Args.empty()) {
|
|
OS << "(" << Args[0];
|
|
for (unsigned i = 1, e = Args.size(); i != e; ++i)
|
|
OS << ", " << Args[i];
|
|
OS << ")";
|
|
}
|
|
OS << ": ";
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "[\n";
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
|
|
OS << "\t";
|
|
Trees[i]->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "]\n";
|
|
}
|
|
|
|
void TreePattern::dump() const { print(errs()); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenDAGPatterns implementation
|
|
//
|
|
|
|
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
|
|
Records(R), Target(R) {
|
|
|
|
Intrinsics = LoadIntrinsics(Records, false);
|
|
TgtIntrinsics = LoadIntrinsics(Records, true);
|
|
ParseNodeInfo();
|
|
ParseNodeTransforms();
|
|
ParseComplexPatterns();
|
|
ParsePatternFragments();
|
|
ParseDefaultOperands();
|
|
ParseInstructions();
|
|
ParsePatterns();
|
|
|
|
// Generate variants. For example, commutative patterns can match
|
|
// multiple ways. Add them to PatternsToMatch as well.
|
|
GenerateVariants();
|
|
|
|
// Infer instruction flags. For example, we can detect loads,
|
|
// stores, and side effects in many cases by examining an
|
|
// instruction's pattern.
|
|
InferInstructionFlags();
|
|
|
|
// Verify that instruction flags match the patterns.
|
|
VerifyInstructionFlags();
|
|
}
|
|
|
|
CodeGenDAGPatterns::~CodeGenDAGPatterns() {
|
|
for (pf_iterator I = PatternFragments.begin(),
|
|
E = PatternFragments.end(); I != E; ++I)
|
|
delete I->second;
|
|
}
|
|
|
|
|
|
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
|
|
Record *N = Records.getDef(Name);
|
|
if (!N || !N->isSubClassOf("SDNode")) {
|
|
errs() << "Error getting SDNode '" << Name << "'!\n";
|
|
exit(1);
|
|
}
|
|
return N;
|
|
}
|
|
|
|
// Parse all of the SDNode definitions for the target, populating SDNodes.
|
|
void CodeGenDAGPatterns::ParseNodeInfo() {
|
|
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
|
|
while (!Nodes.empty()) {
|
|
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
|
|
Nodes.pop_back();
|
|
}
|
|
|
|
// Get the builtin intrinsic nodes.
|
|
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
|
|
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
|
|
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
|
|
}
|
|
|
|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
|
|
/// map, and emit them to the file as functions.
|
|
void CodeGenDAGPatterns::ParseNodeTransforms() {
|
|
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
|
|
while (!Xforms.empty()) {
|
|
Record *XFormNode = Xforms.back();
|
|
Record *SDNode = XFormNode->getValueAsDef("Opcode");
|
|
std::string Code = XFormNode->getValueAsString("XFormFunction");
|
|
SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
|
|
|
|
Xforms.pop_back();
|
|
}
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParseComplexPatterns() {
|
|
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
|
|
while (!AMs.empty()) {
|
|
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
|
|
AMs.pop_back();
|
|
}
|
|
}
|
|
|
|
|
|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
|
|
/// file, building up the PatternFragments map. After we've collected them all,
|
|
/// inline fragments together as necessary, so that there are no references left
|
|
/// inside a pattern fragment to a pattern fragment.
|
|
///
|
|
void CodeGenDAGPatterns::ParsePatternFragments() {
|
|
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
|
|
|
|
// First step, parse all of the fragments.
|
|
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
|
|
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
|
|
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
|
|
PatternFragments[Fragments[i]] = P;
|
|
|
|
// Validate the argument list, converting it to set, to discard duplicates.
|
|
std::vector<std::string> &Args = P->getArgList();
|
|
std::set<std::string> OperandsSet(Args.begin(), Args.end());
|
|
|
|
if (OperandsSet.count(""))
|
|
P->error("Cannot have unnamed 'node' values in pattern fragment!");
|
|
|
|
// Parse the operands list.
|
|
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
|
|
DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
|
|
// Special cases: ops == outs == ins. Different names are used to
|
|
// improve readability.
|
|
if (!OpsOp ||
|
|
(OpsOp->getDef()->getName() != "ops" &&
|
|
OpsOp->getDef()->getName() != "outs" &&
|
|
OpsOp->getDef()->getName() != "ins"))
|
|
P->error("Operands list should start with '(ops ... '!");
|
|
|
|
// Copy over the arguments.
|
|
Args.clear();
|
|
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
|
|
if (!isa<DefInit>(OpsList->getArg(j)) ||
|
|
cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
|
|
P->error("Operands list should all be 'node' values.");
|
|
if (OpsList->getArgName(j).empty())
|
|
P->error("Operands list should have names for each operand!");
|
|
if (!OperandsSet.count(OpsList->getArgName(j)))
|
|
P->error("'" + OpsList->getArgName(j) +
|
|
"' does not occur in pattern or was multiply specified!");
|
|
OperandsSet.erase(OpsList->getArgName(j));
|
|
Args.push_back(OpsList->getArgName(j));
|
|
}
|
|
|
|
if (!OperandsSet.empty())
|
|
P->error("Operands list does not contain an entry for operand '" +
|
|
*OperandsSet.begin() + "'!");
|
|
|
|
// If there is a code init for this fragment, keep track of the fact that
|
|
// this fragment uses it.
|
|
TreePredicateFn PredFn(P);
|
|
if (!PredFn.isAlwaysTrue())
|
|
P->getOnlyTree()->addPredicateFn(PredFn);
|
|
|
|
// If there is a node transformation corresponding to this, keep track of
|
|
// it.
|
|
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
|
|
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
|
|
P->getOnlyTree()->setTransformFn(Transform);
|
|
}
|
|
|
|
// Now that we've parsed all of the tree fragments, do a closure on them so
|
|
// that there are not references to PatFrags left inside of them.
