mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-08 13:00:50 +00:00
58d74910c6
1. There is now a "PAListPtr" class, which is a smart pointer around the underlying uniqued parameter attribute list object, and manages its refcount. It is now impossible to mess up the refcount. 2. PAListPtr is now the main interface to the underlying object, and the underlying object is now completely opaque. 3. Implementation details like SmallVector and FoldingSet are now no longer part of the interface. 4. You can create a PAListPtr with an arbitrary sequence of ParamAttrsWithIndex's, no need to make a SmallVector of a specific size (you can just use an array or scalar or vector if you wish). 5. All the client code that had to check for a null pointer before dereferencing the pointer is simplified to just access the PAListPtr directly. 6. The interfaces for adding attrs to a list and removing them is a bit simpler. Phase #2 will rename some stuff (e.g. PAListPtr) and do other less invasive changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48289 91177308-0d34-0410-b5e6-96231b3b80d8
328 lines
11 KiB
C++
328 lines
11 KiB
C++
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ValueEnumerator class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/TypeSymbolTable.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static bool isFirstClassType(const std::pair<const llvm::Type*,
|
|
unsigned int> &P) {
|
|
return P.first->isFirstClassType();
|
|
}
|
|
|
|
static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
|
|
return isa<IntegerType>(V.first->getType());
|
|
}
|
|
|
|
static bool CompareByFrequency(const std::pair<const llvm::Type*,
|
|
unsigned int> &P1,
|
|
const std::pair<const llvm::Type*,
|
|
unsigned int> &P2) {
|
|
return P1.second > P2.second;
|
|
}
|
|
|
|
/// ValueEnumerator - Enumerate module-level information.
|
|
ValueEnumerator::ValueEnumerator(const Module *M) {
|
|
// Enumerate the global variables.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Enumerate the functions.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
EnumerateValue(I);
|
|
EnumerateParamAttrs(cast<Function>(I)->getParamAttrs());
|
|
}
|
|
|
|
// Enumerate the aliases.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Remember what is the cutoff between globalvalue's and other constants.
|
|
unsigned FirstConstant = Values.size();
|
|
|
|
// Enumerate the global variable initializers.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
if (I->hasInitializer())
|
|
EnumerateValue(I->getInitializer());
|
|
|
|
// Enumerate the aliasees.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I->getAliasee());
|
|
|
|
// Enumerate types used by the type symbol table.
|
|
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
|
|
|
|
// Insert constants that are named at module level into the slot pool so that
|
|
// the module symbol table can refer to them...
|
|
EnumerateValueSymbolTable(M->getValueSymbolTable());
|
|
|
|
// Enumerate types used by function bodies and argument lists.
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
|
|
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
EnumerateType(I->getType());
|
|
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI)
|
|
EnumerateOperandType(*OI);
|
|
EnumerateType(I->getType());
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
EnumerateParamAttrs(CI->getParamAttrs());
|
|
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
|
|
EnumerateParamAttrs(II->getParamAttrs());
|
|
}
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
OptimizeConstants(FirstConstant, Values.size());
|
|
|
|
// Sort the type table by frequency so that most commonly used types are early
|
|
// in the table (have low bit-width).
|
|
std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
|
|
|
|
// Partition the Type ID's so that the first-class types occur before the
|
|
// aggregate types. This allows the aggregate types to be dropped from the
|
|
// type table after parsing the global variable initializers.
|
|
std::partition(Types.begin(), Types.end(), isFirstClassType);
|
|
|
|
// Now that we rearranged the type table, rebuild TypeMap.
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
TypeMap[Types[i].first] = i+1;
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
struct CstSortPredicate {
|
|
ValueEnumerator &VE;
|
|
CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
|
|
bool operator()(const std::pair<const Value*, unsigned> &LHS,
|
|
const std::pair<const Value*, unsigned> &RHS) {
|
|
// Sort by plane.
|
|
if (LHS.first->getType() != RHS.first->getType())
|
|
return VE.getTypeID(LHS.first->getType()) <
|
|
VE.getTypeID(RHS.first->getType());
|
|
// Then by frequency.
|
|
return LHS.second > RHS.second;
|
|
}
|
|
};
|
|
|
|
/// OptimizeConstants - Reorder constant pool for denser encoding.
|
|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
|
|
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
|
|
|
|
CstSortPredicate P(*this);
|
|
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
|
|
|
|
// Ensure that integer constants are at the start of the constant pool. This
|
|
// is important so that GEP structure indices come before gep constant exprs.
|
|
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
|
|
isIntegerValue);
|
|
|
|
// Rebuild the modified portion of ValueMap.
|
|
for (; CstStart != CstEnd; ++CstStart)
|
|
ValueMap[Values[CstStart].first] = CstStart+1;
|
|
}
|
|
|
|
|
|
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
|
|
/// table.
|
|
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
|
|
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
|
|
TI != TE; ++TI)
|
|
EnumerateType(TI->second);
|
|
}
|
|
|
|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
|
|
/// table into the values table.
