mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-15 14:28:25 +00:00
10ddc4d7f2
This patch assigns paired GPRs for inline asm with 64-bit data on ARM. It's enabled for both ARM and Thumb to support modifiers like %H, %Q, %R. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185169 91177308-0d34-0410-b5e6-96231b3b80d8
1936 lines
68 KiB
C++
1936 lines
68 KiB
C++
//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to GAS-format ARM assembly language.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "asm-printer"
|
|
#include "ARMAsmPrinter.h"
|
|
#include "ARM.h"
|
|
#include "ARMBuildAttrs.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "InstPrinter/ARMInstPrinter.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "MCTargetDesc/ARMMCExpr.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
|
|
#include "llvm/DebugInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/Mangler.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Per section and per symbol attributes are not supported.
|
|
// To implement them we would need the ability to delay this emission
|
|
// until the assembly file is fully parsed/generated as only then do we
|
|
// know the symbol and section numbers.
|
|
class AttributeEmitter {
|
|
public:
|
|
virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
|
|
virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
|
|
virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
|
|
virtual void Finish() = 0;
|
|
virtual ~AttributeEmitter() {}
|
|
};
|
|
|
|
class AsmAttributeEmitter : public AttributeEmitter {
|
|
MCStreamer &Streamer;
|
|
|
|
public:
|
|
AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
|
|
void MaybeSwitchVendor(StringRef Vendor) { }
|
|
|
|
void EmitAttribute(unsigned Attribute, unsigned Value) {
|
|
Streamer.EmitRawText("\t.eabi_attribute " +
|
|
Twine(Attribute) + ", " + Twine(Value));
|
|
}
|
|
|
|
void EmitTextAttribute(unsigned Attribute, StringRef String) {
|
|
switch (Attribute) {
|
|
default: llvm_unreachable("Unsupported Text attribute in ASM Mode");
|
|
case ARMBuildAttrs::CPU_name:
|
|
Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower());
|
|
break;
|
|
/* GAS requires .fpu to be emitted regardless of EABI attribute */
|
|
case ARMBuildAttrs::Advanced_SIMD_arch:
|
|
case ARMBuildAttrs::VFP_arch:
|
|
Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower());
|
|
break;
|
|
}
|
|
}
|
|
void Finish() { }
|
|
};
|
|
|
|
class ObjectAttributeEmitter : public AttributeEmitter {
|
|
// This structure holds all attributes, accounting for
|
|
// their string/numeric value, so we can later emmit them
|
|
// in declaration order, keeping all in the same vector
|
|
struct AttributeItemType {
|
|
enum {
|
|
HiddenAttribute = 0,
|
|
NumericAttribute,
|
|
TextAttribute
|
|
} Type;
|
|
unsigned Tag;
|
|
unsigned IntValue;
|
|
StringRef StringValue;
|
|
} AttributeItem;
|
|
|
|
MCObjectStreamer &Streamer;
|
|
StringRef CurrentVendor;
|
|
SmallVector<AttributeItemType, 64> Contents;
|
|
|
|
// Account for the ULEB/String size of each item,
|
|
// not just the number of items
|
|
size_t ContentsSize;
|
|
// FIXME: this should be in a more generic place, but
|
|
// getULEBSize() is in MCAsmInfo and will be moved to MCDwarf
|
|
size_t getULEBSize(int Value) {
|
|
size_t Size = 0;
|
|
do {
|
|
Value >>= 7;
|
|
Size += sizeof(int8_t); // Is this really necessary?
|
|
} while (Value);
|
|
return Size;
|
|
}
|
|
|
|
public:
|
|
ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
|
|
Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { }
|
|
|
|
void MaybeSwitchVendor(StringRef Vendor) {
|
|
assert(!Vendor.empty() && "Vendor cannot be empty.");
|
|
|
|
if (CurrentVendor.empty())
|
|
CurrentVendor = Vendor;
|
|
else if (CurrentVendor == Vendor)
|
|
return;
|
|
else
|
|
Finish();
|
|
|
|
CurrentVendor = Vendor;
|
|
|
|
assert(Contents.size() == 0);
|
|
}
|
|
|
|
void EmitAttribute(unsigned Attribute, unsigned Value) {
|
|
AttributeItemType attr = {
|
|
AttributeItemType::NumericAttribute,
|
|
Attribute,
|
|
Value,
|
|
StringRef("")
|
|
};
|
|
ContentsSize += getULEBSize(Attribute);
|
|
ContentsSize += getULEBSize(Value);
|
|
Contents.push_back(attr);
|
|
}
|
|
|
|
void EmitTextAttribute(unsigned Attribute, StringRef String) {
|
|
AttributeItemType attr = {
|
|
AttributeItemType::TextAttribute,
|
|
Attribute,
|
|
0,
|
|
String
|
|
};
|
|
ContentsSize += getULEBSize(Attribute);
|
|
// String + \0
|
|
ContentsSize += String.size()+1;
|
|
|
|
Contents.push_back(attr);
|
|
}
|
|
|
|
void Finish() {
|
|
// Vendor size + Vendor name + '\0'
|
|
const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
|
|
|
|
// Tag + Tag Size
|
|
const size_t TagHeaderSize = 1 + 4;
|
|
|
|
Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
|
|
Streamer.EmitBytes(CurrentVendor);
|
|
Streamer.EmitIntValue(0, 1); // '\0'
|
|
|
|
Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
|
|
Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
|
|
|
|
// Size should have been accounted for already, now
|
|
// emit each field as its type (ULEB or String)
|
|
for (unsigned int i=0; i<Contents.size(); ++i) {
|
|
AttributeItemType item = Contents[i];
|
|
Streamer.EmitULEB128IntValue(item.Tag);
|
|
switch (item.Type) {
|
|
default: llvm_unreachable("Invalid attribute type");
|
|
case AttributeItemType::NumericAttribute:
|
|
Streamer.EmitULEB128IntValue(item.IntValue);
|
|
break;
|
|
case AttributeItemType::TextAttribute:
|
|
Streamer.EmitBytes(item.StringValue.upper());
|
|
Streamer.EmitIntValue(0, 1); // '\0'
|
|
break;
|
|
}
|
|
}
|
|
|
|
Contents.clear();
|
|
}
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
/// EmitDwarfRegOp - Emit dwarf register operation.