|
|
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
|
|
TreePattern *ThePat = PatternFragments[Fragments[i]];
|
|
ThePat->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. Don't worry about it if we don't infer
|
|
// all of them, some may depend on the inputs of the pattern.
|
|
ThePat->InferAllTypes();
|
|
ThePat->resetError();
|
|
|
|
// If debugging, print out the pattern fragment result.
|
|
DEBUG(ThePat->dump());
|
|
}
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParseDefaultOperands() {
|
|
std::vector<Record*> DefaultOps;
|
|
DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
|
|
|
|
// Find some SDNode.
|
|
assert(!SDNodes.empty() && "No SDNodes parsed?");
|
|
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
|
|
|
|
for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
|
|
DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
|
|
|
|
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
|
|
// SomeSDnode so that we can parse this.
|
|
std::vector<std::pair<Init*, std::string> > Ops;
|
|
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
|
|
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
|
|
DefaultInfo->getArgName(op)));
|
|
DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
|
|
|
|
// Create a TreePattern to parse this.
|
|
TreePattern P(DefaultOps[i], DI, false, *this);
|
|
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
|
|
|
|
// Copy the operands over into a DAGDefaultOperand.
|
|
DAGDefaultOperand DefaultOpInfo;
|
|
|
|
TreePatternNode *T = P.getTree(0);
|
|
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
|
|
TreePatternNode *TPN = T->getChild(op);
|
|
while (TPN->ApplyTypeConstraints(P, false))
|
|
/* Resolve all types */;
|
|
|
|
if (TPN->ContainsUnresolvedType()) {
|
|
PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
|
|
DefaultOps[i]->getName() +"' doesn't have a concrete type!");
|
|
}
|
|
DefaultOpInfo.DefaultOps.push_back(TPN);
|
|
}
|
|
|
|
// Insert it into the DefaultOperands map so we can find it later.
|
|
DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
|
|
}
|
|
}
|
|
|
|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
|
|
/// instruction input. Return true if this is a real use.
|
|
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs) {
|
|
// No name -> not interesting.
|
|
if (Pat->getName().empty()) {
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
|
|
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
|
|
DI->getDef()->isSubClassOf("RegisterOperand")))
|
|
I->error("Input " + DI->getDef()->getName() + " must be named!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Record *Rec;
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
|
|
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
|
|
Rec = DI->getDef();
|
|
} else {
|
|
Rec = Pat->getOperator();
|
|
}
|
|
|
|
// SRCVALUE nodes are ignored.
|
|
if (Rec->getName() == "srcvalue")
|
|
return false;
|
|
|
|
TreePatternNode *&Slot = InstInputs[Pat->getName()];
|
|
if (!Slot) {
|
|
Slot = Pat;
|
|
return true;
|
|
}
|
|
Record *SlotRec;
|
|
if (Slot->isLeaf()) {
|
|
SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
|
|
} else {
|
|
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
|
|
SlotRec = Slot->getOperator();
|
|
}
|
|
|
|
// Ensure that the inputs agree if we've already seen this input.
|
|
if (Rec != SlotRec)
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
if (Slot->getExtTypes() != Pat->getExtTypes())
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
return true;
|
|
}
|
|
|
|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
|
|
/// part of "I", the instruction), computing the set of inputs and outputs of
|
|
/// the pattern. Report errors if we see anything naughty.
|
|
void CodeGenDAGPatterns::
|
|
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs,
|
|
std::map<std::string, TreePatternNode*>&InstResults,
|
|
std::vector<Record*> &InstImpResults) {
|
|
if (Pat->isLeaf()) {
|
|
bool isUse = HandleUse(I, Pat, InstInputs);
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
if (Pat->getOperator()->getName() == "implicit") {
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("implicitly defined value should be a register!");
|
|
|
|
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
|
|
if (!Val || !Val->getDef()->isSubClassOf("Register"))
|
|
I->error("implicitly defined value should be a register!");
|
|
InstImpResults.push_back(Val->getDef());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Pat->getOperator()->getName() != "set") {
|
|
// If this is not a set, verify that the children nodes are not void typed,
|
|
// and recurse.
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
if (Pat->getChild(i)->getNumTypes() == 0)
|
|
I->error("Cannot have void nodes inside of patterns!");
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
|
|
InstImpResults);
|
|
}
|
|
|
|
// If this is a non-leaf node with no children, treat it basically as if
|
|
// it were a leaf. This handles nodes like (imm).
|
|
bool isUse = HandleUse(I, Pat, InstInputs);
|
|
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this is a set, validate and collect instruction results.
|
|
if (Pat->getNumChildren() == 0)
|
|
I->error("set requires operands!");
|
|
|
|
if (Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function on a set node!");
|
|
|
|
// Check the set destinations.
|
|
unsigned NumDests = Pat->getNumChildren()-1;
|
|
for (unsigned i = 0; i != NumDests; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("set destination should be a register!");
|
|
|
|
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
|
|
if (!Val)
|
|
I->error("set destination should be a register!");
|
|
|
|
if (Val->getDef()->isSubClassOf("RegisterClass") ||
|
|
Val->getDef()->isSubClassOf("RegisterOperand") ||
|
|
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
|
|
if (Dest->getName().empty())
|
|
I->error("set destination must have a name!");
|
|
if (InstResults.count(Dest->getName()))
|
|
I->error("cannot set '" + Dest->getName() +"' multiple times");
|
|
InstResults[Dest->getName()] = Dest;
|
|
} else if (Val->getDef()->isSubClassOf("Register")) {
|
|
InstImpResults.push_back(Val->getDef());
|
|
} else {
|
|
I->error("set destination should be a register!");
|
|
}
|
|
}
|
|
|
|
// Verify and collect info from the computation.
