mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-06 23:31:48 +00:00

Summary: This is split out from the ThinLTO metadata mapping patch http://reviews.llvm.org/D14752. To avoid needing to parse the module level metadata during function importing, a new module-level record is added which holds the number of module-level metadata values. This is required because metadata value ids are assigned implicitly during parsing, and the function-level metadata ids start after the module-level metadata ids. I made a change to this version of the code compared to D14752 in order to add more consistent and thorough assertion checking of the new record value. We now unconditionally use the record value to initialize the MDValueList size, and handle it the same in parseMetadata for all module level metadata cases (lazy loading or not). Reviewers: dexonsmith, joker.eph Subscribers: davidxl, llvm-commits, joker.eph Differential Revision: http://reviews.llvm.org/D14825 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253668 91177308-0d34-0410-b5e6-96231b3b80d8
6060 lines
214 KiB
C++
6060 lines
214 KiB
C++
//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Bitcode/BitstreamReader.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "llvm/IR/AutoUpgrade.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/GVMaterializer.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/OperandTraits.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/FunctionInfo.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/DataStream.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <deque>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
enum {
|
|
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
|
|
};
|
|
|
|
/// Indicates which operator an operand allows (for the few operands that may
|
|
/// only reference a certain operator).
|
|
enum OperatorConstraint {
|
|
OC_None = 0, // No constraint
|
|
OC_CatchPad, // Must be CatchPadInst
|
|
OC_CleanupPad // Must be CleanupPadInst
|
|
};
|
|
|
|
class BitcodeReaderValueList {
|
|
std::vector<WeakVH> ValuePtrs;
|
|
|
|
/// As we resolve forward-referenced constants, we add information about them
|
|
/// to this vector. This allows us to resolve them in bulk instead of
|
|
/// resolving each reference at a time. See the code in
|
|
/// ResolveConstantForwardRefs for more information about this.
|
|
///
|
|
/// The key of this vector is the placeholder constant, the value is the slot
|
|
/// number that holds the resolved value.
|
|
typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
|
|
ResolveConstantsTy ResolveConstants;
|
|
LLVMContext &Context;
|
|
public:
|
|
BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
|
|
~BitcodeReaderValueList() {
|
|
assert(ResolveConstants.empty() && "Constants not resolved?");
|
|
}
|
|
|
|
// vector compatibility methods
|
|
unsigned size() const { return ValuePtrs.size(); }
|
|
void resize(unsigned N) { ValuePtrs.resize(N); }
|
|
void push_back(Value *V) { ValuePtrs.emplace_back(V); }
|
|
|
|
void clear() {
|
|
assert(ResolveConstants.empty() && "Constants not resolved?");
|
|
ValuePtrs.clear();
|
|
}
|
|
|
|
Value *operator[](unsigned i) const {
|
|
assert(i < ValuePtrs.size());
|
|
return ValuePtrs[i];
|
|
}
|
|
|
|
Value *back() const { return ValuePtrs.back(); }
|
|
void pop_back() { ValuePtrs.pop_back(); }
|
|
bool empty() const { return ValuePtrs.empty(); }
|
|
void shrinkTo(unsigned N) {
|
|
assert(N <= size() && "Invalid shrinkTo request!");
|
|
ValuePtrs.resize(N);
|
|
}
|
|
|
|
Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
|
|
Value *getValueFwdRef(unsigned Idx, Type *Ty,
|
|
OperatorConstraint OC = OC_None);
|
|
|
|
bool assignValue(Value *V, unsigned Idx);
|
|
|
|
/// Once all constants are read, this method bulk resolves any forward
|
|
/// references.