|
|
void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
|
|
bool Indirect) const {
|
|
const TargetRegisterInfo *RI = TM.getRegisterInfo();
|
|
if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) {
|
|
AsmPrinter::EmitDwarfRegOp(MLoc, Indirect);
|
|
return;
|
|
}
|
|
assert(MLoc.isReg() && !Indirect &&
|
|
"This doesn't support offset/indirection - implement it if needed");
|
|
unsigned Reg = MLoc.getReg();
|
|
if (Reg >= ARM::S0 && Reg <= ARM::S31) {
|
|
assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
|
|
// S registers are described as bit-pieces of a register
|
|
// S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
|
|
// S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
|
|
|
|
unsigned SReg = Reg - ARM::S0;
|
|
bool odd = SReg & 0x1;
|
|
unsigned Rx = 256 + (SReg >> 1);
|
|
|
|
OutStreamer.AddComment("DW_OP_regx for S register");
|
|
EmitInt8(dwarf::DW_OP_regx);
|
|
|
|
OutStreamer.AddComment(Twine(SReg));
|
|
EmitULEB128(Rx);
|
|
|
|
if (odd) {
|
|
OutStreamer.AddComment("DW_OP_bit_piece 32 32");
|
|
EmitInt8(dwarf::DW_OP_bit_piece);
|
|
EmitULEB128(32);
|
|
EmitULEB128(32);
|
|
} else {
|
|
OutStreamer.AddComment("DW_OP_bit_piece 32 0");
|
|
EmitInt8(dwarf::DW_OP_bit_piece);
|
|
EmitULEB128(32);
|
|
EmitULEB128(0);
|
|
}
|
|
} else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
|
|
assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
|
|
// Q registers Q0-Q15 are described by composing two D registers together.
|
|
// Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1)
|
|
// DW_OP_piece(8)
|
|
|
|
unsigned QReg = Reg - ARM::Q0;
|
|
unsigned D1 = 256 + 2 * QReg;
|
|
unsigned D2 = D1 + 1;
|
|
|
|
OutStreamer.AddComment("DW_OP_regx for Q register: D1");
|
|
EmitInt8(dwarf::DW_OP_regx);
|
|
EmitULEB128(D1);
|
|
OutStreamer.AddComment("DW_OP_piece 8");
|
|
EmitInt8(dwarf::DW_OP_piece);
|
|
EmitULEB128(8);
|
|
|
|
OutStreamer.AddComment("DW_OP_regx for Q register: D2");
|
|
EmitInt8(dwarf::DW_OP_regx);
|
|
EmitULEB128(D2);
|
|
OutStreamer.AddComment("DW_OP_piece 8");
|
|
EmitInt8(dwarf::DW_OP_piece);
|
|
EmitULEB128(8);
|
|
}
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitFunctionBodyEnd() {
|
|
// Make sure to terminate any constant pools that were at the end
|
|
// of the function.
|
|
if (!InConstantPool)
|
|
return;
|
|
InConstantPool = false;
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitFunctionEntryLabel() {
|
|
if (AFI->isThumbFunction()) {
|
|
OutStreamer.EmitAssemblerFlag(MCAF_Code16);
|
|
OutStreamer.EmitThumbFunc(CurrentFnSym);
|
|
}
|
|
|
|
OutStreamer.EmitLabel(CurrentFnSym);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
|
|
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
|
|
assert(Size && "C++ constructor pointer had zero size!");
|
|
|
|
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
|
|
assert(GV && "C++ constructor pointer was not a GlobalValue!");
|
|
|
|
const MCExpr *E = MCSymbolRefExpr::Create(Mang->getSymbol(GV),
|
|
(Subtarget->isTargetDarwin()
|
|
? MCSymbolRefExpr::VK_None
|
|
: MCSymbolRefExpr::VK_ARM_TARGET1),
|
|
OutContext);
|
|
|
|
OutStreamer.EmitValue(E, Size);
|
|
}
|
|
|
|
/// runOnMachineFunction - This uses the EmitInstruction()
|
|
/// method to print assembly for each instruction.
|
|
///
|
|
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
|
|
AFI = MF.getInfo<ARMFunctionInfo>();
|
|
MCP = MF.getConstantPool();
|
|
|
|
return AsmPrinter::runOnMachineFunction(MF);
|
|
}
|
|
|
|
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
|
|
raw_ostream &O, const char *Modifier) {
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
unsigned TF = MO.getTargetFlags();
|
|
|
|
switch (MO.getType()) {
|
|
default: llvm_unreachable("<unknown operand type>");
|
|
case MachineOperand::MO_Register: {
|
|
unsigned Reg = MO.getReg();
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
assert(!MO.getSubReg() && "Subregs should be eliminated!");
|
|
if(ARM::GPRPairRegClass.contains(Reg)) {
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
|
|
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
|
|
}
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
break;
|
|
}
|
|
case MachineOperand::MO_Immediate: {
|
|
int64_t Imm = MO.getImm();
|
|
O << '#';
|
|
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
|
|
(TF == ARMII::MO_LO16))
|
|
O << ":lower16:";
|
|
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
|
|
(TF == ARMII::MO_HI16))
|
|
O << ":upper16:";
|
|
O << Imm;
|
|
break;
|
|
}
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
O << *MO.getMBB()->getSymbol();
|
|
return;
|
|
case MachineOperand::MO_GlobalAddress: {
|
|
const GlobalValue *GV = MO.getGlobal();
|
|
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
|
|
(TF & ARMII::MO_LO16))
|
|
O << ":lower16:";
|
|
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
|
|
(TF & ARMII::MO_HI16))
|
|
O << ":upper16:";
|
|
O << *Mang->getSymbol(GV);
|
|
|
|
printOffset(MO.getOffset(), O);
|
|
if (TF == ARMII::MO_PLT)
|
|
O << "(PLT)";
|
|
break;
|
|
}
|
|
case MachineOperand::MO_ExternalSymbol: {
|
|
O << *GetExternalSymbolSymbol(MO.getSymbolName());
|
|
if (TF == ARMII::MO_PLT)
|
|
O << "(PLT)";
|
|
break;
|
|
}
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
O << *GetCPISymbol(MO.getIndex());
|
|
break;
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
O << *GetJTISymbol(MO.getIndex());
|
|
break;
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
MCSymbol *ARMAsmPrinter::
|
|
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
|
|
SmallString<60> Name;
|
|
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
|
|
<< getFunctionNumber() << '_' << uid << '_' << uid2;
|
|
return OutContext.GetOrCreateSymbol(Name.str());
|
|
}
|
|
|
|
|
|
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
|
|
SmallString<60> Name;
|
|
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
|
|
<< getFunctionNumber();
|
|
return OutContext.GetOrCreateSymbol(Name.str());
|
|
}
|
|
|
|
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
|
|
unsigned AsmVariant, const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
// Does this asm operand have a single letter operand modifier?