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
|
|
InstInputs, InstResults, InstImpResults);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class InstAnalyzer {
|
|
const CodeGenDAGPatterns &CDP;
|
|
public:
|
|
bool hasSideEffects;
|
|
bool mayStore;
|
|
bool mayLoad;
|
|
bool isBitcast;
|
|
bool isVariadic;
|
|
|
|
InstAnalyzer(const CodeGenDAGPatterns &cdp)
|
|
: CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
|
|
isBitcast(false), isVariadic(false) {}
|
|
|
|
void Analyze(const TreePattern *Pat) {
|
|
// Assume only the first tree is the pattern. The others are clobber nodes.
|
|
AnalyzeNode(Pat->getTree(0));
|
|
}
|
|
|
|
void Analyze(const PatternToMatch *Pat) {
|
|
AnalyzeNode(Pat->getSrcPattern());
|
|
}
|
|
|
|
private:
|
|
bool IsNodeBitcast(const TreePatternNode *N) const {
|
|
if (hasSideEffects || mayLoad || mayStore || isVariadic)
|
|
return false;
|
|
|
|
if (N->getNumChildren() != 2)
|
|
return false;
|
|
|
|
const TreePatternNode *N0 = N->getChild(0);
|
|
if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
|
|
return false;
|
|
|
|
const TreePatternNode *N1 = N->getChild(1);
|
|
if (N1->isLeaf())
|
|
return false;
|
|
if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
|
|
return false;
|
|
|
|
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
|
|
if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
|
|
return false;
|
|
return OpInfo.getEnumName() == "ISD::BITCAST";
|
|
}
|
|
|
|
public:
|
|
void AnalyzeNode(const TreePatternNode *N) {
|
|
if (N->isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
|
|
Record *LeafRec = DI->getDef();
|
|
// Handle ComplexPattern leaves.
|
|
if (LeafRec->isSubClassOf("ComplexPattern")) {
|
|
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
|
|
if (CP.hasProperty(SDNPMayStore)) mayStore = true;
|
|
if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
|
|
if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Analyze children.
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
AnalyzeNode(N->getChild(i));
|
|
|
|
// Ignore set nodes, which are not SDNodes.
|
|
if (N->getOperator()->getName() == "set") {
|
|
isBitcast = IsNodeBitcast(N);
|
|
return;
|
|
}
|
|
|
|
// Get information about the SDNode for the operator.
|
|
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
|
|
|
|
// Notice properties of the node.
|
|
if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
|
|
if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
|
|
if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
|
|
if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
|
|
|
|
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
|
|
// If this is an intrinsic, analyze it.
|
|
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
|
|
mayLoad = true;// These may load memory.
|
|
|
|
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
|
|
mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
|
|
|
|
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
|
|
// WriteMem intrinsics can have other strange effects.
|
|
hasSideEffects = true;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
static bool InferFromPattern(CodeGenInstruction &InstInfo,
|
|
const InstAnalyzer &PatInfo,
|
|
Record *PatDef) {
|
|
bool Error = false;
|
|
|
|
// Remember where InstInfo got its flags.
|
|
if (InstInfo.hasUndefFlags())
|
|
InstInfo.InferredFrom = PatDef;
|
|
|
|
// Check explicitly set flags for consistency.
|
|
if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
|
|
!InstInfo.hasSideEffects_Unset) {
|
|
// Allow explicitly setting hasSideEffects = 1 on instructions, even when
|
|
// the pattern has no side effects. That could be useful for div/rem
|
|
// instructions that may trap.
|
|
if (!InstInfo.hasSideEffects) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
|
|
Twine(InstInfo.hasSideEffects));
|
|
}
|
|
}
|
|
|
|
if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
|
|
Twine(InstInfo.mayStore));
|
|
}
|
|
|
|
if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
|
|
// Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
|
|
// Some targets translate imediates to loads.
|
|
if (!InstInfo.mayLoad) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
|
|
Twine(InstInfo.mayLoad));
|
|
}
|
|
}
|
|
|
|
// Transfer inferred flags.
|
|
InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
|
|
InstInfo.mayStore |= PatInfo.mayStore;
|
|
InstInfo.mayLoad |= PatInfo.mayLoad;
|
|
|
|
// These flags are silently added without any verification.
|
|
InstInfo.isBitcast |= PatInfo.isBitcast;
|
|
|
|
// Don't infer isVariadic. This flag means something different on SDNodes and
|
|
// instructions. For example, a CALL SDNode is variadic because it has the
|
|
// call arguments as operands, but a CALL instruction is not variadic - it
|
|
// has argument registers as implicit, not explicit uses.
|
|
|
|
return Error;
|
|
}
|
|
|
|
/// hasNullFragReference - Return true if the DAG has any reference to the
|
|
/// null_frag operator.
|
|
static bool hasNullFragReference(DagInit *DI) {
|
|
DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
|
|
if (!OpDef) return false;
|
|
Record *Operator = OpDef->getDef();
|
|
|
|
// If this is the null fragment, return true.
|
|
if (Operator->getName() == "null_frag") return true;
|
|
// If any of the arguments reference the null fragment, return true.
|
|
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
|
|
DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
|
|
if (Arg && hasNullFragReference(Arg))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasNullFragReference - Return true if any DAG in the list references
|
|
/// the null_frag operator.
|
|
static bool hasNullFragReference(ListInit *LI) {
|
|
for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
|
|
DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
|
|
assert(DI && "non-dag in an instruction Pattern list?!");
|
|
if (hasNullFragReference(DI))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Get all the instructions in a tree.
|
|
static void
|
|
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
|
|
if (Tree->isLeaf())
|
|
return;
|
|
if (Tree->getOperator()->isSubClassOf("Instruction"))
|
|
Instrs.push_back(Tree->getOperator());
|
|
for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
|
|
getInstructionsInTree(Tree->getChild(i), Instrs);
|
|
}
|
|
|
|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
|
|
/// any fragments involved. This populates the Instructions list with fully
|
|
/// resolved instructions.
|
|
void CodeGenDAGPatterns::ParseInstructions() {
|
|
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
|
|
|
|
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
|
|
ListInit *LI = 0;
|
|
|
|
if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
|
|
LI = Instrs[i]->getValueAsListInit("Pattern");
|
|
|
|
// If there is no pattern, only collect minimal information about the
|
|
// instruction for its operand list. We have to assume that there is one
|
|
// result, as we have no detailed info. A pattern which references the
|
|
// null_frag operator is as-if no pattern were specified. Normally this
|
|
// is from a multiclass expansion w/ a SDPatternOperator passed in as
|
|
// null_frag.
