llvm/lib/Support/MemoryBuffer.cpp
Zachary Turner 03bcb2143b [FileSystem] Split up the OpenFlags enumeration.
This breaks the OpenFlags enumeration into two separate
enumerations: OpenFlags and CreationDisposition.  The first
controls the behavior of the API depending on whether or not
the target file already exists, and is not a flags-based
enum.  The second controls more flags-like values.

This yields a more easy to understand API, while also allowing
flags to be passed to the openForRead api, where most of the
values didn't make sense before.  This also makes the apis more
testable as it becomes easy to enumerate all the configurations
which make sense, so I've added many new tests to exercise all
the different values.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@334221 91177308-0d34-0410-b5e6-96231b3b80d8
2018-06-07 19:58:58 +00:00

538 lines
18 KiB
C++

//===--- MemoryBuffer.cpp - Memory Buffer implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MemoryBuffer interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Errno.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SmallVectorMemoryBuffer.h"
#include <cassert>
#include <cerrno>
#include <cstring>
#include <new>
#include <sys/types.h>
#include <system_error>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace llvm;
//===----------------------------------------------------------------------===//
// MemoryBuffer implementation itself.
//===----------------------------------------------------------------------===//
MemoryBuffer::~MemoryBuffer() { }
/// init - Initialize this MemoryBuffer as a reference to externally allocated
/// memory, memory that we know is already null terminated.
void MemoryBuffer::init(const char *BufStart, const char *BufEnd,
bool RequiresNullTerminator) {
assert((!RequiresNullTerminator || BufEnd[0] == 0) &&
"Buffer is not null terminated!");
BufferStart = BufStart;
BufferEnd = BufEnd;
}
//===----------------------------------------------------------------------===//
// MemoryBufferMem implementation.
//===----------------------------------------------------------------------===//
/// CopyStringRef - Copies contents of a StringRef into a block of memory and
/// null-terminates it.
static void CopyStringRef(char *Memory, StringRef Data) {
if (!Data.empty())
memcpy(Memory, Data.data(), Data.size());
Memory[Data.size()] = 0; // Null terminate string.
}
namespace {
struct NamedBufferAlloc {
const Twine &Name;
NamedBufferAlloc(const Twine &Name) : Name(Name) {}
};
}
void *operator new(size_t N, const NamedBufferAlloc &Alloc) {
SmallString<256> NameBuf;
StringRef NameRef = Alloc.Name.toStringRef(NameBuf);
char *Mem = static_cast<char *>(operator new(N + NameRef.size() + 1));
CopyStringRef(Mem + N, NameRef);
return Mem;
}
namespace {
/// MemoryBufferMem - Named MemoryBuffer pointing to a block of memory.
template<typename MB>
class MemoryBufferMem : public MB {
public:
MemoryBufferMem(StringRef InputData, bool RequiresNullTerminator) {
MemoryBuffer::init(InputData.begin(), InputData.end(),
RequiresNullTerminator);
}
/// Disable sized deallocation for MemoryBufferMem, because it has
/// tail-allocated data.
void operator delete(void *p) { ::operator delete(p); }
StringRef getBufferIdentifier() const override {
// The name is stored after the class itself.
return StringRef(reinterpret_cast<const char *>(this + 1));
}
MemoryBuffer::BufferKind getBufferKind() const override {
return MemoryBuffer::MemoryBuffer_Malloc;
}
};
}
template <typename MB>
static ErrorOr<std::unique_ptr<MB>>
getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize,
uint64_t Offset, bool RequiresNullTerminator, bool IsVolatile);
std::unique_ptr<MemoryBuffer>
MemoryBuffer::getMemBuffer(StringRef InputData, StringRef BufferName,
bool RequiresNullTerminator) {
auto *Ret = new (NamedBufferAlloc(BufferName))
MemoryBufferMem<MemoryBuffer>(InputData, RequiresNullTerminator);
return std::unique_ptr<MemoryBuffer>(Ret);
}
std::unique_ptr<MemoryBuffer>
MemoryBuffer::getMemBuffer(MemoryBufferRef Ref, bool RequiresNullTerminator) {
return std::unique_ptr<MemoryBuffer>(getMemBuffer(
Ref.getBuffer(), Ref.getBufferIdentifier(), RequiresNullTerminator));
}
static ErrorOr<std::unique_ptr<WritableMemoryBuffer>>
getMemBufferCopyImpl(StringRef InputData, const Twine &BufferName) {
auto Buf = WritableMemoryBuffer::getNewUninitMemBuffer(InputData.size(), BufferName);
if (!Buf)
return make_error_code(errc::not_enough_memory);
memcpy(Buf->getBufferStart(), InputData.data(), InputData.size());
return std::move(Buf);
}
std::unique_ptr<MemoryBuffer>
MemoryBuffer::getMemBufferCopy(StringRef InputData, const Twine &BufferName) {
auto Buf = getMemBufferCopyImpl(InputData, BufferName);
if (Buf)
return std::move(*Buf);
return nullptr;
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getFileOrSTDIN(const Twine &Filename, int64_t FileSize,
bool RequiresNullTerminator) {
SmallString<256> NameBuf;
StringRef NameRef = Filename.toStringRef(NameBuf);
if (NameRef == "-")
return getSTDIN();
return getFile(Filename, FileSize, RequiresNullTerminator);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getFileSlice(const Twine &FilePath, uint64_t MapSize,
uint64_t Offset, bool IsVolatile) {
return getFileAux<MemoryBuffer>(FilePath, -1, MapSize, Offset, false,
IsVolatile);
}
//===----------------------------------------------------------------------===//
// MemoryBuffer::getFile implementation.