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
|
|
case 'a': // Print as a memory address.
|
|
if (MI->getOperand(OpNum).isReg()) {
|
|
O << "["
|
|
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
|
|
<< "]";
|
|
return false;
|
|
}
|
|
// Fallthrough
|
|
case 'c': // Don't print "#" before an immediate operand.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << MI->getOperand(OpNum).getImm();
|
|
return false;
|
|
case 'P': // Print a VFP double precision register.
|
|
case 'q': // Print a NEON quad precision register.
|
|
printOperand(MI, OpNum, O);
|
|
return false;
|
|
case 'y': // Print a VFP single precision register as indexed double.
|
|
if (MI->getOperand(OpNum).isReg()) {
|
|
unsigned Reg = MI->getOperand(OpNum).getReg();
|
|
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
|
|
// Find the 'd' register that has this 's' register as a sub-register,
|
|
// and determine the lane number.
|
|
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
|
|
if (!ARM::DPRRegClass.contains(*SR))
|
|
continue;
|
|
bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
|
|
O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << ~(MI->getOperand(OpNum).getImm());
|
|
return false;
|
|
case 'L': // The low 16 bits of an immediate constant.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << (MI->getOperand(OpNum).getImm() & 0xffff);
|
|
return false;
|
|
case 'M': { // A register range suitable for LDM/STM.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
unsigned RegBegin = MO.getReg();
|
|
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
|
|
// already got the operands in registers that are operands to the
|
|
// inline asm statement.
|
|
O << "{";
|
|
if (ARM::GPRPairRegClass.contains(RegBegin)) {
|
|
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
|
|
unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
|
|
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";;
|
|
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
|
|
}
|
|
O << ARMInstPrinter::getRegisterName(RegBegin);
|
|
|
|
// FIXME: The register allocator not only may not have given us the
|
|
// registers in sequence, but may not be in ascending registers. This
|
|
// will require changes in the register allocator that'll need to be
|
|
// propagated down here if the operands change.
|
|
unsigned RegOps = OpNum + 1;
|
|
while (MI->getOperand(RegOps).isReg()) {
|
|
O << ", "
|
|
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
|
|
RegOps++;
|
|
}
|
|
|
|
O << "}";
|
|
|
|
return false;
|
|
}
|
|
case 'R': // The most significant register of a pair.
|
|
case 'Q': { // The least significant register of a pair.
|
|
if (OpNum == 0)
|
|
return true;
|
|
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
|
|
if (!FlagsOP.isImm())
|
|
return true;
|
|
unsigned Flags = FlagsOP.getImm();
|
|
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
|
|
unsigned RC;
|
|
InlineAsm::hasRegClassConstraint(Flags, RC);
|
|
if (RC == ARM::GPRPairRegClassID) {
|
|
if (NumVals != 1)
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
if (!MO.isReg())
|
|
return true;
|
|
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
|
|
unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
|
|
ARM::gsub_0 : ARM::gsub_1);
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
if (NumVals != 2)
|
|
return true;
|
|
unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
|
|
if (RegOp >= MI->getNumOperands())
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(RegOp);
|
|
if (!MO.isReg())
|
|
return true;
|
|
unsigned Reg = MO.getReg();
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
|
|
case 'e': // The low doubleword register of a NEON quad register.
|
|
case 'f': { // The high doubleword register of a NEON quad register.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
unsigned Reg = MI->getOperand(OpNum).getReg();
|
|
if (!ARM::QPRRegClass.contains(Reg))
|
|
return true;
|
|
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
|
|
unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
|
|
ARM::dsub_0 : ARM::dsub_1);
|
|
O << ARMInstPrinter::getRegisterName(SubReg);
|
|
return false;
|
|
}
|
|
|
|
// This modifier is not yet supported.
|
|
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
|
|
return true;
|
|
case 'H': { // The highest-numbered register of a pair.
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
if (!MO.isReg())
|
|
return true;
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
|
|
unsigned Reg = MO.getReg();
|
|
if(!ARM::GPRPairRegClass.contains(Reg))
|
|
return false;
|
|
Reg = TRI->getSubReg(Reg, ARM::gsub_1);
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNum, O);
|
|
return false;
|
|
}
|
|
|
|
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
|
|
unsigned OpNum, unsigned AsmVariant,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
// Does this asm operand have a single letter operand modifier?
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
case 'A': // A memory operand for a VLD1/VST1 instruction.
|
|
default: return true; // Unknown modifier.
|
|
case 'm': // The base register of a memory operand.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
assert(MO.isReg() && "unexpected inline asm memory operand");
|
|
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
|
|
return false;
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
|
|
if (Subtarget->isTargetDarwin()) {
|
|
Reloc::Model RelocM = TM.getRelocationModel();
|
|
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
|
|
// Declare all the text sections up front (before the DWARF sections
|
|
// emitted by AsmPrinter::doInitialization) so the assembler will keep
|
|
// them together at the beginning of the object file. This helps
|
|
// avoid out-of-range branches that are due a fundamental limitation of
|
|
// the way symbol offsets are encoded with the current Darwin ARM
|
|
// relocations.
|
|
const TargetLoweringObjectFileMachO &TLOFMacho =
|
|
static_cast<const TargetLoweringObjectFileMachO &>(
|
|
getObjFileLowering());
|
|
|
|
// Collect the set of sections our functions will go into.
|
|
SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
|
|
SmallPtrSet<const MCSection *, 8> > TextSections;
|
|
// Default text section comes first.
|
|
TextSections.insert(TLOFMacho.getTextSection());
|
|
// Now any user defined text sections from function attributes.
|
|
for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
|
|
TextSections.insert(TLOFMacho.SectionForGlobal(F, Mang, TM));
|
|
// Now the coalescable sections.
|
|
TextSections.insert(TLOFMacho.getTextCoalSection());
|
|
TextSections.insert(TLOFMacho.getConstTextCoalSection());
|
|
|
|
// Emit the sections in the .s file header to fix the order.
|
|
for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
|
|
OutStreamer.SwitchSection(TextSections[i]);
|
|
|
|
if (RelocM == Reloc::DynamicNoPIC) {
|
|
const MCSection *sect =
|
|
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
|
|
MCSectionMachO::S_SYMBOL_STUBS,
|
|
12, SectionKind::getText());
|
|
OutStreamer.SwitchSection(sect);
|
|
} else {
|
|
const MCSection *sect =
|
|
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
|
|
MCSectionMachO::S_SYMBOL_STUBS,
|
|
16, SectionKind::getText());
|
|
OutStreamer.SwitchSection(sect);
|
|
}
|
|
const MCSection *StaticInitSect =
|
|
OutContext.getMachOSection("__TEXT", "__StaticInit",
|
|
MCSectionMachO::S_REGULAR |
|
|
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
|
|
SectionKind::getText());
|
|
OutStreamer.SwitchSection(StaticInitSect);
|
|
}
|
|
}
|
|
|
|
// Use unified assembler syntax.