|
|
if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
|
|
std::vector<Record*> Results;
|
|
std::vector<Record*> Operands;
|
|
|
|
CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
|
|
|
|
if (InstInfo.Operands.size() != 0) {
|
|
if (InstInfo.Operands.NumDefs == 0) {
|
|
// These produce no results
|
|
for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
|
|
Operands.push_back(InstInfo.Operands[j].Rec);
|
|
} else {
|
|
// Assume the first operand is the result.
|
|
Results.push_back(InstInfo.Operands[0].Rec);
|
|
|
|
// The rest are inputs.
|
|
for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
|
|
Operands.push_back(InstInfo.Operands[j].Rec);
|
|
}
|
|
}
|
|
|
|
// Create and insert the instruction.
|
|
std::vector<Record*> ImpResults;
|
|
Instructions.insert(std::make_pair(Instrs[i],
|
|
DAGInstruction(0, Results, Operands, ImpResults)));
|
|
continue; // no pattern.
|
|
}
|
|
|
|
// Parse the instruction.
|
|
TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
|
|
// Inline pattern fragments into it.
|
|
I->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this instruction pattern: report it to the user.
|
|
if (!I->InferAllTypes())
|
|
I->error("Could not infer all types in pattern!");
|
|
|
|
// InstInputs - Keep track of all of the inputs of the instruction, along
|
|
// with the record they are declared as.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
|
|
// InstResults - Keep track of all the virtual registers that are 'set'
|
|
// in the instruction, including what reg class they are.
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
|
|
std::vector<Record*> InstImpResults;
|
|
|
|
// Verify that the top-level forms in the instruction are of void type, and
|
|
// fill in the InstResults map.
|
|
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
|
|
TreePatternNode *Pat = I->getTree(j);
|
|
if (Pat->getNumTypes() != 0)
|
|
I->error("Top-level forms in instruction pattern should have"
|
|
" void types");
|
|
|
|
// Find inputs and outputs, and verify the structure of the uses/defs.
|
|
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
|
|
InstImpResults);
|
|
}
|
|
|
|
// Now that we have inputs and outputs of the pattern, inspect the operands
|
|
// list for the instruction. This determines the order that operands are
|
|
// added to the machine instruction the node corresponds to.
|
|
unsigned NumResults = InstResults.size();
|
|
|
|
// Parse the operands list from the (ops) list, validating it.
|
|
assert(I->getArgList().empty() && "Args list should still be empty here!");
|
|
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
|
|
|
|
// Check that all of the results occur first in the list.
|
|
std::vector<Record*> Results;
|
|
TreePatternNode *Res0Node = 0;
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
if (i == CGI.Operands.size())
|
|
I->error("'" + InstResults.begin()->first +
|
|
"' set but does not appear in operand list!");
|
|
const std::string &OpName = CGI.Operands[i].Name;
|
|
|
|
// Check that it exists in InstResults.
|
|
TreePatternNode *RNode = InstResults[OpName];
|
|
if (RNode == 0)
|
|
I->error("Operand $" + OpName + " does not exist in operand list!");
|
|
|
|
if (i == 0)
|
|
Res0Node = RNode;
|
|
Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
|
|
if (R == 0)
|
|
I->error("Operand $" + OpName + " should be a set destination: all "
|
|
"outputs must occur before inputs in operand list!");
|
|
|
|
if (CGI.Operands[i].Rec != R)
|
|
I->error("Operand $" + OpName + " class mismatch!");
|
|
|
|
// Remember the return type.
|
|
Results.push_back(CGI.Operands[i].Rec);
|
|
|
|
// Okay, this one checks out.
|
|
InstResults.erase(OpName);
|
|
}
|
|
|
|
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
|
|
// the copy while we're checking the inputs.
|
|
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
|
|
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
std::vector<Record*> Operands;
|
|
for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
|
|
CGIOperandList::OperandInfo &Op = CGI.Operands[i];
|
|
const std::string &OpName = Op.Name;
|
|
if (OpName.empty())
|
|
I->error("Operand #" + utostr(i) + " in operands list has no name!");
|
|
|
|
if (!InstInputsCheck.count(OpName)) {
|
|
// If this is an operand with a DefaultOps set filled in, we can ignore
|
|
// this. When we codegen it, we will do so as always executed.
|
|
if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
|
|
// Does it have a non-empty DefaultOps field? If so, ignore this
|
|
// operand.
|
|
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
|
|
continue;
|
|
}
|
|
I->error("Operand $" + OpName +
|
|
" does not appear in the instruction pattern");
|
|
}
|
|
TreePatternNode *InVal = InstInputsCheck[OpName];
|
|
InstInputsCheck.erase(OpName); // It occurred, remove from map.
|
|
|
|
if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
|
|
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
|
|
if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
|
|
I->error("Operand $" + OpName + "'s register class disagrees"
|
|
" between the operand and pattern");
|
|
}
|
|
Operands.push_back(Op.Rec);
|
|
|
|
// Construct the result for the dest-pattern operand list.
|
|
TreePatternNode *OpNode = InVal->clone();
|
|
|
|
// No predicate is useful on the result.
|
|
OpNode->clearPredicateFns();
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(0);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
|
|
}
|
|
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
|
|
if (!InstInputsCheck.empty())
|
|
I->error("Input operand $" + InstInputsCheck.begin()->first +
|
|
" occurs in pattern but not in operands list!");
|
|
|
|
TreePatternNode *ResultPattern =
|
|
new TreePatternNode(I->getRecord(), ResultNodeOperands,
|
|
GetNumNodeResults(I->getRecord(), *this));
|
|
// Copy fully inferred output node type to instruction result pattern.
|
|
for (unsigned i = 0; i != NumResults; ++i)
|
|
ResultPattern->setType(i, Res0Node->getExtType(i));
|
|
|
|
// Create and insert the instruction.