|
|
void resolveConstantForwardRefs();
|
|
};
|
|
|
|
class BitcodeReaderMDValueList {
|
|
unsigned NumFwdRefs;
|
|
bool AnyFwdRefs;
|
|
unsigned MinFwdRef;
|
|
unsigned MaxFwdRef;
|
|
std::vector<TrackingMDRef> MDValuePtrs;
|
|
|
|
LLVMContext &Context;
|
|
public:
|
|
BitcodeReaderMDValueList(LLVMContext &C)
|
|
: NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
|
|
|
|
// vector compatibility methods
|
|
unsigned size() const { return MDValuePtrs.size(); }
|
|
void resize(unsigned N) { MDValuePtrs.resize(N); }
|
|
void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
|
|
void clear() { MDValuePtrs.clear(); }
|
|
Metadata *back() const { return MDValuePtrs.back(); }
|
|
void pop_back() { MDValuePtrs.pop_back(); }
|
|
bool empty() const { return MDValuePtrs.empty(); }
|
|
|
|
Metadata *operator[](unsigned i) const {
|
|
assert(i < MDValuePtrs.size());
|
|
return MDValuePtrs[i];
|
|
}
|
|
|
|
void shrinkTo(unsigned N) {
|
|
assert(N <= size() && "Invalid shrinkTo request!");
|
|
MDValuePtrs.resize(N);
|
|
}
|
|
|
|
Metadata *getValueFwdRef(unsigned Idx);
|
|
void assignValue(Metadata *MD, unsigned Idx);
|
|
void tryToResolveCycles();
|
|
};
|
|
|
|
class BitcodeReader : public GVMaterializer {
|
|
LLVMContext &Context;
|
|
DiagnosticHandlerFunction DiagnosticHandler;
|
|
Module *TheModule = nullptr;
|
|
std::unique_ptr<MemoryBuffer> Buffer;
|
|
std::unique_ptr<BitstreamReader> StreamFile;
|
|
BitstreamCursor Stream;
|
|
// Next offset to start scanning for lazy parsing of function bodies.
|
|
uint64_t NextUnreadBit = 0;
|
|
// Last function offset found in the VST.
|
|
uint64_t LastFunctionBlockBit = 0;
|
|
bool SeenValueSymbolTable = false;
|
|
uint64_t VSTOffset = 0;
|
|
// Contains an arbitrary and optional string identifying the bitcode producer
|
|
std::string ProducerIdentification;
|
|
// Number of module level metadata records specified by the
|
|
// MODULE_CODE_METADATA_VALUES record.
|
|
unsigned NumModuleMDs = 0;
|
|
// Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
|
|
bool SeenModuleValuesRecord = false;
|
|
|
|
std::vector<Type*> TypeList;
|
|
BitcodeReaderValueList ValueList;
|
|
BitcodeReaderMDValueList MDValueList;
|
|
std::vector<Comdat *> ComdatList;
|
|
SmallVector<Instruction *, 64> InstructionList;
|
|
|
|
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
|
|
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
|
|
|
|
SmallVector<Instruction*, 64> InstsWithTBAATag;
|
|
|
|
/// The set of attributes by index. Index zero in the file is for null, and
|
|
/// is thus not represented here. As such all indices are off by one.
|
|
std::vector<AttributeSet> MAttributes;
|
|
|
|
/// The set of attribute groups.
|
|
std::map<unsigned, AttributeSet> MAttributeGroups;
|
|
|
|
/// While parsing a function body, this is a list of the basic blocks for the
|
|
/// function.
|
|
std::vector<BasicBlock*> FunctionBBs;
|
|
|
|
// When reading the module header, this list is populated with functions that
|
|
// have bodies later in the file.
|
|
std::vector<Function*> FunctionsWithBodies;
|
|
|
|
// When intrinsic functions are encountered which require upgrading they are
|
|
// stored here with their replacement function.
|
|
typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
|
|
UpgradedIntrinsicMap UpgradedIntrinsics;
|
|
|
|
// Map the bitcode's custom MDKind ID to the Module's MDKind ID.
|
|
DenseMap<unsigned, unsigned> MDKindMap;
|
|
|
|
// Several operations happen after the module header has been read, but
|
|
// before function bodies are processed. This keeps track of whether
|
|
// we've done this yet.
|
|
bool SeenFirstFunctionBody = false;
|
|
|
|
/// When function bodies are initially scanned, this map contains info about
|
|
/// where to find deferred function body in the stream.
|
|
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
|
|
|
|
/// When Metadata block is initially scanned when parsing the module, we may
|
|
/// choose to defer parsing of the metadata. This vector contains info about
|
|
/// which Metadata blocks are deferred.
|
|
std::vector<uint64_t> DeferredMetadataInfo;
|
|
|
|
/// These are basic blocks forward-referenced by block addresses. They are
|
|
/// inserted lazily into functions when they're loaded. The basic block ID is
|
|
/// its index into the vector.
|
|
DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
|
|
std::deque<Function *> BasicBlockFwdRefQueue;
|
|
|
|
/// Indicates that we are using a new encoding for instruction operands where
|
|
/// most operands in the current FUNCTION_BLOCK are encoded relative to the
|
|
/// instruction number, for a more compact encoding. Some instruction
|
|
/// operands are not relative to the instruction ID: basic block numbers, and
|
|
/// types. Once the old style function blocks have been phased out, we would
|
|
/// not need this flag.