|
|
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
|
|
|
|
// Emit ARM Build Attributes
|
|
if (Subtarget->isTargetELF())
|
|
emitAttributes();
|
|
}
|
|
|
|
|
|
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// All darwin targets use mach-o.
|
|
const TargetLoweringObjectFileMachO &TLOFMacho =
|
|
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
|
|
MachineModuleInfoMachO &MMIMacho =
|
|
MMI->getObjFileInfo<MachineModuleInfoMachO>();
|
|
|
|
// Output non-lazy-pointers for external and common global variables.
|
|
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
|
|
|
|
if (!Stubs.empty()) {
|
|
// Switch with ".non_lazy_symbol_pointer" directive.
|
|
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
|
|
EmitAlignment(2);
|
|
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
|
|
// L_foo$stub:
|
|
OutStreamer.EmitLabel(Stubs[i].first);
|
|
// .indirect_symbol _foo
|
|
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
|
|
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
|
|
|
|
if (MCSym.getInt())
|
|
// External to current translation unit.
|
|
OutStreamer.EmitIntValue(0, 4/*size*/);
|
|
else
|
|
// Internal to current translation unit.
|
|
//
|
|
// When we place the LSDA into the TEXT section, the type info
|
|
// pointers need to be indirect and pc-rel. We accomplish this by
|
|
// using NLPs; however, sometimes the types are local to the file.
|
|
// We need to fill in the value for the NLP in those cases.
|
|
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
|
|
OutContext),
|
|
4/*size*/);
|
|
}
|
|
|
|
Stubs.clear();
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
Stubs = MMIMacho.GetHiddenGVStubList();
|
|
if (!Stubs.empty()) {
|
|
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
|
|
EmitAlignment(2);
|
|
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
|
|
// L_foo$stub:
|
|
OutStreamer.EmitLabel(Stubs[i].first);
|
|
// .long _foo
|
|
OutStreamer.EmitValue(MCSymbolRefExpr::
|
|
Create(Stubs[i].second.getPointer(),
|
|
OutContext),
|
|
4/*size*/);
|
|
}
|
|
|
|
Stubs.clear();
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
// Funny Darwin hack: This flag tells the linker that no global symbols
|
|
// contain code that falls through to other global symbols (e.g. the obvious
|
|
// implementation of multiple entry points). If this doesn't occur, the
|
|
// linker can safely perform dead code stripping. Since LLVM never
|
|
// generates code that does this, it is always safe to set.
|
|
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
|
|
}
|
|
// FIXME: This should eventually end up somewhere else where more
|
|
// intelligent flag decisions can be made. For now we are just maintaining
|
|
// the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
|
|
if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&OutStreamer))
|
|
MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
|
|
// FIXME:
|
|
// The following seem like one-off assembler flags, but they actually need
|
|
// to appear in the .ARM.attributes section in ELF.
|
|
// Instead of subclassing the MCELFStreamer, we do the work here.
|
|
|
|
void ARMAsmPrinter::emitAttributes() {
|
|
|
|
emitARMAttributeSection();
|
|
|
|
/* GAS expect .fpu to be emitted, regardless of VFP build attribute */
|
|
bool emitFPU = false;
|
|
AttributeEmitter *AttrEmitter;
|
|
if (OutStreamer.hasRawTextSupport()) {
|
|
AttrEmitter = new AsmAttributeEmitter(OutStreamer);
|
|
emitFPU = true;
|
|
} else {
|
|
MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
|
|
AttrEmitter = new ObjectAttributeEmitter(O);
|
|
}
|
|
|
|
AttrEmitter->MaybeSwitchVendor("aeabi");
|
|
|
|
std::string CPUString = Subtarget->getCPUString();
|
|
|
|
if (CPUString == "cortex-a8" ||
|
|
Subtarget->isCortexA8()) {
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
|
|
ARMBuildAttrs::ApplicationProfile);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
|
|
ARMBuildAttrs::Allowed);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
|
|
ARMBuildAttrs::AllowThumb32);
|
|
// Fixme: figure out when this is emitted.
|
|
//AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
|
|
// ARMBuildAttrs::AllowWMMXv1);
|
|
//
|
|
|
|
/// ADD additional Else-cases here!
|
|
} else if (CPUString == "xscale") {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
|
|
ARMBuildAttrs::Allowed);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
|
|
ARMBuildAttrs::Allowed);
|
|
} else if (Subtarget->hasV8Ops())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v8);
|
|
else if (Subtarget->hasV7Ops()) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
|
|
ARMBuildAttrs::AllowThumb32);
|
|
} else if (Subtarget->hasV6T2Ops())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6T2);
|
|
else if (Subtarget->hasV6Ops())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6);
|
|
else if (Subtarget->hasV5TEOps())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TE);
|
|
else if (Subtarget->hasV5TOps())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5T);
|
|
else if (Subtarget->hasV4TOps())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
|
|
else
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4);
|
|
|
|
if (Subtarget->hasNEON() && emitFPU) {
|
|
/* NEON is not exactly a VFP architecture, but GAS emit one of
|
|
* neon/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
|
|
if (Subtarget->hasVFP4())
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
|
|
"neon-vfpv4");
|
|
else
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
|
|
/* If emitted for NEON, omit from VFP below, since you can have both
|
|
* NEON and VFP in build attributes but only one .fpu */
|
|
emitFPU = false;
|
|
}
|
|
|
|
/* V8FP + .fpu */
|
|
if (Subtarget->hasV8FP()) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
|
|
ARMBuildAttrs::AllowV8FPA);
|
|
if (emitFPU)
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "v8fp");
|
|
/* VFPv4 + .fpu */
|
|
} else if (Subtarget->hasVFP4()) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
|
|
ARMBuildAttrs::AllowFPv4A);
|
|
if (emitFPU)
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv4");
|
|
|
|
/* VFPv3 + .fpu */
|
|
} else if (Subtarget->hasVFP3()) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
|
|
ARMBuildAttrs::AllowFPv3A);
|
|
if (emitFPU)
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
|
|
|
|
/* VFPv2 + .fpu */
|
|
} else if (Subtarget->hasVFP2()) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
|
|
ARMBuildAttrs::AllowFPv2);
|
|
if (emitFPU)
|
|
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
|
|
}
|
|
|
|
/* TODO: ARMBuildAttrs::Allowed is not completely accurate,
|
|
* since NEON can have 1 (allowed) or 2 (MAC operations) */
|
|
if (Subtarget->hasNEON()) {
|
|
if (Subtarget->hasV8Ops())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
|
|
ARMBuildAttrs::AllowedNeonV8);
|
|
else
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
|
|
ARMBuildAttrs::Allowed);
|
|
}
|
|
|
|
// Signal various FP modes.
|
|
if (!TM.Options.UnsafeFPMath) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
|
|
ARMBuildAttrs::Allowed);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
|
|
ARMBuildAttrs::Allowed);
|
|
}
|
|
|
|
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
|
|
ARMBuildAttrs::Allowed);
|
|
else
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
|
|
ARMBuildAttrs::AllowIEE754);
|
|
|
|
// FIXME: add more flags to ARMBuildAttrs.h
|
|
// 8-bytes alignment stuff.