//===----------------------------------------------------------------------===//
namespace {
/// Memory maps a file descriptor using sys::fs::mapped_file_region.
///
/// This handles converting the offset into a legal offset on the platform.
template<typename MB>
class MemoryBufferMMapFile : public MB {
sys::fs::mapped_file_region MFR;
static uint64_t getLegalMapOffset(uint64_t Offset) {
return Offset & ~(sys::fs::mapped_file_region::alignment() - 1);
}
static uint64_t getLegalMapSize(uint64_t Len, uint64_t Offset) {
return Len + (Offset - getLegalMapOffset(Offset));
}
const char *getStart(uint64_t Len, uint64_t Offset) {
return MFR.const_data() + (Offset - getLegalMapOffset(Offset));
}
public:
MemoryBufferMMapFile(bool RequiresNullTerminator, int FD, uint64_t Len,
uint64_t Offset, std::error_code &EC)
: MFR(FD, MB::Mapmode, getLegalMapSize(Len, Offset),
getLegalMapOffset(Offset), EC) {
if (!EC) {
const char *Start = getStart(Len, Offset);
MemoryBuffer::init(Start, Start + Len, RequiresNullTerminator);
}
}
/// Disable sized deallocation for MemoryBufferMMapFile, because it has
/// tail-allocated data.
void operator delete(void *p) { ::operator delete(p); }
StringRef getBufferIdentifier() const override {
// The name is stored after the class itself.
return StringRef(reinterpret_cast<const char *>(this + 1));
}
MemoryBuffer::BufferKind getBufferKind() const override {
return MemoryBuffer::MemoryBuffer_MMap;
}
};
}
static ErrorOr<std::unique_ptr<WritableMemoryBuffer>>
getMemoryBufferForStream(int FD, const Twine &BufferName) {
const ssize_t ChunkSize = 4096*4;
SmallString<ChunkSize> Buffer;
ssize_t ReadBytes;
// Read into Buffer until we hit EOF.
do {
Buffer.reserve(Buffer.size() + ChunkSize);
ReadBytes = sys::RetryAfterSignal(-1, read, FD, Buffer.end(), ChunkSize);
if (ReadBytes == -1)
return std::error_code(errno, std::generic_category());
Buffer.set_size(Buffer.size() + ReadBytes);
} while (ReadBytes != 0);
return getMemBufferCopyImpl(Buffer, BufferName);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getFile(const Twine &Filename, int64_t FileSize,
bool RequiresNullTerminator, bool IsVolatile) {
return getFileAux<MemoryBuffer>(Filename, FileSize, FileSize, 0,
RequiresNullTerminator, IsVolatile);
}
template <typename MB>
static ErrorOr<std::unique_ptr<MB>>
getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize,
uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator,
bool IsVolatile);
template <typename MB>
static ErrorOr<std::unique_ptr<MB>>
getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize,
uint64_t Offset, bool RequiresNullTerminator, bool IsVolatile) {
int FD;
std::error_code EC = sys::fs::openFileForRead(Filename, FD, sys::fs::OF_None);
if (EC)
return EC;
auto Ret = getOpenFileImpl<MB>(FD, Filename, FileSize, MapSize, Offset,
RequiresNullTerminator, IsVolatile);
close(FD);
return Ret;
}
ErrorOr<std::unique_ptr<WritableMemoryBuffer>>
WritableMemoryBuffer::getFile(const Twine &Filename, int64_t FileSize,
bool IsVolatile) {
return getFileAux<WritableMemoryBuffer>(Filename, FileSize, FileSize, 0,
/*RequiresNullTerminator*/ false,
IsVolatile);
}
ErrorOr<std::unique_ptr<WritableMemoryBuffer>>
WritableMemoryBuffer::getFileSlice(const Twine &Filename, uint64_t MapSize,
uint64_t Offset, bool IsVolatile) {
return getFileAux<WritableMemoryBuffer>(Filename, -1, MapSize, Offset, false,
IsVolatile);
}
std::unique_ptr<WritableMemoryBuffer>
WritableMemoryBuffer::getNewUninitMemBuffer(size_t Size, const Twine &BufferName) {
using MemBuffer = MemoryBufferMem<WritableMemoryBuffer>;
// Allocate space for the MemoryBuffer, the data and the name. It is important
// that MemoryBuffer and data are aligned so PointerIntPair works with them.
