mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-15 06:18:50 +00:00
055ac429cc
The SystemZ port currently relies on the order of the instruction operands matching the order of the instruction field lists. This isn't desirable for disassembly, where the two are matched only by name. E.g. the R1 and R2 fields of an RR instruction should have corresponding R1 and R2 operands. The main complication is that addresses are compound operands, and as far as I know there is no mechanism to allow individual suboperands to be selected by name in "let Inst{...} = ..." assignments. Luckily it doesn't really matter though. The SystemZ instruction encoding groups all address fields together in a predictable order, so it's just as valid to see the entire compound address operand as a single field. That's the approach taken in this patch. Matching by name in turn means that the operands to COPY SIGN and CONVERT TO FIXED instructions can be given in natural order. (It was easier to do this at the same time as the rename, since otherwise the intermediate step was too confusing.) No functional change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181769 91177308-0d34-0410-b5e6-96231b3b80d8
316 lines
13 KiB
TableGen
316 lines
13 KiB
TableGen
//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Control-flow instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// C's ?: operator for floating-point operands.
|
|
def SelectF32 : SelectWrapper<FP32>;
|
|
def SelectF64 : SelectWrapper<FP64>;
|
|
def SelectF128 : SelectWrapper<FP128>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Move instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Load zero.
|
|
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
|
|
def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>;
|
|
def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>;
|
|
def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
|
|
}
|
|
|
|
// Moves between two floating-point registers.
|
|
let neverHasSideEffects = 1 in {
|
|
def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>;
|
|
def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>;
|
|
def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
|
|
}
|
|
|
|
// Moves between 64-bit integer and floating-point registers.
|
|
def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
|
|
def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
|
|
|
|
// fcopysign with an FP32 result.
|
|
let isCodeGenOnly = 1 in {
|
|
def CPSDRss : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>;
|
|
def CPSDRsd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>;
|
|
}
|
|
|
|
// The sign of an FP128 is in the high register.
|
|
def : Pat<(fcopysign FP32:$src1, FP128:$src2),
|
|
(CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>;
|
|
|
|
// fcopysign with an FP64 result.
|
|
let isCodeGenOnly = 1 in
|
|
def CPSDRds : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>;
|
|
def CPSDRdd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>;
|
|
|
|
// The sign of an FP128 is in the high register.
|
|
def : Pat<(fcopysign FP64:$src1, FP128:$src2),
|
|
(CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>;
|
|
|
|
// fcopysign with an FP128 result. Use "upper" as the high half and leave
|
|
// the low half as-is.
|
|
class CopySign128<RegisterOperand cls, dag upper>
|
|
: Pat<(fcopysign FP128:$src1, cls:$src2),
|
|
(INSERT_SUBREG FP128:$src1, upper, subreg_high)>;
|
|
|
|
def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_high),
|
|
FP32:$src2)>;
|
|
def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_high),
|
|
FP64:$src2)>;
|
|
def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_high),
|
|
(EXTRACT_SUBREG FP128:$src2, subreg_high))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Load instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
|
|
defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>;
|
|
defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>;
|
|
|
|
// These instructions are split after register allocation, so we don't
|
|
// want a custom inserter.
|
|
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
|
|
def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
|
|
[(set FP128:$dst, (load bdxaddr20only128:$src))]>;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Store instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let SimpleBDXStore = 1 in {
|
|
defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>;
|
|
defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>;
|
|
|
|
// These instructions are split after register allocation, so we don't
|
|
// want a custom inserter.
|
|
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
|
|
def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
|
|
[(store FP128:$src, bdxaddr20only128:$dst)]>;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Convert floating-point values to narrower representations, rounding
|
|
// according to the current mode. The destination of LEXBR and LDXBR
|
|
// is a 128-bit value, but only the first register of the pair is used.
|
|
def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>;
|
|
def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
|
|
def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
|
|
|
|
def : Pat<(f32 (fround FP128:$src)),
|
|
(EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>;
|
|
def : Pat<(f64 (fround FP128:$src)),
|
|
(EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>;
|
|
|
|
// Extend register floating-point values to wider representations.
|
|
def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>;
|
|
def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>;
|
|
def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>;
|
|
|
|
// Extend memory floating-point values to wider representations.
|
|
def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>;
|
|
def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>;
|
|
def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>;
|
|
|
|
// Convert a signed integer register value to a floating-point one.