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
|
|
|
|
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
|
|
if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) {
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
|
|
}
|
|
// FIXME: Should we signal R9 usage?
|
|
|
|
if (Subtarget->hasDivide())
|
|
AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
|
|
|
|
AttrEmitter->Finish();
|
|
delete AttrEmitter;
|
|
}
|
|
|
|
void ARMAsmPrinter::emitARMAttributeSection() {
|
|
// <format-version>
|
|
// [ <section-length> "vendor-name"
|
|
// [ <file-tag> <size> <attribute>*
|
|
// | <section-tag> <size> <section-number>* 0 <attribute>*
|
|
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
|
|
// ]+
|
|
// ]*
|
|
|
|
if (OutStreamer.hasRawTextSupport())
|
|
return;
|
|
|
|
const ARMElfTargetObjectFile &TLOFELF =
|
|
static_cast<const ARMElfTargetObjectFile &>
|
|
(getObjFileLowering());
|
|
|
|
OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
|
|
|
|
// Format version
|
|
OutStreamer.EmitIntValue(0x41, 1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
|
|
unsigned LabelId, MCContext &Ctx) {
|
|
|
|
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
|
|
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
|
|
return Label;
|
|
}
|
|
|
|
static MCSymbolRefExpr::VariantKind
|
|
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
|
|
switch (Modifier) {
|
|
case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
|
|
case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD;
|
|
case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF;
|
|
case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
|
|
case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT;
|
|
case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF;
|
|
}
|
|
llvm_unreachable("Invalid ARMCPModifier!");
|
|
}
|
|
|
|
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
|
|
bool isIndirect = Subtarget->isTargetDarwin() &&
|
|
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
|
|
if (!isIndirect)
|
|
return Mang->getSymbol(GV);
|
|
|
|
// FIXME: Remove this when Darwin transition to @GOT like syntax.
|
|
MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
|
|
MachineModuleInfoMachO &MMIMachO =
|
|
MMI->getObjFileInfo<MachineModuleInfoMachO>();
|
|
MachineModuleInfoImpl::StubValueTy &StubSym =
|
|
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
|
|
MMIMachO.getGVStubEntry(MCSym);
|
|
if (StubSym.getPointer() == 0)
|
|
StubSym = MachineModuleInfoImpl::
|
|
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
|
|
return MCSym;
|
|
}
|
|
|
|
void ARMAsmPrinter::
|
|
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
|
|
int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
|
|
|
|
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
|
|
|
|
MCSymbol *MCSym;
|
|
if (ACPV->isLSDA()) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream OS(Str);
|
|
OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
|
|
MCSym = OutContext.GetOrCreateSymbol(OS.str());
|
|
} else if (ACPV->isBlockAddress()) {
|
|
const BlockAddress *BA =
|
|
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
|
|
MCSym = GetBlockAddressSymbol(BA);
|
|
} else if (ACPV->isGlobalValue()) {
|
|
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
|
|
MCSym = GetARMGVSymbol(GV);
|
|
} else if (ACPV->isMachineBasicBlock()) {
|
|
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
|
|
MCSym = MBB->getSymbol();
|
|
} else {
|
|
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
|
|
const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
|
|
MCSym = GetExternalSymbolSymbol(Sym);
|
|
}
|
|
|
|
// Create an MCSymbol for the reference.
|
|
const MCExpr *Expr =
|
|
MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
|
|
OutContext);
|
|
|
|
if (ACPV->getPCAdjustment()) {
|
|
MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
ACPV->getLabelId(),
|
|
OutContext);
|
|
const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
|
|
PCRelExpr =
|
|
MCBinaryExpr::CreateAdd(PCRelExpr,
|
|
MCConstantExpr::Create(ACPV->getPCAdjustment(),
|
|
OutContext),
|
|
OutContext);
|
|
if (ACPV->mustAddCurrentAddress()) {
|
|
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
|
|
// label, so just emit a local label end reference that instead.
|
|
MCSymbol *DotSym = OutContext.CreateTempSymbol();
|
|
OutStreamer.EmitLabel(DotSym);
|
|
const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
|
|
PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
|
|
}
|
|
Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
|
|
}
|
|
OutStreamer.EmitValue(Expr, Size);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
|
|
unsigned Opcode = MI->getOpcode();
|
|
int OpNum = 1;
|
|
if (Opcode == ARM::BR_JTadd)
|
|
OpNum = 2;
|
|
else if (Opcode == ARM::BR_JTm)
|
|
OpNum = 3;
|
|
|
|
const MachineOperand &MO1 = MI->getOperand(OpNum);
|
|
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
|
|
unsigned JTI = MO1.getIndex();
|
|
|
|
// Emit a label for the jump table.
|
|
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
|
|
OutStreamer.EmitLabel(JTISymbol);
|
|
|
|
// Mark the jump table as data-in-code.
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
|
|
|
|
// Emit each entry of the table.
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
|
|
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = JTBBs[i];
|
|
// Construct an MCExpr for the entry. We want a value of the form:
|
|
// (BasicBlockAddr - TableBeginAddr)
|
|
//
|
|
// For example, a table with entries jumping to basic blocks BB0 and BB1
|
|
// would look like:
|
|
// LJTI_0_0:
|
|
// .word (LBB0 - LJTI_0_0)
|
|
// .word (LBB1 - LJTI_0_0)
|
|
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_)
|
|
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
|
|
OutContext),
|
|
OutContext);
|
|
// If we're generating a table of Thumb addresses in static relocation
|
|
// model, we need to add one to keep interworking correctly.
|
|
else if (AFI->isThumbFunction())
|
|
Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
|
|
OutContext);
|
|
OutStreamer.EmitValue(Expr, 4);
|
|
}
|
|
// Mark the end of jump table data-in-code region.