// TODO: Is 16-byte alignment enough? We copy small object files with large
// alignment expectations into this buffer.
SmallString<256> NameBuf;
StringRef NameRef = BufferName.toStringRef(NameBuf);
size_t AlignedStringLen = alignTo(sizeof(MemBuffer) + NameRef.size() + 1, 16);
size_t RealLen = AlignedStringLen + Size + 1;
char *Mem = static_cast<char*>(operator new(RealLen, std::nothrow));
if (!Mem)
return nullptr;
// The name is stored after the class itself.
CopyStringRef(Mem + sizeof(MemBuffer), NameRef);
// The buffer begins after the name and must be aligned.
char *Buf = Mem + AlignedStringLen;
Buf[Size] = 0; // Null terminate buffer.
auto *Ret = new (Mem) MemBuffer(StringRef(Buf, Size), true);
return std::unique_ptr<WritableMemoryBuffer>(Ret);
}
std::unique_ptr<WritableMemoryBuffer>
WritableMemoryBuffer::getNewMemBuffer(size_t Size, const Twine &BufferName) {
auto SB = WritableMemoryBuffer::getNewUninitMemBuffer(Size, BufferName);
if (!SB)
return nullptr;
memset(SB->getBufferStart(), 0, Size);
return SB;
}
static bool shouldUseMmap(int FD,
size_t FileSize,
size_t MapSize,
off_t Offset,
bool RequiresNullTerminator,
int PageSize,
bool IsVolatile) {
// mmap may leave the buffer without null terminator if the file size changed
// by the time the last page is mapped in, so avoid it if the file size is
// likely to change.
if (IsVolatile)
return false;
// We don't use mmap for small files because this can severely fragment our
// address space.
if (MapSize < 4 * 4096 || MapSize < (unsigned)PageSize)
return false;
if (!RequiresNullTerminator)
return true;
// If we don't know the file size, use fstat to find out. fstat on an open
// file descriptor is cheaper than stat on a random path.
// FIXME: this chunk of code is duplicated, but it avoids a fstat when
// RequiresNullTerminator = false and MapSize != -1.
if (FileSize == size_t(-1)) {
sys::fs::file_status Status;
if (sys::fs::status(FD, Status))
return false;
FileSize = Status.getSize();
}
// If we need a null terminator and the end of the map is inside the file,
// we cannot use mmap.
size_t End = Offset + MapSize;
assert(End <= FileSize);
if (End != FileSize)
return false;
// Don't try to map files that are exactly a multiple of the system page size
// if we need a null terminator.
if ((FileSize & (PageSize -1)) == 0)
return false;
#if defined(__CYGWIN__)
// Don't try to map files that are exactly a multiple of the physical page size
// if we need a null terminator.
// FIXME: We should reorganize again getPageSize() on Win32.
if ((FileSize & (4096 - 1)) == 0)
return false;
#endif
return true;
}
static ErrorOr<std::unique_ptr<WriteThroughMemoryBuffer>>
getReadWriteFile(const Twine &Filename, uint64_t FileSize, uint64_t MapSize,
uint64_t Offset) {
int FD;
std::error_code EC = sys::fs::openFileForReadWrite(
Filename, FD, sys::fs::CD_OpenExisting, sys::fs::OF_None);
if (EC)
return EC;
// Default is to map the full file.
if (MapSize == uint64_t(-1)) {
// If we don't know the file size, use fstat to find out. fstat on an open
// file descriptor is cheaper than stat on a random path.
if (FileSize == uint64_t(-1)) {
sys::fs::file_status Status;
std::error_code EC = sys::fs::status(FD, Status);
if (EC)
return EC;
// If this not a file or a block device (e.g. it's a named pipe
// or character device), we can't mmap it, so error out.
sys::fs::file_type Type = Status.type();
if (Type != sys::fs::file_type::regular_file &&
Type != sys::fs::file_type::block_file)
return make_error_code(errc::invalid_argument);
FileSize = Status.getSize();
}
MapSize = FileSize;
}
std::unique_ptr<WriteThroughMemoryBuffer> Result(
new (NamedBufferAlloc(Filename))
MemoryBufferMMapFile<WriteThroughMemoryBuffer>(false, FD, MapSize,
Offset, EC));
if (EC)
return EC;
return std::move(Result);
}
ErrorOr<std::unique_ptr<WriteThroughMemoryBuffer>>
WriteThroughMemoryBuffer::getFile(const Twine &Filename, int64_t FileSize) {
return getReadWriteFile(Filename, FileSize, FileSize, 0);
}
/// Map a subrange of the specified file as a WritableMemoryBuffer.
