mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-04 10:52:30 +00:00
051a950000
Specifically, introduction of XXX::Create methods for Users that have a potentially variable number of Uses. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49277 91177308-0d34-0410-b5e6-96231b3b80d8
476 lines
21 KiB
C++
476 lines
21 KiB
C++
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file transforms calls of the current function (self recursion) followed
|
|
// by a return instruction with a branch to the entry of the function, creating
|
|
// a loop. This pass also implements the following extensions to the basic
|
|
// algorithm:
|
|
//
|
|
// 1. Trivial instructions between the call and return do not prevent the
|
|
// transformation from taking place, though currently the analysis cannot
|
|
// support moving any really useful instructions (only dead ones).
|
|
// 2. This pass transforms functions that are prevented from being tail
|
|
// recursive by an associative expression to use an accumulator variable,
|
|
// thus compiling the typical naive factorial or 'fib' implementation into
|
|
// efficient code.
|
|
// 3. TRE is performed if the function returns void, if the return
|
|
// returns the result returned by the call, or if the function returns a
|
|
// run-time constant on all exits from the function. It is possible, though
|
|
// unlikely, that the return returns something else (like constant 0), and
|
|
// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
|
|
// the function return the exact same value.
|
|
// 4. If it can prove that callees do not access theier caller stack frame,
|
|
// they are marked as eligible for tail call elimination (by the code
|
|
// generator).
|
|
//
|
|
// There are several improvements that could be made:
|
|
//
|
|
// 1. If the function has any alloca instructions, these instructions will be
|
|
// moved out of the entry block of the function, causing them to be
|
|
// evaluated each time through the tail recursion. Safely keeping allocas
|
|
// in the entry block requires analysis to proves that the tail-called
|
|
// function does not read or write the stack object.
|
|
// 2. Tail recursion is only performed if the call immediately preceeds the
|
|
// return instruction. It's possible that there could be a jump between
|
|
// the call and the return.
|
|
// 3. There can be intervening operations between the call and the return that
|
|
// prevent the TRE from occurring. For example, there could be GEP's and
|
|
// stores to memory that will not be read or written by the call. This
|
|
// requires some substantial analysis (such as with DSA) to prove safe to
|
|
// move ahead of the call, but doing so could allow many more TREs to be
|
|
// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
|
|
// 4. The algorithm we use to detect if callees access their caller stack
|
|
// frames is very primitive.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "tailcallelim"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumEliminated, "Number of tail calls removed");
|
|
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN TailCallElim : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TailCallElim() : FunctionPass((intptr_t)&ID) {}
|
|
|
|
virtual bool runOnFunction(Function &F);
|
|
|
|
private:
|
|
bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
|
|
bool &TailCallsAreMarkedTail,
|
|
std::vector<PHINode*> &ArgumentPHIs,
|
|
bool CannotTailCallElimCallsMarkedTail);
|
|
bool CanMoveAboveCall(Instruction *I, CallInst *CI);
|
|
Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
|
|
};
|
|
char TailCallElim::ID = 0;
|
|
RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
|
|
}
|
|
|
|
// Public interface to the TailCallElimination pass
|
|
FunctionPass *llvm::createTailCallEliminationPass() {
|
|
return new TailCallElim();
|
|
}
|
|
|
|
|
|
/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
|
|
/// callees of this function. We only do very simple analysis right now, this
|
|
/// could be expanded in the future to use mod/ref information for particular
|
|
/// call sites if desired.
|
|
static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
|
|
// FIXME: do simple 'address taken' analysis.
|
|
return true;
|
|
}
|
|
|
|
/// FunctionContainsAllocas - Scan the specified basic block for alloca
|
|
/// instructions. If it contains any that might be accessed by calls, return
|
|
/// true.
|
|
static bool CheckForEscapingAllocas(BasicBlock *BB,
|
|
bool &CannotTCETailMarkedCall) {
|
|
bool RetVal = false;
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
|
|
RetVal |= AllocaMightEscapeToCalls(AI);
|
|
|
|
// If this alloca is in the body of the function, or if it is a variable
|
|
// sized allocation, we cannot tail call eliminate calls marked 'tail'
|
|
// with this mechanism.
|
|
if (BB != &BB->getParent()->getEntryBlock() ||
|
|
!isa<ConstantInt>(AI->getArraySize()))
|
|
CannotTCETailMarkedCall = true;
|
|
}
|
|
return RetVal;
|
|
}
|
|
|
|
bool TailCallElim::runOnFunction(Function &F) {
|
|
// If this function is a varargs function, we won't be able to PHI the args
|
|
// right, so don't even try to convert it...