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
|
|
unsigned Opcode = MI->getOpcode();
|
|
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
|
|
const MachineOperand &MO1 = MI->getOperand(OpNum);
|
|
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
|
|
unsigned JTI = MO1.getIndex();
|
|
|
|
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
|
|
OutStreamer.EmitLabel(JTISymbol);
|
|
|
|
// Emit each entry of the table.
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
unsigned OffsetWidth = 4;
|
|
if (MI->getOpcode() == ARM::t2TBB_JT) {
|
|
OffsetWidth = 1;
|
|
// Mark the jump table as data-in-code.
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
|
|
} else if (MI->getOpcode() == ARM::t2TBH_JT) {
|
|
OffsetWidth = 2;
|
|
// Mark the jump table as data-in-code.
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
|
|
}
|
|
|
|
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = JTBBs[i];
|
|
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
|
|
OutContext);
|
|
// If this isn't a TBB or TBH, the entries are direct branch instructions.
|
|
if (OffsetWidth == 4) {
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2B)
|
|
.addExpr(MBBSymbolExpr)
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
continue;
|
|
}
|
|
// Otherwise it's an offset from the dispatch instruction. Construct an
|
|
// MCExpr for the entry. We want a value of the form:
|
|
// (BasicBlockAddr - TableBeginAddr) / 2
|
|
//
|
|
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
|
|
// would look like:
|
|
// LJTI_0_0:
|
|
// .byte (LBB0 - LJTI_0_0) / 2
|
|
// .byte (LBB1 - LJTI_0_0) / 2
|
|
const MCExpr *Expr =
|
|
MCBinaryExpr::CreateSub(MBBSymbolExpr,
|
|
MCSymbolRefExpr::Create(JTISymbol, OutContext),
|
|
OutContext);
|
|
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
|
|
OutContext);
|
|
OutStreamer.EmitValue(Expr, OffsetWidth);
|
|
}
|
|
// Mark the end of jump table data-in-code region. 32-bit offsets use
|
|
// actual branch instructions here, so we don't mark those as a data-region
|
|
// at all.
|
|
if (OffsetWidth != 4)
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
|
|
assert(MI->getFlag(MachineInstr::FrameSetup) &&
|
|
"Only instruction which are involved into frame setup code are allowed");
|
|
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
|
|
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
|
|
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned SrcReg, DstReg;
|
|
|
|
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
|
|
// Two special cases:
|
|
// 1) tPUSH does not have src/dst regs.
|
|
// 2) for Thumb1 code we sometimes materialize the constant via constpool
|
|
// load. Yes, this is pretty fragile, but for now I don't see better
|
|
// way... :(
|
|
SrcReg = DstReg = ARM::SP;
|
|
} else {
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
DstReg = MI->getOperand(0).getReg();
|
|
}
|
|
|
|
// Try to figure out the unwinding opcode out of src / dst regs.
|
|
if (MI->mayStore()) {
|
|
// Register saves.
|
|
assert(DstReg == ARM::SP &&
|
|
"Only stack pointer as a destination reg is supported");
|
|
|
|
SmallVector<unsigned, 4> RegList;
|
|
// Skip src & dst reg, and pred ops.
|
|
unsigned StartOp = 2 + 2;
|
|
// Use all the operands.
|
|
unsigned NumOffset = 0;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
case ARM::tPUSH:
|
|
// Special case here: no src & dst reg, but two extra imp ops.
|
|
StartOp = 2; NumOffset = 2;
|
|
case ARM::STMDB_UPD:
|
|
case ARM::t2STMDB_UPD:
|
|
case ARM::VSTMDDB_UPD:
|
|
assert(SrcReg == ARM::SP &&
|
|
"Only stack pointer as a source reg is supported");
|
|
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
|
|
i != NumOps; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
// Actually, there should never be any impdef stuff here. Skip it
|
|
// temporary to workaround PR11902.
|
|
if (MO.isImplicit())
|
|
continue;
|
|
RegList.push_back(MO.getReg());
|
|
}
|
|
break;
|
|
case ARM::STR_PRE_IMM:
|
|
case ARM::STR_PRE_REG:
|
|
case ARM::t2STR_PRE:
|
|
assert(MI->getOperand(2).getReg() == ARM::SP &&
|
|
"Only stack pointer as a source reg is supported");
|
|
RegList.push_back(SrcReg);
|
|
break;
|
|
}
|
|
OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
|
|
} else {
|
|
// Changes of stack / frame pointer.
|
|
if (SrcReg == ARM::SP) {
|
|
int64_t Offset = 0;
|
|
switch (Opc) {
|
|
default:
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
case ARM::MOVr:
|
|
case ARM::tMOVr:
|
|
Offset = 0;
|
|
break;
|
|
case ARM::ADDri:
|
|
Offset = -MI->getOperand(2).getImm();
|
|
break;
|
|
case ARM::SUBri:
|
|
case ARM::t2SUBri:
|
|
Offset = MI->getOperand(2).getImm();
|
|
break;
|
|
case ARM::tSUBspi:
|
|
Offset = MI->getOperand(2).getImm()*4;
|
|
break;
|
|
case ARM::tADDspi:
|
|
case ARM::tADDrSPi:
|
|
Offset = -MI->getOperand(2).getImm()*4;
|
|
break;
|
|
case ARM::tLDRpci: {
|
|
// Grab the constpool index and check, whether it corresponds to
|
|
// original or cloned constpool entry.
|
|
unsigned CPI = MI->getOperand(1).getIndex();
|
|
const MachineConstantPool *MCP = MF.getConstantPool();
|
|
if (CPI >= MCP->getConstants().size())
|
|
CPI = AFI.getOriginalCPIdx(CPI);
|
|
assert(CPI != -1U && "Invalid constpool index");
|
|
|
|
// Derive the actual offset.
|
|
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
|
|
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
|
|
// FIXME: Check for user, it should be "add" instruction!
|
|
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (DstReg == FramePtr && FramePtr != ARM::SP)
|
|
// Set-up of the frame pointer. Positive values correspond to "add"
|
|
// instruction.
|
|
OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
|
|
else if (DstReg == ARM::SP) {
|
|
// Change of SP by an offset. Positive values correspond to "sub"
|
|
// instruction.
|
|
OutStreamer.EmitPad(Offset);
|
|
} else {
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
}
|
|
} else if (DstReg == ARM::SP) {
|
|
// FIXME: .movsp goes here
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
}
|
|
else {
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
}
|
|
}
|
|
}
|
|
|
|
extern cl::opt<bool> EnableARMEHABI;
|
|
|
|
// Simple pseudo-instructions have their lowering (with expansion to real
|
|
// instructions) auto-generated.
|
|
#include "ARMGenMCPseudoLowering.inc"
|
|
|
|
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
|
|
// If we just ended a constant pool, mark it as such.
|
|
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
|
|
InConstantPool = false;
|
|
}
|
|
|
|
// Emit unwinding stuff for frame-related instructions
|
|
if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
|
|
EmitUnwindingInstruction(MI);
|
|
|
|
// Do any auto-generated pseudo lowerings.
|
|
if (emitPseudoExpansionLowering(OutStreamer, MI))
|
|
return;
|
|
|
|
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
|
|
"Pseudo flag setting opcode should be expanded early");
|
|
|
|
// Check for manual lowerings.