|
|
let Defs = [PSW] in {
|
|
def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>;
|
|
def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>;
|
|
def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
|
|
|
|
def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>;
|
|
def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>;
|
|
def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
|
|
}
|
|
|
|
// Convert a floating-point register value to a signed integer value,
|
|
// with the second operand (modifier M3) specifying the rounding mode.
|
|
let Defs = [PSW] in {
|
|
def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>;
|
|
def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>;
|
|
def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>;
|
|
|
|
def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>;
|
|
def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>;
|
|
def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>;
|
|
}
|
|
|
|
// fp_to_sint always rounds towards zero, which is modifier value 5.
|
|
def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>;
|
|
def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>;
|
|
def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
|
|
|
|
def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>;
|
|
def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>;
|
|
def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unary arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Negation (Load Complement).
|
|
let Defs = [PSW] in {
|
|
def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>;
|
|
def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>;
|
|
def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
|
|
}
|
|
|
|
// Absolute value (Load Positive).
|
|
let Defs = [PSW] in {
|
|
def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>;
|
|
def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>;
|
|
def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
|
|
}
|
|
|
|
// Negative absolute value (Load Negative).
|
|
let Defs = [PSW] in {
|
|
def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>;
|
|
def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>;
|
|
def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
|
|
}
|
|
|
|
// Square root.
|
|
def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>;
|
|
def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>;
|
|
def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
|
|
|
|
def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>;
|
|
def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>;
|
|
|
|
// Round to an integer, with the second operand (modifier M3) specifying
|
|
// the rounding mode.
|
|
//
|
|
// These forms always check for inexact conditions. z196 added versions
|
|
// that allow this to suppressed (as for fnearbyint), but we don't yet
|
|
// support -march=z196.
|
|
let Defs = [PSW] in {
|
|
def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>;
|
|
def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>;
|
|
def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>;
|
|
}
|
|
|
|
// frint rounds according to the current mode (modifier 0) and detects
|
|
// inexact conditions.
|
|
def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>;
|
|
def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>;
|
|
def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Addition.
|
|
let Defs = [PSW] in {
|
|
let isCommutable = 1 in {
|
|
def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>;
|
|
def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>;
|
|
def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
|
|
}
|
|
def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>;
|
|
def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>;
|
|
}
|
|
|
|
// Subtraction.
|
|
let Defs = [PSW] in {
|
|
def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>;
|
|
def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>;
|
|
def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
|
|
|
|
def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>;
|
|
def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>;
|
|
}
|
|
|
|
// Multiplication.
|
|
let isCommutable = 1 in {
|
|
def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>;
|
|
def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>;
|
|
def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>;
|
|
}
|
|
def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>;
|
|
def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>;
|
|
|
|
// f64 multiplication of two FP32 registers.
|
|
def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
|
|
def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
|
|
(MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
FP32:$src1, subreg_32bit), FP32:$src2)>;
|
|
|
|
// f64 multiplication of an FP32 register and an f32 memory.
|
|
def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>;
|
|
def : Pat<(fmul (f64 (fextend FP32:$src1)),
|
|
(f64 (extloadf32 bdxaddr12only:$addr))),
|
|
(MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit),
|
|
bdxaddr12only:$addr)>;
|
|
|
|
// f128 multiplication of two FP64 registers.
|
|
def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
|
|
def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
|
|
(MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
|
|
FP64:$src1, subreg_high), FP64:$src2)>;
|
|
|
|
// f128 multiplication of an FP64 register and an f64 memory.
|
|
def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>;
|
|
def : Pat<(fmul (f128 (fextend FP64:$src1)),
|
|
(f128 (extloadf64 bdxaddr12only:$addr))),
|
|
(MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high),
|
|
bdxaddr12only:$addr)>;
|
|
|
|
// Fused multiply-add.
|
|
def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>;
|
|
def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>;
|
|
|
|
def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>;
|
|
def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>;
|
|
|
|
// Fused multiply-subtract.
|
|
def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>;
|
|
def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>;
|
|
|
|
def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>;
|
|
def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>;
|
|
|
|
// Division.
|
|
def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>;
|
|
def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>;
|
|
def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
|
|
|
|
def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>;
|
|
def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Comparisons
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [PSW] in {
|
|
def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>;
|
|
def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>;
|
|
def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>;
|
|
|
|
def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>;
|
|
def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Peepholes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>;
|
|
def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>;
|
|
def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
|