llvm/lib/VMCore/AsmWriter.cpp
Vikram S. Adve 5efa3ccbd1 Moved DebugValue to Value.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@606 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-18 12:48:16 +00:00

417 lines
13 KiB
C++

//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// This library uses the Analysis library to figure out offsets for
// variables in the method tables...
//
// TODO: print out the type name instead of the full type if a particular type
// is in the symbol table...
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/SlotCalculator.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/GlobalVariable.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/SymbolTable.h"
#include <algorithm>
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
bool PrintName, SlotCalculator *Table) {
if (PrintType)
Out << " " << V->getType();
if (PrintName && V->hasName()) {
Out << " %" << V->getName();
} else {
if (const ConstPoolVal *CPV = V->castConstant()) {
Out << " " << CPV->getStrValue();
} else {
int Slot;
if (Table) {
Slot = Table->getValSlot(V);
} else {
if (const Type *Ty = V->castType()) {
return Out << " " << Ty;
} else if (const MethodArgument *MA = V->castMethodArgument()) {
Table = new SlotCalculator(MA->getParent(), true);
} else if (const Instruction *I = V->castInstruction()) {
Table = new SlotCalculator(I->getParent()->getParent(), true);
} else if (const BasicBlock *BB = V->castBasicBlock()) {
Table = new SlotCalculator(BB->getParent(), true);
} else if (const Method *Meth = V->castMethod()) {
Table = new SlotCalculator(Meth, true);
} else if (const Module *Mod = V->castModule()) {
Table = new SlotCalculator(Mod, true);
} else {
return Out << "BAD VALUE TYPE!";
}
Slot = Table->getValSlot(V);
delete Table;
}
if (Slot >= 0) Out << " %" << Slot;
else if (PrintName)
Out << "<badref>"; // Not embeded into a location?
}
}
return Out;
}
class AssemblyWriter {
ostream &Out;
SlotCalculator &Table;
public:
inline AssemblyWriter(ostream &o, SlotCalculator &Tab) : Out(o), Table(Tab) {
}
inline void write(const Module *M) { processModule(M); }
inline void write(const GlobalVariable *G) { processGlobal(G); }
inline void write(const Method *M) { processMethod(M); }
inline void write(const BasicBlock *BB) { processBasicBlock(BB); }
inline void write(const Instruction *I) { processInstruction(I); }
inline void write(const ConstPoolVal *CPV) { processConstant(CPV); }
private :
void processModule(const Module *M);
void processSymbolTable(const SymbolTable &ST);
void processConstant(const ConstPoolVal *CPV);
void processGlobal(const GlobalVariable *GV);
void processMethod(const Method *M);
void processMethodArgument(const MethodArgument *MA);
void processBasicBlock(const BasicBlock *BB);
void processInstruction(const Instruction *I);
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
};
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
WriteAsOperand(Out, Operand, PrintType, PrintName, &Table);
}
void AssemblyWriter::processModule(const Module *M) {
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
processSymbolTable(*M->getSymbolTable());
for_each(M->gbegin(), M->gend(),
bind_obj(this, &AssemblyWriter::processGlobal));
Out << "implementation\n";
// Output all of the methods...
for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::processMethod));
}
void AssemblyWriter::processGlobal(const GlobalVariable *GV) {
if (GV->hasName()) Out << "%" << GV->getName() << " = ";
if (!GV->hasInitializer()) Out << "uninitialized ";
Out << (GV->isConstant() ? "constant " : "global ")
<< GV->getType()->getValueType()->getDescription();
if (GV->hasInitializer())
writeOperand(GV->getInitializer(), false, false);
Out << endl;
}
// processSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
//
void AssemblyWriter::processSymbolTable(const SymbolTable &ST) {
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const ConstPoolVal *CPV = V->castConstant()) {
processConstant(CPV);
} else if (const Type *Ty = V->castType()) {
Out << "\t%" << I->first << " = type " << Ty->getDescription() << endl;
}
}
}
}
// processConstant - Print out a constant pool entry...
//
void AssemblyWriter::processConstant(const ConstPoolVal *CPV) {
// Don't print out unnamed constants, they will be inlined
if (!CPV->hasName()) return;
// Print out name...
Out << "\t%" << CPV->getName() << " = ";
// Print out the constant type...
Out << CPV->getType();
// Write the value out now...
writeOperand(CPV, false, false);
if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
Out << "\t\t; <" << CPV->getType() << ">:";
if (Slot >= 0) Out << Slot;
else Out << "<badref>";
}
Out << endl;
}
// processMethod - Process all aspects of a method.
//
void AssemblyWriter::processMethod(const Method *M) {
// Print out the return type and name...
Out << "\n" << (M->isExternal() ? "declare " : "")
<< M->getReturnType() << " \"" << M->getName() << "\"(";
Table.incorporateMethod(M);
// Loop over the arguments, processing them...