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
|
|
case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
|
|
case ARM::LEApcrel:
|
|
case ARM::tLEApcrel:
|
|
case ARM::t2LEApcrel: {
|
|
// FIXME: Need to also handle globals and externals
|
|
MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
|
|
OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
|
|
ARM::t2LEApcrel ? ARM::t2ADR
|
|
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
|
|
: ARM::ADR))
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(2).getImm())
|
|
.addReg(MI->getOperand(3).getReg()));
|
|
return;
|
|
}
|
|
case ARM::LEApcrelJT:
|
|
case ARM::tLEApcrelJT:
|
|
case ARM::t2LEApcrelJT: {
|
|
MCSymbol *JTIPICSymbol =
|
|
GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
|
|
MI->getOperand(2).getImm());
|
|
OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
|
|
ARM::t2LEApcrelJT ? ARM::t2ADR
|
|
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
|
|
: ARM::ADR))
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(3).getImm())
|
|
.addReg(MI->getOperand(4).getReg()));
|
|
return;
|
|
}
|
|
// Darwin call instructions are just normal call instructions with different
|
|
// clobber semantics (they clobber R9).
|
|
case ARM::BX_CALL: {
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
return;
|
|
}
|
|
case ARM::tBX_CALL: {
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::BMOVPCRX_CALL: {
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::BMOVPCB_CALL: {
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
const GlobalValue *GV = MI->getOperand(0).getGlobal();
|
|
MCSymbol *GVSym = Mang->getSymbol(GV);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::Bcc)
|
|
.addExpr(GVSymExpr)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::MOVi16_ga_pcrel:
|
|
case ARM::t2MOVi16_ga_pcrel: {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
|
|
|
|
unsigned TF = MI->getOperand(1).getTargetFlags();
|
|
bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
|
|
const GlobalValue *GV = MI->getOperand(1).getGlobal();
|
|
MCSymbol *GVSym = GetARMGVSymbol(GV);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
|
|
if (isPIC) {
|
|
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
MI->getOperand(2).getImm(), OutContext);
|
|
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
|
|
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
|
|
const MCExpr *PCRelExpr =
|
|
ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
|
|
MCBinaryExpr::CreateAdd(LabelSymExpr,
|
|
MCConstantExpr::Create(PCAdj, OutContext),
|
|
OutContext), OutContext), OutContext);
|
|
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
|
|
} else {
|
|
const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
|
|
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
|
|
}
|
|
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
OutStreamer.EmitInstruction(TmpInst);
|
|
return;
|
|
}
|
|
case ARM::MOVTi16_ga_pcrel:
|
|
case ARM::t2MOVTi16_ga_pcrel: {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
|
|
? ARM::MOVTi16 : ARM::t2MOVTi16);
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
|
|
|
|
unsigned TF = MI->getOperand(2).getTargetFlags();
|
|
bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
|
|
const GlobalValue *GV = MI->getOperand(2).getGlobal();
|
|
MCSymbol *GVSym = GetARMGVSymbol(GV);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
|
|
if (isPIC) {
|
|
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
MI->getOperand(3).getImm(), OutContext);
|
|
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
|
|
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
|
|
const MCExpr *PCRelExpr =
|
|
ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
|
|
MCBinaryExpr::CreateAdd(LabelSymExpr,
|
|
MCConstantExpr::Create(PCAdj, OutContext),
|
|
OutContext), OutContext), OutContext);
|
|
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
|
|
} else {
|
|
const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
|
|
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
|
|
}
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
OutStreamer.EmitInstruction(TmpInst);
|
|
return;
|
|
}
|
|
case ARM::tPICADD: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// add r0, pc
|
|
// This adds the address of LPC0 to r0.
|
|
|
|
// Emit the label.
|
|
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(), MI->getOperand(2).getImm(),
|
|
OutContext));
|
|
|
|
// Form and emit the add.
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDhirr)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::PICADD: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// add r0, pc, r0
|
|
// This adds the address of LPC0 to r0.
|
|
|
|
// Emit the label.
|
|
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(), MI->getOperand(2).getImm(),
|
|
OutContext));
|
|
|
|
// Form and emit the add.
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(1).getReg())
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(3).getImm())
|
|
.addReg(MI->getOperand(4).getReg())
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::PICSTR:
|
|
case ARM::PICSTRB:
|
|
case ARM::PICSTRH:
|
|
case ARM::PICLDR:
|
|
case ARM::PICLDRB:
|
|
case ARM::PICLDRH:
|
|
case ARM::PICLDRSB:
|
|
case ARM::PICLDRSH: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// OP r0, [pc, r0]
|
|
// The LCP0 label is referenced by a constant pool entry in order to get
|
|
// a PC-relative address at the ldr instruction.
|
|
|
|
// Emit the label.
|
|
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
|
|
getFunctionNumber(), MI->getOperand(2).getImm(),
|
|
OutContext));
|
|
|
|
// Form and emit the load
|
|
unsigned Opcode;
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case ARM::PICSTR: Opcode = ARM::STRrs; break;
|
|
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
|
|
case ARM::PICSTRH: Opcode = ARM::STRH; break;
|
|
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
|
|
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
|
|
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
|
|
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
|
|
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
|
|
}
|
|
OutStreamer.EmitInstruction(MCInstBuilder(Opcode)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addImm(0)
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(3).getImm())
|
|
.addReg(MI->getOperand(4).getReg()));
|
|
|
|
return;
|
|
}
|
|
case ARM::CONSTPOOL_ENTRY: {
|
|
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
|
|
/// in the function. The first operand is the ID# for this instruction, the
|
|
/// second is the index into the MachineConstantPool that this is, the third
|
|
/// is the size in bytes of this constant pool entry.
|
|
/// The required alignment is specified on the basic block holding this MI.
|
|
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
|
|
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
|
|
|
|
// If this is the first entry of the pool, mark it.