|
|
bool UseRelativeIDs = false;
|
|
|
|
/// True if all functions will be materialized, negating the need to process
|
|
/// (e.g.) blockaddress forward references.
|
|
bool WillMaterializeAllForwardRefs = false;
|
|
|
|
/// Functions that have block addresses taken. This is usually empty.
|
|
SmallPtrSet<const Function *, 4> BlockAddressesTaken;
|
|
|
|
/// True if any Metadata block has been materialized.
|
|
bool IsMetadataMaterialized = false;
|
|
|
|
bool StripDebugInfo = false;
|
|
|
|
/// Functions that need to be matched with subprograms when upgrading old
|
|
/// metadata.
|
|
SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
|
|
|
|
std::vector<std::string> BundleTags;
|
|
|
|
public:
|
|
std::error_code error(BitcodeError E, const Twine &Message);
|
|
std::error_code error(BitcodeError E);
|
|
std::error_code error(const Twine &Message);
|
|
|
|
BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler);
|
|
BitcodeReader(LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler);
|
|
~BitcodeReader() override { freeState(); }
|
|
|
|
std::error_code materializeForwardReferencedFunctions();
|
|
|
|
void freeState();
|
|
|
|
void releaseBuffer();
|
|
|
|
bool isDematerializable(const GlobalValue *GV) const override;
|
|
std::error_code materialize(GlobalValue *GV) override;
|
|
std::error_code materializeModule(Module *M) override;
|
|
std::vector<StructType *> getIdentifiedStructTypes() const override;
|
|
void dematerialize(GlobalValue *GV) override;
|
|
|
|
/// \brief Main interface to parsing a bitcode buffer.
|
|
/// \returns true if an error occurred.
|
|
std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
|
|
Module *M,
|
|
bool ShouldLazyLoadMetadata = false);
|
|
|
|
/// \brief Cheap mechanism to just extract module triple
|
|
/// \returns true if an error occurred.
|
|
ErrorOr<std::string> parseTriple();
|
|
|
|
/// Cheap mechanism to just extract the identification block out of bitcode.
|
|
ErrorOr<std::string> parseIdentificationBlock();
|
|
|
|
static uint64_t decodeSignRotatedValue(uint64_t V);
|
|
|
|
/// Materialize any deferred Metadata block.
|
|
std::error_code materializeMetadata() override;
|
|
|
|
void setStripDebugInfo() override;
|
|
|
|
private:
|
|
/// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
|
|
// ProducerIdentification data member, and do some basic enforcement on the
|
|
// "epoch" encoded in the bitcode.
|
|
std::error_code parseBitcodeVersion();
|
|
|
|
std::vector<StructType *> IdentifiedStructTypes;
|
|
StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
|
|
StructType *createIdentifiedStructType(LLVMContext &Context);
|
|
|
|
Type *getTypeByID(unsigned ID);
|
|
Value *getFnValueByID(unsigned ID, Type *Ty,
|
|
OperatorConstraint OC = OC_None) {
|
|
if (Ty && Ty->isMetadataTy())
|
|
return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
|
|
return ValueList.getValueFwdRef(ID, Ty, OC);
|
|
}
|
|
Metadata *getFnMetadataByID(unsigned ID) {
|
|
return MDValueList.getValueFwdRef(ID);
|
|
}
|
|
BasicBlock *getBasicBlock(unsigned ID) const {
|
|
if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
|
|
return FunctionBBs[ID];
|
|
}
|
|
AttributeSet getAttributes(unsigned i) const {
|
|
if (i-1 < MAttributes.size())
|
|
return MAttributes[i-1];
|
|
return AttributeSet();
|
|
}
|
|
|
|
/// Read a value/type pair out of the specified record from slot 'Slot'.
|
|
/// Increment Slot past the number of slots used in the record. Return true on
|
|
/// failure.
|
|
bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
|
|
unsigned InstNum, Value *&ResVal) {
|
|
if (Slot == Record.size()) return true;
|
|
unsigned ValNo = (unsigned)Record[Slot++];
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
if (ValNo < InstNum) {
|
|
// If this is not a forward reference, just return the value we already
|
|
// have.