ErrorOr<std::unique_ptr<WriteThroughMemoryBuffer>>
WriteThroughMemoryBuffer::getFileSlice(const Twine &Filename, uint64_t MapSize,
uint64_t Offset) {
return getReadWriteFile(Filename, -1, MapSize, Offset);
}
template <typename MB>
static ErrorOr<std::unique_ptr<MB>>
getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize,
uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator,
bool IsVolatile) {
static int PageSize = sys::Process::getPageSize();
// Default is to map the full file.
if (MapSize == uint64_t(-1)) {
// If we don't know the file size, use fstat to find out. fstat on an open
// file descriptor is cheaper than stat on a random path.
if (FileSize == uint64_t(-1)) {
sys::fs::file_status Status;
std::error_code EC = sys::fs::status(FD, Status);
if (EC)
return EC;
// If this not a file or a block device (e.g. it's a named pipe
// or character device), we can't trust the size. Create the memory
// buffer by copying off the stream.
sys::fs::file_type Type = Status.type();
if (Type != sys::fs::file_type::regular_file &&
Type != sys::fs::file_type::block_file)
return getMemoryBufferForStream(FD, Filename);
FileSize = Status.getSize();
}
MapSize = FileSize;
}
if (shouldUseMmap(FD, FileSize, MapSize, Offset, RequiresNullTerminator,
PageSize, IsVolatile)) {
std::error_code EC;
std::unique_ptr<MB> Result(
new (NamedBufferAlloc(Filename)) MemoryBufferMMapFile<MB>(
RequiresNullTerminator, FD, MapSize, Offset, EC));
if (!EC)
return std::move(Result);
}
auto Buf = WritableMemoryBuffer::getNewUninitMemBuffer(MapSize, Filename);
if (!Buf) {
// Failed to create a buffer. The only way it can fail is if
// new(std::nothrow) returns 0.
return make_error_code(errc::not_enough_memory);
}
char *BufPtr = Buf.get()->getBufferStart();
size_t BytesLeft = MapSize;
#ifndef HAVE_PREAD
if (lseek(FD, Offset, SEEK_SET) == -1)
return std::error_code(errno, std::generic_category());
#endif
while (BytesLeft) {
#ifdef HAVE_PREAD
ssize_t NumRead = sys::RetryAfterSignal(-1, ::pread, FD, BufPtr, BytesLeft,
MapSize - BytesLeft + Offset);
#else
ssize_t NumRead = sys::RetryAfterSignal(-1, ::read, FD, BufPtr, BytesLeft);
#endif
if (NumRead == -1) {
// Error while reading.
return std::error_code(errno, std::generic_category());
}
if (NumRead == 0) {
memset(BufPtr, 0, BytesLeft); // zero-initialize rest of the buffer.
break;
}
BytesLeft -= NumRead;
BufPtr += NumRead;
}
return std::move(Buf);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getOpenFile(int FD, const Twine &Filename, uint64_t FileSize,
bool RequiresNullTerminator, bool IsVolatile) {
return getOpenFileImpl<MemoryBuffer>(FD, Filename, FileSize, FileSize, 0,
RequiresNullTerminator, IsVolatile);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getOpenFileSlice(int FD, const Twine &Filename, uint64_t MapSize,
int64_t Offset, bool IsVolatile) {
assert(MapSize != uint64_t(-1));
return getOpenFileImpl<MemoryBuffer>(FD, Filename, -1, MapSize, Offset, false,
IsVolatile);
}
ErrorOr<std::unique_ptr<MemoryBuffer>> MemoryBuffer::getSTDIN() {
// Read in all of the data from stdin, we cannot mmap stdin.
//
// FIXME: That isn't necessarily true, we should try to mmap stdin and
// fallback if it fails.
sys::ChangeStdinToBinary();
return getMemoryBufferForStream(0, "<stdin>");
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
MemoryBuffer::getFileAsStream(const Twine &Filename) {
int FD;
std::error_code EC = sys::fs::openFileForRead(Filename, FD, sys::fs::OF_None);
if (EC)
return EC;
ErrorOr<std::unique_ptr<MemoryBuffer>> Ret =
getMemoryBufferForStream(FD, Filename);
close(FD);
return Ret;
}
MemoryBufferRef MemoryBuffer::getMemBufferRef() const {
StringRef Data = getBuffer();
StringRef Identifier = getBufferIdentifier();
return MemoryBufferRef(Data, Identifier);
}
void MemoryBuffer::anchor() {}
void SmallVectorMemoryBuffer::anchor() {}