|
|
if (!InConstantPool) {
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegion);
|
|
InConstantPool = true;
|
|
}
|
|
|
|
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
|
|
|
|
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
|
|
if (MCPE.isMachineConstantPoolEntry())
|
|
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
|
|
else
|
|
EmitGlobalConstant(MCPE.Val.ConstVal);
|
|
return;
|
|
}
|
|
case ARM::t2BR_JT: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJump2Table(MI);
|
|
return;
|
|
}
|
|
case ARM::t2TBB_JT: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBB)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJump2Table(MI);
|
|
// Make sure the next instruction is 2-byte aligned.
|
|
EmitAlignment(1);
|
|
return;
|
|
}
|
|
case ARM::t2TBH_JT: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBH)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJump2Table(MI);
|
|
return;
|
|
}
|
|
case ARM::tBR_JTr:
|
|
case ARM::BR_JTr: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// mov pc, target
|
|
MCInst TmpInst;
|
|
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
|
|
ARM::MOVr : ARM::tMOVr;
|
|
TmpInst.setOpcode(Opc);
|
|
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
if (Opc == ARM::MOVr)
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
OutStreamer.EmitInstruction(TmpInst);
|
|
|
|
// Make sure the Thumb jump table is 4-byte aligned.
|
|
if (Opc == ARM::tMOVr)
|
|
EmitAlignment(2);
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJumpTable(MI);
|
|
return;
|
|
}
|
|
case ARM::BR_JTm: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// ldr pc, target
|
|
MCInst TmpInst;
|
|
if (MI->getOperand(1).getReg() == 0) {
|
|
// literal offset
|
|
TmpInst.setOpcode(ARM::LDRi12);
|
|
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
|
|
} else {
|
|
TmpInst.setOpcode(ARM::LDRrs);
|
|
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
|
|
TmpInst.addOperand(MCOperand::CreateImm(0));
|
|
}
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::CreateReg(0));
|
|
OutStreamer.EmitInstruction(TmpInst);
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJumpTable(MI);
|
|
return;
|
|
}
|
|
case ARM::BR_JTadd: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// add pc, target, idx
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
// Output the data for the jump table itself
|
|
EmitJumpTable(MI);
|
|
return;
|
|
}
|
|
case ARM::TRAP: {
|
|
// Non-Darwin binutils don't yet support the "trap" mnemonic.
|
|
// FIXME: Remove this special case when they do.
|
|
if (!Subtarget->isTargetDarwin()) {
|
|
//.long 0xe7ffdefe @ trap
|
|
uint32_t Val = 0xe7ffdefeUL;
|
|
OutStreamer.AddComment("trap");
|
|
OutStreamer.EmitIntValue(Val, 4);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::TRAPNaCl: {
|
|
//.long 0xe7fedef0 @ trap
|
|
uint32_t Val = 0xe7fedef0UL;
|
|
OutStreamer.AddComment("trap");
|
|
OutStreamer.EmitIntValue(Val, 4);
|
|
return;
|
|
}
|
|
case ARM::tTRAP: {
|
|
// Non-Darwin binutils don't yet support the "trap" mnemonic.
|
|
// FIXME: Remove this special case when they do.
|
|
if (!Subtarget->isTargetDarwin()) {
|
|
//.short 57086 @ trap
|
|
uint16_t Val = 0xdefe;
|
|
OutStreamer.AddComment("trap");
|
|
OutStreamer.EmitIntValue(Val, 2);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::t2Int_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::tInt_eh_sjlj_setjmp: {
|
|
// Two incoming args: GPR:$src, GPR:$val
|
|
// mov $val, pc
|
|
// adds $val, #7
|
|
// str $val, [$src, #4]
|
|
// movs r0, #0
|
|
// b 1f
|
|
// movs r0, #1
|
|
// 1:
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ValReg = MI->getOperand(1).getReg();
|
|
MCSymbol *Label = GetARMSJLJEHLabel();
|
|
OutStreamer.AddComment("eh_setjmp begin");
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ValReg)
|
|
.addReg(ARM::PC)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDi3)
|
|
.addReg(ValReg)
|
|
// 's' bit operand
|
|
.addReg(ARM::CPSR)
|
|
.addReg(ValReg)
|
|
.addImm(7)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tSTRi)
|
|
.addReg(ValReg)
|
|
.addReg(SrcReg)
|
|
// The offset immediate is #4. The operand value is scaled by 4 for the
|
|
// tSTR instruction.
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
|
|
.addReg(ARM::R0)
|
|
.addReg(ARM::CPSR)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tB)
|
|
.addExpr(SymbolExpr)
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.AddComment("eh_setjmp end");
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
|
|
.addReg(ARM::R0)
|
|
.addReg(ARM::CPSR)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitLabel(Label);
|
|
return;
|
|
}
|
|
|
|
case ARM::Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::Int_eh_sjlj_setjmp: {
|
|
// Two incoming args: GPR:$src, GPR:$val
|
|
// add $val, pc, #8
|
|
// str $val, [$src, #+4]
|
|
// mov r0, #0
|
|
// add pc, pc, #0
|
|
// mov r0, #1
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ValReg = MI->getOperand(1).getReg();
|
|
|
|
OutStreamer.AddComment("eh_setjmp begin");
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
|
|
.addReg(ValReg)
|
|
.addReg(ARM::PC)
|
|
.addImm(8)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::STRi12)
|
|
.addReg(ValReg)
|
|
.addReg(SrcReg)
|
|
.addImm(4)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
|
|
.addReg(ARM::R0)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
|
|
.addReg(ARM::PC)
|
|
.addReg(ARM::PC)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
OutStreamer.AddComment("eh_setjmp end");
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
|
|
.addReg(ARM::R0)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::Int_eh_sjlj_longjmp: {
|
|
// ldr sp, [$src, #8]
|
|
// ldr $scratch, [$src, #4]
|
|
// ldr r7, [$src]
|
|
// bx $scratch
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ScratchReg = MI->getOperand(1).getReg();
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ARM::SP)
|
|
.addReg(SrcReg)
|
|
.addImm(8)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
.addImm(4)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ARM::R7)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::tInt_eh_sjlj_longjmp: {
|
|
// ldr $scratch, [$src, #8]
|
|
// mov sp, $scratch
|
|
// ldr $scratch, [$src, #4]
|
|
// ldr r7, [$src]
|
|
// bx $scratch
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ScratchReg = MI->getOperand(1).getReg();
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
// The offset immediate is #8. The operand value is scaled by 4 for the
|
|
// tLDR instruction.
|
|
.addImm(2)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ARM::SP)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ARM::R7)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
}
|
|
|
|
MCInst TmpInst;
|
|
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
OutStreamer.EmitInstruction(TmpInst);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Registry Stuff
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeARMAsmPrinter() {
|
|
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
|
|
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
|
|
}
|