|
|
ResVal = getFnValueByID(ValNo, nullptr);
|
|
return ResVal == nullptr;
|
|
}
|
|
if (Slot == Record.size())
|
|
return true;
|
|
|
|
unsigned TypeNo = (unsigned)Record[Slot++];
|
|
ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
|
|
return ResVal == nullptr;
|
|
}
|
|
|
|
/// Read a value out of the specified record from slot 'Slot'. Increment Slot
|
|
/// past the number of slots used by the value in the record. Return true if
|
|
/// there is an error.
|
|
bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
|
|
unsigned InstNum, Type *Ty, Value *&ResVal,
|
|
OperatorConstraint OC = OC_None) {
|
|
if (getValue(Record, Slot, InstNum, Ty, ResVal, OC))
|
|
return true;
|
|
// All values currently take a single record slot.
|
|
++Slot;
|
|
return false;
|
|
}
|
|
|
|
/// Like popValue, but does not increment the Slot number.
|
|
bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty, Value *&ResVal,
|
|
OperatorConstraint OC = OC_None) {
|
|
ResVal = getValue(Record, Slot, InstNum, Ty, OC);
|
|
return ResVal == nullptr;
|
|
}
|
|
|
|
/// Version of getValue that returns ResVal directly, or 0 if there is an
|
|
/// error.
|
|
Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) {
|
|
if (Slot == Record.size()) return nullptr;
|
|
unsigned ValNo = (unsigned)Record[Slot];
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
return getFnValueByID(ValNo, Ty, OC);
|
|
}
|
|
|
|
/// Like getValue, but decodes signed VBRs.
|
|
Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty,
|
|
OperatorConstraint OC = OC_None) {
|
|
if (Slot == Record.size()) return nullptr;
|
|
unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
return getFnValueByID(ValNo, Ty, OC);
|
|
}
|
|
|
|
/// Converts alignment exponent (i.e. power of two (or zero)) to the
|
|
/// corresponding alignment to use. If alignment is too large, returns
|
|
/// a corresponding error code.
|
|
std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
|
|
std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
|
|
std::error_code parseModule(uint64_t ResumeBit,
|
|
bool ShouldLazyLoadMetadata = false);
|
|
std::error_code parseAttributeBlock();
|
|
std::error_code parseAttributeGroupBlock();
|
|
std::error_code parseTypeTable();
|
|
std::error_code parseTypeTableBody();
|
|
std::error_code parseOperandBundleTags();
|
|
|
|
ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
|
|
unsigned NameIndex, Triple &TT);
|
|
std::error_code parseValueSymbolTable(uint64_t Offset = 0);
|
|
std::error_code parseConstants();
|
|
std::error_code rememberAndSkipFunctionBodies();
|
|
std::error_code rememberAndSkipFunctionBody();
|
|
/// Save the positions of the Metadata blocks and skip parsing the blocks.
|
|
std::error_code rememberAndSkipMetadata();
|
|
std::error_code parseFunctionBody(Function *F);
|
|
std::error_code globalCleanup();
|
|
std::error_code resolveGlobalAndAliasInits();
|
|
std::error_code parseMetadata(bool ModuleLevel = false);
|
|
std::error_code parseMetadataKinds();
|
|
std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
|
|
std::error_code parseMetadataAttachment(Function &F);
|
|
ErrorOr<std::string> parseModuleTriple();
|
|
std::error_code parseUseLists();
|
|
std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
|
|
std::error_code initStreamFromBuffer();
|
|
std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
|
|
std::error_code findFunctionInStream(
|
|
Function *F,
|
|
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
|
|
};
|
|
|
|
/// Class to manage reading and parsing function summary index bitcode
|
|
/// files/sections.
|
|
class FunctionIndexBitcodeReader {
|
|
DiagnosticHandlerFunction DiagnosticHandler;
|
|
|
|
/// Eventually points to the function index built during parsing.
|
|
FunctionInfoIndex *TheIndex = nullptr;
|
|
|
|
std::unique_ptr<MemoryBuffer> Buffer;
|
|
std::unique_ptr<BitstreamReader> StreamFile;
|
|
BitstreamCursor Stream;
|
|
|
|
/// \brief Used to indicate whether we are doing lazy parsing of summary data.
|
|
///
|
|
/// If false, the summary section is fully parsed into the index during
|
|
/// the initial parse. Otherwise, if true, the caller is expected to
|
|
/// invoke \a readFunctionSummary for each summary needed, and the summary
|
|
/// section is thus parsed lazily.