|
|
// FIXME: InstImpResults should not be part of DAGInstruction.
|
|
DAGInstruction TheInst(I, Results, Operands, InstImpResults);
|
|
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
|
|
|
|
// Use a temporary tree pattern to infer all types and make sure that the
|
|
// constructed result is correct. This depends on the instruction already
|
|
// being inserted into the Instructions map.
|
|
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
|
|
Temp.InferAllTypes(&I->getNamedNodesMap());
|
|
|
|
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
|
|
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
|
|
|
|
DEBUG(I->dump());
|
|
}
|
|
|
|
// If we can, convert the instructions to be patterns that are matched!
|
|
for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
|
|
Instructions.begin(),
|
|
E = Instructions.end(); II != E; ++II) {
|
|
DAGInstruction &TheInst = II->second;
|
|
TreePattern *I = TheInst.getPattern();
|
|
if (I == 0) continue; // No pattern.
|
|
|
|
// FIXME: Assume only the first tree is the pattern. The others are clobber
|
|
// nodes.
|
|
TreePatternNode *Pattern = I->getTree(0);
|
|
TreePatternNode *SrcPattern;
|
|
if (Pattern->getOperator()->getName() == "set") {
|
|
SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
|
|
} else{
|
|
// Not a set (store or something?)
|
|
SrcPattern = Pattern;
|
|
}
|
|
|
|
Record *Instr = II->first;
|
|
AddPatternToMatch(I,
|
|
PatternToMatch(Instr,
|
|
Instr->getValueAsListInit("Predicates"),
|
|
SrcPattern,
|
|
TheInst.getResultPattern(),
|
|
TheInst.getImpResults(),
|
|
Instr->getValueAsInt("AddedComplexity"),
|
|
Instr->getID()));
|
|
}
|
|
}
|
|
|
|
|
|
typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
|
|
|
|
static void FindNames(const TreePatternNode *P,
|
|
std::map<std::string, NameRecord> &Names,
|
|
TreePattern *PatternTop) {
|
|
if (!P->getName().empty()) {
|
|
NameRecord &Rec = Names[P->getName()];
|
|
// If this is the first instance of the name, remember the node.
|
|
if (Rec.second++ == 0)
|
|
Rec.first = P;
|
|
else if (Rec.first->getExtTypes() != P->getExtTypes())
|
|
PatternTop->error("repetition of value: $" + P->getName() +
|
|
" where different uses have different types!");
|
|
}
|
|
|
|
if (!P->isLeaf()) {
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
FindNames(P->getChild(i), Names, PatternTop);
|
|
}
|
|
}
|
|
|
|
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
|
|
const PatternToMatch &PTM) {
|
|
// Do some sanity checking on the pattern we're about to match.
|
|
std::string Reason;
|
|
if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
|
|
PrintWarning(Pattern->getRecord()->getLoc(),
|
|
Twine("Pattern can never match: ") + Reason);
|
|
return;
|
|
}
|
|
|
|
// If the source pattern's root is a complex pattern, that complex pattern
|
|
// must specify the nodes it can potentially match.
|
|
if (const ComplexPattern *CP =
|
|
PTM.getSrcPattern()->getComplexPatternInfo(*this))
|
|
if (CP->getRootNodes().empty())
|
|
Pattern->error("ComplexPattern at root must specify list of opcodes it"
|
|
" could match");
|
|
|
|
|
|
// Find all of the named values in the input and output, ensure they have the
|
|
// same type.
|
|
std::map<std::string, NameRecord> SrcNames, DstNames;
|
|
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
|
|
FindNames(PTM.getDstPattern(), DstNames, Pattern);
|
|
|
|
// Scan all of the named values in the destination pattern, rejecting them if
|
|
// they don't exist in the input pattern.
|
|
for (std::map<std::string, NameRecord>::iterator
|
|
I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
|
|
if (SrcNames[I->first].first == 0)
|
|
Pattern->error("Pattern has input without matching name in output: $" +
|
|
I->first);
|
|
}
|
|
|
|
// Scan all of the named values in the source pattern, rejecting them if the
|
|
// name isn't used in the dest, and isn't used to tie two values together.
|
|
for (std::map<std::string, NameRecord>::iterator
|
|
I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
|
|
if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
|
|
Pattern->error("Pattern has dead named input: $" + I->first);
|
|
|
|
PatternsToMatch.push_back(PTM);
|
|
}
|
|
|
|
|
|
|
|
void CodeGenDAGPatterns::InferInstructionFlags() {
|
|
const std::vector<const CodeGenInstruction*> &Instructions =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
// First try to infer flags from the primary instruction pattern, if any.
|
|
SmallVector<CodeGenInstruction*, 8> Revisit;
|
|
unsigned Errors = 0;
|
|
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
|
|
CodeGenInstruction &InstInfo =
|
|
const_cast<CodeGenInstruction &>(*Instructions[i]);
|
|
|
|
// Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
|
|
// This flag is obsolete and will be removed.
|
|
if (InstInfo.neverHasSideEffects) {
|
|
assert(!InstInfo.hasSideEffects);
|
|
InstInfo.hasSideEffects_Unset = false;
|
|
}
|
|
|
|
// Get the primary instruction pattern.
|
|
const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
|
|
if (!Pattern) {
|
|
if (InstInfo.hasUndefFlags())
|
|
Revisit.push_back(&InstInfo);
|
|
continue;
|
|
}
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(Pattern);
|
|
Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
|
|
}
|
|
|
|
// Second, look for single-instruction patterns defined outside the
|
|
// instruction.
|
|
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
|
|
const PatternToMatch &PTM = *I;
|
|
|
|
// We can only infer from single-instruction patterns, otherwise we won't
|
|
// know which instruction should get the flags.
|
|
SmallVector<Record*, 8> PatInstrs;
|
|
getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
|
|
if (PatInstrs.size() != 1)
|
|
continue;
|
|
|
|
// Get the single instruction.
|
|
CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
|
|
|
|
// Only infer properties from the first pattern. We'll verify the others.