|
|
if (F.getFunctionType()->isVarArg()) return false;
|
|
|
|
BasicBlock *OldEntry = 0;
|
|
bool TailCallsAreMarkedTail = false;
|
|
std::vector<PHINode*> ArgumentPHIs;
|
|
bool MadeChange = false;
|
|
|
|
bool FunctionContainsEscapingAllocas = false;
|
|
|
|
// CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
|
|
// marked with the 'tail' attribute, because doing so would cause the stack
|
|
// size to increase (real TCE would deallocate variable sized allocas, TCE
|
|
// doesn't).
|
|
bool CannotTCETailMarkedCall = false;
|
|
|
|
// Loop over the function, looking for any returning blocks, and keeping track
|
|
// of whether this function has any non-trivially used allocas.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
|
|
break;
|
|
|
|
FunctionContainsEscapingAllocas |=
|
|
CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
|
|
}
|
|
|
|
/// FIXME: The code generator produces really bad code when an 'escaping
|
|
/// alloca' is changed from being a static alloca to being a dynamic alloca.
|
|
/// Until this is resolved, disable this transformation if that would ever
|
|
/// happen. This bug is PR962.
|
|
if (FunctionContainsEscapingAllocas)
|
|
return false;
|
|
|
|
|
|
// Second pass, change any tail calls to loops.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
|
|
MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
|
|
ArgumentPHIs,CannotTCETailMarkedCall);
|
|
|
|
// If we eliminated any tail recursions, it's possible that we inserted some
|
|
// silly PHI nodes which just merge an initial value (the incoming operand)
|
|
// with themselves. Check to see if we did and clean up our mess if so. This
|
|
// occurs when a function passes an argument straight through to its tail
|
|
// call.
|
|
if (!ArgumentPHIs.empty()) {
|
|
for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
|
|
PHINode *PN = ArgumentPHIs[i];
|
|
|
|
// If the PHI Node is a dynamic constant, replace it with the value it is.
|
|
if (Value *PNV = PN->hasConstantValue()) {
|
|
PN->replaceAllUsesWith(PNV);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, if this function contains no non-escaping allocas, mark all calls
|
|
// in the function as eligible for tail calls (there is no stack memory for
|
|
// them to access).
|
|
if (!FunctionContainsEscapingAllocas)
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (CallInst *CI = dyn_cast<CallInst>(I))
|
|
CI->setTailCall();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
/// CanMoveAboveCall - Return true if it is safe to move the specified
|
|
/// instruction from after the call to before the call, assuming that all
|
|
/// instructions between the call and this instruction are movable.
|
|
///
|
|
bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
|
|
// FIXME: We can move load/store/call/free instructions above the call if the
|
|
// call does not mod/ref the memory location being processed.
|
|
if (I->mayWriteToMemory() || isa<LoadInst>(I))
|
|
return false;
|
|
|
|
// Otherwise, if this is a side-effect free instruction, check to make sure
|
|
// that it does not use the return value of the call. If it doesn't use the
|
|
// return value of the call, it must only use things that are defined before
|
|
// the call, or movable instructions between the call and the instruction
|
|
// itself.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (I->getOperand(i) == CI)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// isDynamicConstant - Return true if the specified value is the same when the
|
|
// return would exit as it was when the initial iteration of the recursive
|
|
// function was executed.
|
|
//
|
|
// We currently handle static constants and arguments that are not modified as
|
|
// part of the recursion.
|
|
//
|
|
static bool isDynamicConstant(Value *V, CallInst *CI) {
|
|
if (isa<Constant>(V)) return true; // Static constants are always dyn consts
|
|
|
|
// Check to see if this is an immutable argument, if so, the value
|
|
// will be available to initialize the accumulator.
|
|
if (Argument *Arg = dyn_cast<Argument>(V)) {
|
|
// Figure out which argument number this is...
|
|
unsigned ArgNo = 0;
|
|
Function *F = CI->getParent()->getParent();
|
|
for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
|
|
++ArgNo;
|
|
|
|
// If we are passing this argument into call as the corresponding
|
|
// argument operand, then the argument is dynamically constant.
|
|
// Otherwise, we cannot transform this function safely.
|
|
if (CI->getOperand(ArgNo+1) == Arg)
|
|
return true;
|
|
}
|
|
// Not a constant or immutable argument, we can't safely transform.
|
|
return false;
|
|
}
|
|
|
|
// getCommonReturnValue - Check to see if the function containing the specified
|
|
// return instruction and tail call consistently returns the same
|
|
// runtime-constant value at all exit points. If so, return the returned value.
|
|
//
|
|
static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
|
|
Function *F = TheRI->getParent()->getParent();
|
|
Value *ReturnedValue = 0;
|
|
|
|
// TODO: Handle multiple value ret instructions;
|
|
if (isa<StructType>(F->getReturnType()))
|
|
return 0;
|
|
|
|
for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
|
|
if (RI != TheRI) {
|
|
Value *RetOp = RI->getOperand(0);
|
|
|
|
// We can only perform this transformation if the value returned is
|
|
// evaluatable at the start of the initial invocation of the function,
|
|
// instead of at the end of the evaluation.