|
|
bool IsLazy = false;
|
|
|
|
/// Used to indicate whether caller only wants to check for the presence
|
|
/// of the function summary bitcode section. All blocks are skipped,
|
|
/// but the SeenFuncSummary boolean is set.
|
|
bool CheckFuncSummaryPresenceOnly = false;
|
|
|
|
/// Indicates whether we have encountered a function summary section
|
|
/// yet during parsing, used when checking if file contains function
|
|
/// summary section.
|
|
bool SeenFuncSummary = false;
|
|
|
|
/// \brief Map populated during function summary section parsing, and
|
|
/// consumed during ValueSymbolTable parsing.
|
|
///
|
|
/// Used to correlate summary records with VST entries. For the per-module
|
|
/// index this maps the ValueID to the parsed function summary, and
|
|
/// for the combined index this maps the summary record's bitcode
|
|
/// offset to the function summary (since in the combined index the
|
|
/// VST records do not hold value IDs but rather hold the function
|
|
/// summary record offset).
|
|
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
|
|
|
|
/// Map populated during module path string table parsing, from the
|
|
/// module ID to a string reference owned by the index's module
|
|
/// path string table, used to correlate with combined index function
|
|
/// summary records.
|
|
DenseMap<uint64_t, StringRef> ModuleIdMap;
|
|
|
|
public:
|
|
std::error_code error(BitcodeError E, const Twine &Message);
|
|
std::error_code error(BitcodeError E);
|
|
std::error_code error(const Twine &Message);
|
|
|
|
FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
|
|
DiagnosticHandlerFunction DiagnosticHandler,
|
|
bool IsLazy = false,
|
|
bool CheckFuncSummaryPresenceOnly = false);
|
|
FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
|
|
bool IsLazy = false,
|
|
bool CheckFuncSummaryPresenceOnly = false);
|
|
~FunctionIndexBitcodeReader() { freeState(); }
|
|
|
|
void freeState();
|
|
|
|
void releaseBuffer();
|
|
|
|
/// Check if the parser has encountered a function summary section.
|
|
bool foundFuncSummary() { return SeenFuncSummary; }
|
|
|
|
/// \brief Main interface to parsing a bitcode buffer.
|
|
/// \returns true if an error occurred.
|
|
std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
|
|
FunctionInfoIndex *I);
|
|
|
|
/// \brief Interface for parsing a function summary lazily.
|
|
std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
|
|
FunctionInfoIndex *I,
|
|
size_t FunctionSummaryOffset);
|
|
|
|
private:
|
|
std::error_code parseModule();
|
|
std::error_code parseValueSymbolTable();
|
|
std::error_code parseEntireSummary();
|
|
std::error_code parseModuleStringTable();
|
|
std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
|
|
std::error_code initStreamFromBuffer();
|
|
std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
|
|
};
|
|
} // namespace
|
|
|
|
BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
|
|
DiagnosticSeverity Severity,
|
|
const Twine &Msg)
|
|
: DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
|
|
|
|
void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
|
|
|
|
static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
|
|
std::error_code EC, const Twine &Message) {
|
|
BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
|
|
DiagnosticHandler(DI);
|
|
return EC;
|
|
}
|
|
|
|
static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
|
|
std::error_code EC) {
|
|
return error(DiagnosticHandler, EC, EC.message());
|
|
}
|
|
|
|
static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
|
|
const Twine &Message) {
|
|
return error(DiagnosticHandler,
|
|
make_error_code(BitcodeError::CorruptedBitcode), Message);
|
|
}
|
|
|
|
std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
|
|
if (!ProducerIdentification.empty()) {
|
|
return ::error(DiagnosticHandler, make_error_code(E),
|
|
Message + " (Producer: '" + ProducerIdentification +
|
|
"' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
|
|
}
|
|
return ::error(DiagnosticHandler, make_error_code(E), Message);
|
|
}
|
|
|
|
std::error_code BitcodeReader::error(const Twine &Message) {
|
|
if (!ProducerIdentification.empty()) {
|
|
return ::error(DiagnosticHandler,
|
|
make_error_code(BitcodeError::CorruptedBitcode),
|
|
Message + " (Producer: '" + ProducerIdentification +
|
|
"' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
|
|
}
|
|
return ::error(DiagnosticHandler,
|
|
make_error_code(BitcodeError::CorruptedBitcode), Message);
|
|
}
|
|
|
|
std::error_code BitcodeReader::error(BitcodeError E) {
|
|
return ::error(DiagnosticHandler, make_error_code(E));
|
|
}
|
|
|
|
static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
|
|
LLVMContext &C) {
|
|
if (F)
|
|
return F;
|
|
return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
|
|
}
|
|
|
|
BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler)
|
|
: Context(Context),
|
|
DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
|
|
Buffer(Buffer), ValueList(Context), MDValueList(Context) {}
|
|
|
|
BitcodeReader::BitcodeReader(LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler)
|
|
: Context(Context),
|
|
DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
|
|
Buffer(nullptr), ValueList(Context), MDValueList(Context) {}
|
|
|
|
std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
|
|
if (WillMaterializeAllForwardRefs)
|
|
return std::error_code();
|
|
|
|
// Prevent recursion.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
while (!BasicBlockFwdRefQueue.empty()) {
|
|
Function *F = BasicBlockFwdRefQueue.front();
|
|
BasicBlockFwdRefQueue.pop_front();
|
|
assert(F && "Expected valid function");
|
|
if (!BasicBlockFwdRefs.count(F))
|
|
// Already materialized.