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &AssemblyWriter::processMethodArgument));
// Finish printing arguments...
const MethodType *MT = (const MethodType*)M->getType();
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")\n";
if (!M->isExternal()) {
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
processSymbolTable(*M->getSymbolTable());
Out << "begin";
// Output all of its basic blocks... for the method
for_each(M->begin(), M->end(),
bind_obj(this, &AssemblyWriter::processBasicBlock));
Out << "end\n";
}
Table.purgeMethod();
}
// processMethodArgument - This member is called for every argument that
// is passed into the method. Simply print it out
//
void AssemblyWriter::processMethodArgument(const MethodArgument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
// Output type...
Out << Arg->getType();
// Output name, if available...
if (Arg->hasName())
Out << " %" << Arg->getName();
else if (Table.getValSlot(Arg) < 0)
Out << "<badref>";
}
// processBasicBlock - This member is called for each basic block in a methd.
//
void AssemblyWriter::processBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n" << BB->getName() << ":";
} else {
int Slot = Table.getValSlot(BB);
Out << "\n; <label>:";
if (Slot >= 0)
Out << Slot; // Extra newline seperates out label's
else
Out << "<badref>";
}
Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n"; // Output # uses
// Output all of the instructions in the basic block...
for_each(BB->begin(), BB->end(),
bind_obj(this, &AssemblyWriter::processInstruction));
}
// processInstruction - This member is called for each Instruction in a methd.
//
void AssemblyWriter::processInstruction(const Instruction *I) {
Out << "\t";
// Print out name if it exists...
if (I && I->hasName())
Out << "%" << I->getName() << " = ";
// Print out the opcode...
Out << I->getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
writeOperand(I->getOperand(2), true);
Out << ",";
writeOperand(Operand, true);
Out << ",";
writeOperand(I->getOperand(1), true);
} else if (I->getOpcode() == Instruction::Switch) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ",";
writeOperand(I->getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I->getOperand(op ), true); Out << ",";
writeOperand(I->getOperand(op+1), true);
}
Out << "\n\t]";
} else if (I->isPHINode()) {
Out << " " << Operand->getType();
Out << " ["; writeOperand(Operand, false); Out << ",";
writeOperand(I->getOperand(1), false); Out << " ]";
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
Out << ", [";
writeOperand(I->getOperand(op ), false); Out << ",";
writeOperand(I->getOperand(op+1), false); Out << " ]";
}
} else if (I->getOpcode() == Instruction::Ret && !Operand) {
Out << " void";
} else if (I->getOpcode() == Instruction::Call) {
writeOperand(Operand, true);
Out << "(";
if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I->getOperand(op), true);
}
Out << " )";
} else if (I->getOpcode() == Instruction::Malloc ||
I->getOpcode() == Instruction::Alloca) {
Out << " " << ((const PointerType*)I->getType())->getValueType();
if (I->getNumOperands()) {
Out << ",";
writeOperand(I->getOperand(0), true);
}
} else if (I->getOpcode() == Instruction::Cast) {
writeOperand(Operand, true);
Out << " to " << I->getType();
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
Operand = I->getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
if (!PrintAllTypes)
Out << " " << I->getOperand(0)->getType();
for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
if (i) Out << ",";
writeOperand(I->getOperand(i), PrintAllTypes);
}
}
// Print a little comment after the instruction indicating which slot it
// occupies.
//
if (I->getType() != Type::VoidTy) {
Out << "\t\t; <" << I->getType() << ">";
if (!I->hasName()) {
int Slot = Table.getValSlot(I); // Print out the def slot taken...
if (Slot >= 0) Out << ":" << Slot;
else Out << ":<badref>";
}
Out << "\t[#uses=" << I->use_size() << "]"; // Output # uses
}
Out << endl;
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void WriteToAssembly(const Module *M, ostream &o) {
if (M == 0) { o << "<null> module\n"; return; }
SlotCalculator SlotTable(M, true);
AssemblyWriter W(o, SlotTable);
W.write(M);
}
void WriteToAssembly(const GlobalVariable *G, ostream &o) {
if (G == 0) { o << "<null> global variable\n"; return; }
SlotCalculator SlotTable(G->getParent(), true);
AssemblyWriter W(o, SlotTable);
W.write(G);
}
void WriteToAssembly(const Method *M, ostream &o) {
if (M == 0) { o << "<null> method\n"; return; }
SlotCalculator SlotTable(M->getParent(), true);
AssemblyWriter W(o, SlotTable);
W.write(M);
}
void WriteToAssembly(const BasicBlock *BB, ostream &o) {
if (BB == 0) { o << "<null> basic block\n"; return; }
SlotCalculator SlotTable(BB->getParent(), true);
AssemblyWriter W(o, SlotTable);
W.write(BB);
}
void WriteToAssembly(const ConstPoolVal *CPV, ostream &o) {
if (CPV == 0) { o << "<null> constant pool value\n"; return; }
WriteAsOperand(o, CPV, true, true, 0);
}
void WriteToAssembly(const Instruction *I, ostream &o) {
if (I == 0) { o << "<null> instruction\n"; return; }
SlotCalculator SlotTable(I->getParent() ? I->getParent()->getParent() : 0,
true);
AssemblyWriter W(o, SlotTable);
W.write(I);
}