|
|
if (InstInfo.InferredFrom)
|
|
continue;
|
|
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(&PTM);
|
|
Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
|
|
}
|
|
|
|
if (Errors)
|
|
PrintFatalError("pattern conflicts");
|
|
|
|
// Revisit instructions with undefined flags and no pattern.
|
|
if (Target.guessInstructionProperties()) {
|
|
for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
|
|
CodeGenInstruction &InstInfo = *Revisit[i];
|
|
if (InstInfo.InferredFrom)
|
|
continue;
|
|
// The mayLoad and mayStore flags default to false.
|
|
// Conservatively assume hasSideEffects if it wasn't explicit.
|
|
if (InstInfo.hasSideEffects_Unset)
|
|
InstInfo.hasSideEffects = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Complain about any flags that are still undefined.
|
|
for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
|
|
CodeGenInstruction &InstInfo = *Revisit[i];
|
|
if (InstInfo.InferredFrom)
|
|
continue;
|
|
if (InstInfo.hasSideEffects_Unset)
|
|
PrintError(InstInfo.TheDef->getLoc(),
|
|
"Can't infer hasSideEffects from patterns");
|
|
if (InstInfo.mayStore_Unset)
|
|
PrintError(InstInfo.TheDef->getLoc(),
|
|
"Can't infer mayStore from patterns");
|
|
if (InstInfo.mayLoad_Unset)
|
|
PrintError(InstInfo.TheDef->getLoc(),
|
|
"Can't infer mayLoad from patterns");
|
|
}
|
|
}
|
|
|
|
|
|
/// Verify instruction flags against pattern node properties.
|
|
void CodeGenDAGPatterns::VerifyInstructionFlags() {
|
|
unsigned Errors = 0;
|
|
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
|
|
const PatternToMatch &PTM = *I;
|
|
SmallVector<Record*, 8> Instrs;
|
|
getInstructionsInTree(PTM.getDstPattern(), Instrs);
|
|
if (Instrs.empty())
|
|
continue;
|
|
|
|
// Count the number of instructions with each flag set.
|
|
unsigned NumSideEffects = 0;
|
|
unsigned NumStores = 0;
|
|
unsigned NumLoads = 0;
|
|
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
|
|
const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
|
|
NumSideEffects += InstInfo.hasSideEffects;
|
|
NumStores += InstInfo.mayStore;
|
|
NumLoads += InstInfo.mayLoad;
|
|
}
|
|
|
|
// Analyze the source pattern.
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(&PTM);
|
|
|
|
// Collect error messages.
|
|
SmallVector<std::string, 4> Msgs;
|
|
|
|
// Check for missing flags in the output.
|
|
// Permit extra flags for now at least.
|
|
if (PatInfo.hasSideEffects && !NumSideEffects)
|
|
Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
|
|
|
|
// Don't verify store flags on instructions with side effects. At least for
|
|
// intrinsics, side effects implies mayStore.
|
|
if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
|
|
Msgs.push_back("pattern may store, but mayStore isn't set");
|
|
|
|
// Similarly, mayStore implies mayLoad on intrinsics.
|
|
if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
|
|
Msgs.push_back("pattern may load, but mayLoad isn't set");
|
|
|
|
// Print error messages.
|
|
if (Msgs.empty())
|
|
continue;
|
|
++Errors;
|
|
|
|
for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
|
|
PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
|
|
(Instrs.size() == 1 ?
|
|
"instruction" : "output instructions"));
|
|
// Provide the location of the relevant instruction definitions.
|
|
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
|
|
if (Instrs[i] != PTM.getSrcRecord())
|
|
PrintError(Instrs[i]->getLoc(), "defined here");
|
|
const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
|
|
if (InstInfo.InferredFrom &&
|
|
InstInfo.InferredFrom != InstInfo.TheDef &&
|
|
InstInfo.InferredFrom != PTM.getSrcRecord())
|
|
PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
|
|
}
|
|
}
|
|
if (Errors)
|
|
PrintFatalError("Errors in DAG patterns");
|
|
}
|
|
|
|
/// Given a pattern result with an unresolved type, see if we can find one
|
|
/// instruction with an unresolved result type. Force this result type to an
|
|
/// arbitrary element if it's possible types to converge results.
|
|
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
|
|
if (N->isLeaf())
|
|
return false;
|
|
|
|
// Analyze children.
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
if (ForceArbitraryInstResultType(N->getChild(i), TP))
|
|
return true;
|
|
|
|
if (!N->getOperator()->isSubClassOf("Instruction"))
|
|
return false;
|
|
|
|
// If this type is already concrete or completely unknown we can't do
|
|
// anything.
|
|
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
|
|
if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
|
|
continue;
|
|
|
|
// Otherwise, force its type to the first possibility (an arbitrary choice).
|
|
if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParsePatterns() {
|
|
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
|
|
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
Record *CurPattern = Patterns[i];
|
|
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
|
|
|
|
// If the pattern references the null_frag, there's nothing to do.
|
|
if (hasNullFragReference(Tree))
|
|
continue;
|
|
|
|
TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Pattern->InlinePatternFragments();
|
|
|
|
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
|
|
if (LI->getSize() == 0) continue; // no pattern.
|
|
|
|
// Parse the instruction.
|
|
TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Result->InlinePatternFragments();
|
|
|
|
if (Result->getNumTrees() != 1)
|
|
Result->error("Cannot handle instructions producing instructions "
|
|
"with temporaries yet!");
|
|
|
|
bool IterateInference;
|
|
bool InferredAllPatternTypes, InferredAllResultTypes;
|
|
do {
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllPatternTypes =
|
|
Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllResultTypes =
|
|
Result->InferAllTypes(&Pattern->getNamedNodesMap());
|
|
|
|
IterateInference = false;
|
|
|
|
// Apply the type of the result to the source pattern. This helps us
|
|
// resolve cases where the input type is known to be a pointer type (which
|
|
// is considered resolved), but the result knows it needs to be 32- or
|
|
// 64-bits. Infer the other way for good measure.