|
|
continue;
|
|
|
|
// Check for a function that isn't materializable to prevent an infinite
|
|
// loop. When parsing a blockaddress stored in a global variable, there
|
|
// isn't a trivial way to check if a function will have a body without a
|
|
// linear search through FunctionsWithBodies, so just check it here.
|
|
if (!F->isMaterializable())
|
|
return error("Never resolved function from blockaddress");
|
|
|
|
// Try to materialize F.
|
|
if (std::error_code EC = materialize(F))
|
|
return EC;
|
|
}
|
|
assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
|
|
|
|
// Reset state.
|
|
WillMaterializeAllForwardRefs = false;
|
|
return std::error_code();
|
|
}
|
|
|
|
void BitcodeReader::freeState() {
|
|
Buffer = nullptr;
|
|
std::vector<Type*>().swap(TypeList);
|
|
ValueList.clear();
|
|
MDValueList.clear();
|
|
std::vector<Comdat *>().swap(ComdatList);
|
|
|
|
std::vector<AttributeSet>().swap(MAttributes);
|
|
std::vector<BasicBlock*>().swap(FunctionBBs);
|
|
std::vector<Function*>().swap(FunctionsWithBodies);
|
|
DeferredFunctionInfo.clear();
|
|
DeferredMetadataInfo.clear();
|
|
MDKindMap.clear();
|
|
|
|
assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
|
|
BasicBlockFwdRefQueue.clear();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions to implement forward reference resolution, etc.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Convert a string from a record into an std::string, return true on failure.
|
|
template <typename StrTy>
|
|
static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
|
|
StrTy &Result) {
|
|
if (Idx > Record.size())
|
|
return true;
|
|
|
|
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
|
|
Result += (char)Record[i];
|
|
return false;
|
|
}
|
|
|
|
static bool hasImplicitComdat(size_t Val) {
|
|
switch (Val) {
|
|
default:
|
|
return false;
|
|
case 1: // Old WeakAnyLinkage
|
|
case 4: // Old LinkOnceAnyLinkage
|
|
case 10: // Old WeakODRLinkage
|
|
case 11: // Old LinkOnceODRLinkage
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown/new linkages to external
|
|
case 0:
|
|
return GlobalValue::ExternalLinkage;
|
|
case 2:
|
|
return GlobalValue::AppendingLinkage;
|
|
case 3:
|
|
return GlobalValue::InternalLinkage;
|
|
case 5:
|
|
return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
|
|
case 6:
|
|
return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
|
|
case 7:
|
|
return GlobalValue::ExternalWeakLinkage;
|
|
case 8:
|
|
return GlobalValue::CommonLinkage;
|
|
case 9:
|
|
return GlobalValue::PrivateLinkage;
|
|
case 12:
|
|
return GlobalValue::AvailableExternallyLinkage;
|
|
case 13:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
|
|
case 14:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
|
|
case 15:
|
|
return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
|
|
case 1: // Old value with implicit comdat.
|
|
case 16:
|
|
return GlobalValue::WeakAnyLinkage;
|
|
case 10: // Old value with implicit comdat.
|
|
case 17:
|
|
return GlobalValue::WeakODRLinkage;
|
|
case 4: // Old value with implicit comdat.