|
|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
|
|
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
|
|
VI != VE; ++VI)
|
|
EnumerateValue(VI->getValue());
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateValue(const Value *V) {
|
|
assert(V->getType() != Type::VoidTy && "Can't insert void values!");
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &ValueID = ValueMap[V];
|
|
if (ValueID) {
|
|
// Increment use count.
|
|
Values[ValueID-1].second++;
|
|
return;
|
|
}
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (isa<GlobalValue>(C)) {
|
|
// Initializers for globals are handled explicitly elsewhere.
|
|
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
|
|
// Do not enumerate the initializers for an array of simple characters.
|
|
// The initializers just polute the value table, and we emit the strings
|
|
// specially.
|
|
} else if (C->getNumOperands()) {
|
|
// If a constant has operands, enumerate them. This makes sure that if a
|
|
// constant has uses (for example an array of const ints), that they are
|
|
// inserted also.
|
|
|
|
// We prefer to enumerate them with values before we enumerate the user
|
|
// itself. This makes it more likely that we can avoid forward references
|
|
// in the reader. We know that there can be no cycles in the constants
|
|
// graph that don't go through a global variable.
|
|
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
|
I != E; ++I)
|
|
EnumerateValue(*I);
|
|
|
|
// Finally, add the value. Doing this could make the ValueID reference be
|
|
// dangling, don't reuse it.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueMap[V] = Values.size();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Add the value.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueID = Values.size();
|
|
}
|
|
|
|
|
|
void ValueEnumerator::EnumerateType(const Type *Ty) {
|
|
unsigned &TypeID = TypeMap[Ty];
|
|
|
|
if (TypeID) {
|
|
// If we've already seen this type, just increase its occurrence count.
|
|
Types[TypeID-1].second++;
|
|
return;
|
|
}
|
|
|
|
// First time we saw this type, add it.
|
|
Types.push_back(std::make_pair(Ty, 1U));
|
|
TypeID = Types.size();
|
|
|
|
// Enumerate subtypes.
|
|
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
|
|
I != E; ++I)
|
|
EnumerateType(*I);
|
|
}
|
|
|
|
// Enumerate the types for the specified value. If the value is a constant,
|
|
// walk through it, enumerating the types of the constant.
|
|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
|
|
EnumerateType(V->getType());
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
// If this constant is already enumerated, ignore it, we know its type must
|
|
// be enumerated.
|
|
if (ValueMap.count(V)) return;
|
|
|
|
// This constant may have operands, make sure to enumerate the types in
|
|
// them.
|
|
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
|
|
EnumerateOperandType(C->getOperand(i));
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateParamAttrs(const PAListPtr &PAL) {
|
|
if (PAL.isEmpty()) return; // null is always 0.
|
|
// Do a lookup.
|
|
unsigned &Entry = ParamAttrMap[PAL.getRawPointer()];
|
|
if (Entry == 0) {
|
|
// Never saw this before, add it.
|
|
ParamAttrs.push_back(PAL);
|
|
Entry = ParamAttrs.size();
|
|
}
|
|
}
|
|
|
|
|
|
/// PurgeAggregateValues - If there are any aggregate values at the end of the
|
|
/// value list, remove them and return the count of the remaining values. If
|
|
/// there are none, return -1.
|
|
int ValueEnumerator::PurgeAggregateValues() {
|
|
// If there are no aggregate values at the end of the list, return -1.
|
|
if (Values.empty() || Values.back().first->getType()->isFirstClassType())
|
|
return -1;
|
|
|
|
// Otherwise, remove aggregate values...
|
|
while (!Values.empty() && !Values.back().first->getType()->isFirstClassType())
|
|
Values.pop_back();
|
|
|
|
// ... and return the new size.
|
|
return Values.size();
|
|
}
|
|
|
|
void ValueEnumerator::incorporateFunction(const Function &F) {
|
|
NumModuleValues = Values.size();
|
|
|
|
// Adding function arguments to the value table.
|
|
for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
FirstFuncConstantID = Values.size();
|
|
|
|
// Add all function-level constants to the value table.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
|
|
isa<InlineAsm>(*OI))
|
|
EnumerateValue(*OI);
|
|
}
|
|
BasicBlocks.push_back(BB);
|
|
ValueMap[BB] = BasicBlocks.size();
|
|
}
|
|
|
|
// Optimize the constant layout.
|
|
OptimizeConstants(FirstFuncConstantID, Values.size());
|
|
|
|
// Add the function's parameter attributes so they are available for use in
|
|
// the function's instruction.
|
|
EnumerateParamAttrs(F.getParamAttrs());
|
|
|
|
FirstInstID = Values.size();
|
|
|
|
// Add all of the instructions.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
|
if (I->getType() != Type::VoidTy)
|
|
EnumerateValue(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::purgeFunction() {
|
|
/// Remove purged values from the ValueMap.
|
|
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
|
|
ValueMap.erase(Values[i].first);
|
|
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
|
|
ValueMap.erase(BasicBlocks[i]);
|
|
|
|
Values.resize(NumModuleValues);
|
|
BasicBlocks.clear();
|
|
}
|
|
|