|
|
for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
|
|
Pattern->getTree(0)->getNumTypes());
|
|
i != e; ++i) {
|
|
IterateInference = Pattern->getTree(0)->
|
|
UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
|
|
IterateInference |= Result->getTree(0)->
|
|
UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
|
|
}
|
|
|
|
// If our iteration has converged and the input pattern's types are fully
|
|
// resolved but the result pattern is not fully resolved, we may have a
|
|
// situation where we have two instructions in the result pattern and
|
|
// the instructions require a common register class, but don't care about
|
|
// what actual MVT is used. This is actually a bug in our modelling:
|
|
// output patterns should have register classes, not MVTs.
|
|
//
|
|
// In any case, to handle this, we just go through and disambiguate some
|
|
// arbitrary types to the result pattern's nodes.
|
|
if (!IterateInference && InferredAllPatternTypes &&
|
|
!InferredAllResultTypes)
|
|
IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
|
|
*Result);
|
|
} while (IterateInference);
|
|
|
|
// Verify that we inferred enough types that we can do something with the
|
|
// pattern and result. If these fire the user has to add type casts.
|
|
if (!InferredAllPatternTypes)
|
|
Pattern->error("Could not infer all types in pattern!");
|
|
if (!InferredAllResultTypes) {
|
|
Pattern->dump();
|
|
Result->error("Could not infer all types in pattern result!");
|
|
}
|
|
|
|
// Validate that the input pattern is correct.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
std::vector<Record*> InstImpResults;
|
|
for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
|
|
FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
|
|
InstInputs, InstResults,
|
|
InstImpResults);
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
TreePatternNode *DstPattern = Result->getOnlyTree();
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
|
|
TreePatternNode *OpNode = DstPattern->getChild(ii);
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(0);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
|
|
}
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
DstPattern = Result->getOnlyTree();
|
|
if (!DstPattern->isLeaf())
|
|
DstPattern = new TreePatternNode(DstPattern->getOperator(),
|
|
ResultNodeOperands,
|
|
DstPattern->getNumTypes());
|
|
|
|
for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
|
|
DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
|
|
|
|
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
|
|
Temp.InferAllTypes();
|
|
|
|
|
|
AddPatternToMatch(Pattern,
|
|
PatternToMatch(CurPattern,
|
|
CurPattern->getValueAsListInit("Predicates"),
|
|
Pattern->getTree(0),
|
|
Temp.getOnlyTree(), InstImpResults,
|
|
CurPattern->getValueAsInt("AddedComplexity"),
|
|
CurPattern->getID()));
|
|
}
|
|
}
|
|
|
|
/// CombineChildVariants - Given a bunch of permutations of each child of the
|
|
/// 'operator' node, put them together in all possible ways.
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
// Make sure that each operand has at least one variant to choose from.
|
|
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
|
|
if (ChildVariants[i].empty())
|
|
return;
|
|
|
|
// The end result is an all-pairs construction of the resultant pattern.
|
|
std::vector<unsigned> Idxs;
|
|
Idxs.resize(ChildVariants.size());
|
|
bool NotDone;
|
|
do {
|
|
#ifndef NDEBUG
|
|
DEBUG(if (!Idxs.empty()) {
|
|
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
|
|
for (unsigned i = 0; i < Idxs.size(); ++i) {
|
|
errs() << Idxs[i] << " ";
|
|
}
|
|
errs() << "]\n";
|
|
});
|
|
#endif
|
|
// Create the variant and add it to the output list.
|
|
std::vector<TreePatternNode*> NewChildren;
|
|
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
|
|
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
|
|
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
|
|
Orig->getNumTypes());
|
|
|
|
// Copy over properties.
|
|
R->setName(Orig->getName());
|
|
R->setPredicateFns(Orig->getPredicateFns());
|
|
R->setTransformFn(Orig->getTransformFn());
|
|
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
|
|
R->setType(i, Orig->getExtType(i));
|
|
|
|
// If this pattern cannot match, do not include it as a variant.
|
|
std::string ErrString;
|
|
if (!R->canPatternMatch(ErrString, CDP)) {
|
|
delete R;
|
|
} else {
|
|
bool AlreadyExists = false;
|
|
|
|
// Scan to see if this pattern has already been emitted. We can get
|
|
// duplication due to things like commuting:
|
|
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
|
|
// which are the same pattern. Ignore the dups.
|
|
for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
|
|
if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
|
|
AlreadyExists = true;
|
|
break;
|
|
}
|
|
|
|
if (AlreadyExists)
|
|
delete R;
|
|
else
|
|
OutVariants.push_back(R);
|
|
}
|
|
|
|
// Increment indices to the next permutation by incrementing the
|
|
// indicies from last index backward, e.g., generate the sequence
|
|
// [0, 0], [0, 1], [1, 0], [1, 1].
|
|
int IdxsIdx;
|
|
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
|
|
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
|
|
Idxs[IdxsIdx] = 0;
|
|
else
|
|
break;
|
|
}
|
|
NotDone = (IdxsIdx >= 0);
|
|
} while (NotDone);
|
|
}
|
|
|
|
/// CombineChildVariants - A helper function for binary operators.
|
|
///
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<TreePatternNode*> &LHS,
|
|
const std::vector<TreePatternNode*> &RHS,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.push_back(LHS);
|
|
ChildVariants.push_back(RHS);
|
|
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
|
|
}
|
|
|
|
|
|
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
|
|
std::vector<TreePatternNode *> &Children) {
|
|
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
|
|
Record *Operator = N->getOperator();
|
|
|
|
// Only permit raw nodes.
|
|
if (!N->getName().empty() || !N->getPredicateFns().empty() ||
|
|
N->getTransformFn()) {
|
|
Children.push_back(N);
|
|
return;
|
|
}
|
|
|
|
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(0));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
|
|
|
|
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(1));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
|
|
}
|
|
|
|
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
|
|
/// the (potentially recursive) pattern by using algebraic laws.