|
|
//
|
|
if (!isDynamicConstant(RetOp, CI))
|
|
return 0;
|
|
|
|
if (ReturnedValue && RetOp != ReturnedValue)
|
|
return 0; // Cannot transform if differing values are returned.
|
|
ReturnedValue = RetOp;
|
|
}
|
|
return ReturnedValue;
|
|
}
|
|
|
|
/// CanTransformAccumulatorRecursion - If the specified instruction can be
|
|
/// transformed using accumulator recursion elimination, return the constant
|
|
/// which is the start of the accumulator value. Otherwise return null.
|
|
///
|
|
Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
|
|
CallInst *CI) {
|
|
if (!I->isAssociative()) return 0;
|
|
assert(I->getNumOperands() == 2 &&
|
|
"Associative operations should have 2 args!");
|
|
|
|
// Exactly one operand should be the result of the call instruction...
|
|
if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
|
|
(I->getOperand(0) != CI && I->getOperand(1) != CI))
|
|
return 0;
|
|
|
|
// The only user of this instruction we allow is a single return instruction.
|
|
if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
|
|
return 0;
|
|
|
|
// Ok, now we have to check all of the other return instructions in this
|
|
// function. If they return non-constants or differing values, then we cannot
|
|
// transform the function safely.
|
|
return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
|
|
}
|
|
|
|
bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
|
|
bool &TailCallsAreMarkedTail,
|
|
std::vector<PHINode*> &ArgumentPHIs,
|
|
bool CannotTailCallElimCallsMarkedTail) {
|
|
BasicBlock *BB = Ret->getParent();
|
|
Function *F = BB->getParent();
|
|
|
|
if (&BB->front() == Ret) // Make sure there is something before the ret...
|
|
return false;
|
|
|
|
// If the return is in the entry block, then making this transformation would
|
|
// turn infinite recursion into an infinite loop. This transformation is ok
|
|
// in theory, but breaks some code like:
|
|
// double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
|
|
// disable this xform in this case, because the code generator will lower the
|
|
// call to fabs into inline code.
|
|
if (BB == &F->getEntryBlock())
|
|
return false;
|
|
|
|
// Scan backwards from the return, checking to see if there is a tail call in
|
|
// this block. If so, set CI to it.
|
|
CallInst *CI;
|
|
BasicBlock::iterator BBI = Ret;
|
|
while (1) {
|
|
CI = dyn_cast<CallInst>(BBI);
|
|
if (CI && CI->getCalledFunction() == F)
|
|
break;
|
|
|
|
if (BBI == BB->begin())
|
|
return false; // Didn't find a potential tail call.
|
|
--BBI;
|
|
}
|
|
|
|
// If this call is marked as a tail call, and if there are dynamic allocas in
|
|
// the function, we cannot perform this optimization.
|
|
if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
|
|
return false;
|
|
|
|
// If we are introducing accumulator recursion to eliminate associative
|
|
// operations after the call instruction, this variable contains the initial
|
|
// value for the accumulator. If this value is set, we actually perform
|
|
// accumulator recursion elimination instead of simple tail recursion
|
|
// elimination.
|
|
Value *AccumulatorRecursionEliminationInitVal = 0;
|
|
Instruction *AccumulatorRecursionInstr = 0;
|
|
|
|
// Ok, we found a potential tail call. We can currently only transform the
|
|
// tail call if all of the instructions between the call and the return are
|
|
// movable to above the call itself, leaving the call next to the return.
|
|
// Check that this is the case now.
|
|
for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
|
|
if (!CanMoveAboveCall(BBI, CI)) {
|
|
// If we can't move the instruction above the call, it might be because it
|
|
// is an associative operation that could be tranformed using accumulator
|
|
// recursion elimination. Check to see if this is the case, and if so,
|
|
// remember the initial accumulator value for later.
|
|
if ((AccumulatorRecursionEliminationInitVal =
|
|
CanTransformAccumulatorRecursion(BBI, CI))) {
|
|
// Yes, this is accumulator recursion. Remember which instruction
|
|
// accumulates.
|
|
AccumulatorRecursionInstr = BBI;
|
|
} else {
|
|
return false; // Otherwise, we cannot eliminate the tail recursion!
|
|
}
|
|
}
|
|
|
|
// We can only transform call/return pairs that either ignore the return value
|
|
// of the call and return void, ignore the value of the call and return a
|
|
// constant, return the value returned by the tail call, or that are being
|
|
// accumulator recursion variable eliminated.