|
|
///
|
|
static void GenerateVariantsOf(TreePatternNode *N,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
// We cannot permute leaves.
|
|
if (N->isLeaf()) {
|
|
OutVariants.push_back(N);
|
|
return;
|
|
}
|
|
|
|
// Look up interesting info about the node.
|
|
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
|
|
|
|
// If this node is associative, re-associate.
|
|
if (NodeInfo.hasProperty(SDNPAssociative)) {
|
|
// Re-associate by pulling together all of the linked operators
|
|
std::vector<TreePatternNode*> MaximalChildren;
|
|
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
|
|
|
|
// Only handle child sizes of 3. Otherwise we'll end up trying too many
|
|
// permutations.
|
|
if (MaximalChildren.size() == 3) {
|
|
// Find the variants of all of our maximal children.
|
|
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
|
|
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
|
|
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
|
|
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
|
|
|
|
// There are only two ways we can permute the tree:
|
|
// (A op B) op C and A op (B op C)
|
|
// Within these forms, we can also permute A/B/C.
|
|
|
|
// Generate legal pair permutations of A/B/C.
|
|
std::vector<TreePatternNode*> ABVariants;
|
|
std::vector<TreePatternNode*> BAVariants;
|
|
std::vector<TreePatternNode*> ACVariants;
|
|
std::vector<TreePatternNode*> CAVariants;
|
|
std::vector<TreePatternNode*> BCVariants;
|
|
std::vector<TreePatternNode*> CBVariants;
|
|
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
|
|
|
|
// Combine those into the result: (x op x) op x
|
|
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
|
|
|
|
// Combine those into the result: x op (x op x)
|
|
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Compute permutations of all children.
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.resize(N->getNumChildren());
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
|
|
|
|
// Build all permutations based on how the children were formed.
|
|
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
|
|
|
|
// If this node is commutative, consider the commuted order.
|
|
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
|
|
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
|
|
assert((N->getNumChildren()==2 || isCommIntrinsic) &&
|
|
"Commutative but doesn't have 2 children!");
|
|
// Don't count children which are actually register references.
|
|
unsigned NC = 0;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
if (Child->isLeaf())
|
|
if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
|
|
Record *RR = DI->getDef();
|
|
if (RR->isSubClassOf("Register"))
|
|
continue;
|
|
}
|
|
NC++;
|
|
}
|
|
// Consider the commuted order.
|
|
if (isCommIntrinsic) {
|
|
// Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
|
|
// operands are the commutative operands, and there might be more operands
|
|
// after those.
|
|
assert(NC >= 3 &&
|
|
"Commutative intrinsic should have at least 3 childrean!");
|
|
std::vector<std::vector<TreePatternNode*> > Variants;
|
|
Variants.push_back(ChildVariants[0]); // Intrinsic id.
|
|
Variants.push_back(ChildVariants[2]);
|
|
Variants.push_back(ChildVariants[1]);
|
|
for (unsigned i = 3; i != NC; ++i)
|
|
Variants.push_back(ChildVariants[i]);
|
|
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
|
|
} else if (NC == 2)
|
|
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
|
|
OutVariants, CDP, DepVars);
|
|
}
|
|
}
|
|
|
|
|
|
// GenerateVariants - Generate variants. For example, commutative patterns can
|
|
// match multiple ways. Add them to PatternsToMatch as well.
|
|
void CodeGenDAGPatterns::GenerateVariants() {
|
|
DEBUG(errs() << "Generating instruction variants.\n");
|
|
|
|
// Loop over all of the patterns we've collected, checking to see if we can
|
|
// generate variants of the instruction, through the exploitation of
|
|
// identities. This permits the target to provide aggressive matching without
|
|
// the .td file having to contain tons of variants of instructions.
|
|
//
|
|
// Note that this loop adds new patterns to the PatternsToMatch list, but we
|
|
// intentionally do not reconsider these. Any variants of added patterns have
|
|
// already been added.
|
|
//
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
MultipleUseVarSet DepVars;
|
|
std::vector<TreePatternNode*> Variants;
|
|
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
|
|
DEBUG(errs() << "Dependent/multiply used variables: ");
|
|
DEBUG(DumpDepVars(DepVars));
|
|
DEBUG(errs() << "\n");
|
|
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
|
|
DepVars);
|
|
|
|
assert(!Variants.empty() && "Must create at least original variant!");
|
|
Variants.erase(Variants.begin()); // Remove the original pattern.
|
|
|
|
if (Variants.empty()) // No variants for this pattern.
|
|
continue;
|
|
|
|
DEBUG(errs() << "FOUND VARIANTS OF: ";
|
|
PatternsToMatch[i].getSrcPattern()->dump();
|
|
errs() << "\n");
|
|
|
|
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
|
|
TreePatternNode *Variant = Variants[v];
|
|
|
|
DEBUG(errs() << " VAR#" << v << ": ";
|
|
Variant->dump();
|
|
errs() << "\n");
|
|
|
|
// Scan to see if an instruction or explicit pattern already matches this.
|
|
bool AlreadyExists = false;
|
|
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
|
|
// Skip if the top level predicates do not match.
|
|
if (PatternsToMatch[i].getPredicates() !=
|
|
PatternsToMatch[p].getPredicates())
|
|
continue;
|
|
// Check to see if this variant already exists.
|
|
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
|
|
DepVars)) {
|
|
DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
|
|
AlreadyExists = true;
|
|
break;
|
|
}
|
|
}
|
|
// If we already have it, ignore the variant.
|
|
if (AlreadyExists) continue;
|
|
|
|
// Otherwise, add it to the list of patterns we have.
|
|
PatternsToMatch.
|
|
push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
|
|
PatternsToMatch[i].getPredicates(),
|
|
Variant, PatternsToMatch[i].getDstPattern(),
|
|
PatternsToMatch[i].getDstRegs(),
|
|
PatternsToMatch[i].getAddedComplexity(),
|
|
Record::getNewUID()));
|
|
}
|
|
|
|
DEBUG(errs() << "\n");
|
|
}
|
|
}
|