|
|
if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
|
|
!isa<UndefValue>(Ret->getReturnValue()) &&
|
|
AccumulatorRecursionEliminationInitVal == 0 &&
|
|
!getCommonReturnValue(Ret, CI))
|
|
return false;
|
|
|
|
// OK! We can transform this tail call. If this is the first one found,
|
|
// create the new entry block, allowing us to branch back to the old entry.
|
|
if (OldEntry == 0) {
|
|
OldEntry = &F->getEntryBlock();
|
|
BasicBlock *NewEntry = BasicBlock::Create("", F, OldEntry);
|
|
NewEntry->takeName(OldEntry);
|
|
OldEntry->setName("tailrecurse");
|
|
BranchInst::Create(OldEntry, NewEntry);
|
|
|
|
// If this tail call is marked 'tail' and if there are any allocas in the
|
|
// entry block, move them up to the new entry block.
|
|
TailCallsAreMarkedTail = CI->isTailCall();
|
|
if (TailCallsAreMarkedTail)
|
|
// Move all fixed sized allocas from OldEntry to NewEntry.
|
|
for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
|
|
NEBI = NewEntry->begin(); OEBI != E; )
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
AI->moveBefore(NEBI);
|
|
|
|
// Now that we have created a new block, which jumps to the entry
|
|
// block, insert a PHI node for each argument of the function.
|
|
// For now, we initialize each PHI to only have the real arguments
|
|
// which are passed in.
|
|
Instruction *InsertPos = OldEntry->begin();
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I) {
|
|
PHINode *PN = PHINode::Create(I->getType(), I->getName()+".tr", InsertPos);
|
|
I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
|
|
PN->addIncoming(I, NewEntry);
|
|
ArgumentPHIs.push_back(PN);
|
|
}
|
|
}
|
|
|
|
// If this function has self recursive calls in the tail position where some
|
|
// are marked tail and some are not, only transform one flavor or another. We
|
|
// have to choose whether we move allocas in the entry block to the new entry
|
|
// block or not, so we can't make a good choice for both. NOTE: We could do
|
|
// slightly better here in the case that the function has no entry block
|
|
// allocas.
|
|
if (TailCallsAreMarkedTail && !CI->isTailCall())
|
|
return false;
|
|
|
|
// Ok, now that we know we have a pseudo-entry block WITH all of the
|
|
// required PHI nodes, add entries into the PHI node for the actual
|
|
// parameters passed into the tail-recursive call.
|
|
for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
|
|
ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
|
|
|
|
// If we are introducing an accumulator variable to eliminate the recursion,
|
|
// do so now. Note that we _know_ that no subsequent tail recursion
|
|
// eliminations will happen on this function because of the way the
|
|
// accumulator recursion predicate is set up.
|
|
//
|
|
if (AccumulatorRecursionEliminationInitVal) {
|
|
Instruction *AccRecInstr = AccumulatorRecursionInstr;
|
|
// Start by inserting a new PHI node for the accumulator.
|
|
PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
|
|
OldEntry->begin());
|
|
|
|
// Loop over all of the predecessors of the tail recursion block. For the
|
|
// real entry into the function we seed the PHI with the initial value,
|
|
// computed earlier. For any other existing branches to this block (due to
|
|
// other tail recursions eliminated) the accumulator is not modified.
|
|
// Because we haven't added the branch in the current block to OldEntry yet,
|
|
// it will not show up as a predecessor.
|
|
for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
|
|
PI != PE; ++PI) {
|
|
if (*PI == &F->getEntryBlock())
|
|
AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
|
|
else
|
|
AccPN->addIncoming(AccPN, *PI);
|
|
}
|
|
|
|
// Add an incoming argument for the current block, which is computed by our
|
|
// associative accumulator instruction.
|
|
AccPN->addIncoming(AccRecInstr, BB);
|
|
|
|
// Next, rewrite the accumulator recursion instruction so that it does not
|
|
// use the result of the call anymore, instead, use the PHI node we just
|
|
// inserted.
|
|
AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
|
|
|
|
// Finally, rewrite any return instructions in the program to return the PHI
|
|
// node instead of the "initval" that they do currently. This loop will
|
|
// actually rewrite the return value we are destroying, but that's ok.
|
|
for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
|
|
RI->setOperand(0, AccPN);
|
|
++NumAccumAdded;
|
|
}
|
|
|
|
// Now that all of the PHI nodes are in place, remove the call and
|
|
// ret instructions, replacing them with an unconditional branch.
|
|
BranchInst::Create(OldEntry, Ret);
|
|
BB->getInstList().erase(Ret); // Remove return.
|
|
BB->getInstList().erase(CI); // Remove call.
|
|
++NumEliminated;
|
|
return true;
|
|
}
|