|
|
case 18:
|
|
return GlobalValue::LinkOnceAnyLinkage;
|
|
case 11: // Old value with implicit comdat.
|
|
case 19:
|
|
return GlobalValue::LinkOnceODRLinkage;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown visibilities to default.
|
|
case 0: return GlobalValue::DefaultVisibility;
|
|
case 1: return GlobalValue::HiddenVisibility;
|
|
case 2: return GlobalValue::ProtectedVisibility;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::DLLStorageClassTypes
|
|
getDecodedDLLStorageClass(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown values to default.
|
|
case 0: return GlobalValue::DefaultStorageClass;
|
|
case 1: return GlobalValue::DLLImportStorageClass;
|
|
case 2: return GlobalValue::DLLExportStorageClass;
|
|
}
|
|
}
|
|
|
|
static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
|
|
switch (Val) {
|
|
case 0: return GlobalVariable::NotThreadLocal;
|
|
default: // Map unknown non-zero value to general dynamic.
|
|
case 1: return GlobalVariable::GeneralDynamicTLSModel;
|
|
case 2: return GlobalVariable::LocalDynamicTLSModel;
|
|
case 3: return GlobalVariable::InitialExecTLSModel;
|
|
case 4: return GlobalVariable::LocalExecTLSModel;
|
|
}
|
|
}
|
|
|
|
static int getDecodedCastOpcode(unsigned Val) {
|
|
switch (Val) {
|
|
default: return -1;
|
|
case bitc::CAST_TRUNC : return Instruction::Trunc;
|
|
case bitc::CAST_ZEXT : return Instruction::ZExt;
|
|
case bitc::CAST_SEXT : return Instruction::SExt;
|
|
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
|
|
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
|
|
case bitc::CAST_UITOFP : return Instruction::UIToFP;
|
|
case bitc::CAST_SITOFP : return Instruction::SIToFP;
|
|
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
|
|
case bitc::CAST_FPEXT : return Instruction::FPExt;
|
|
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
|
|
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
|
|
case bitc::CAST_BITCAST : return Instruction::BitCast;
|
|
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
|
|
}
|
|
}
|
|
|
|
static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
|
|
bool IsFP = Ty->isFPOrFPVectorTy();
|
|
// BinOps are only valid for int/fp or vector of int/fp types
|
|
if (!IsFP && !Ty->isIntOrIntVectorTy())
|
|
return -1;
|
|
|
|
switch (Val) {
|
|
default:
|
|
return -1;
|
|
case bitc::BINOP_ADD:
|
|
return IsFP ? Instruction::FAdd : Instruction::Add;
|
|
case bitc::BINOP_SUB:
|
|
return IsFP ? Instruction::FSub : Instruction::Sub;
|
|
case bitc::BINOP_MUL:
|
|
return IsFP ? Instruction::FMul : Instruction::Mul;
|
|
case bitc::BINOP_UDIV:
|
|
return IsFP ? -1 : Instruction::UDiv;
|
|
case bitc::BINOP_SDIV:
|
|
return IsFP ? Instruction::FDiv : Instruction::SDiv;
|
|
case bitc::BINOP_UREM:
|
|
return IsFP ? -1 : Instruction::URem;
|
|
case bitc::BINOP_SREM:
|
|
return IsFP ? Instruction::FRem : Instruction::SRem;
|
|
case bitc::BINOP_SHL:
|
|
return IsFP ? -1 : Instruction::Shl;
|
|
case bitc::BINOP_LSHR:
|
|
return IsFP ? -1 : Instruction::LShr;
|
|
case bitc::BINOP_ASHR:
|
|
return IsFP ? -1 : Instruction::AShr;
|
|
case bitc::BINOP_AND:
|
|
return IsFP ? -1 : Instruction::And;
|
|
case bitc::BINOP_OR:
|
|
return IsFP ? -1 : Instruction::Or;
|
|
case bitc::BINOP_XOR:
|
|
return IsFP ? -1 : Instruction::Xor;
|
|
}
|
|
}
|
|
|
|
static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
|
|
switch (Val) {
|
|
default: return AtomicRMWInst::BAD_BINOP;
|
|
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
|
|
case bitc::RMW_ADD: return AtomicRMWInst::Add;
|
|
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
|
|
case bitc::RMW_AND: return AtomicRMWInst::And;
|
|
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
|
|
case bitc::RMW_OR: return AtomicRMWInst::Or;
|
|
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
|
|
case bitc::RMW_MAX: return AtomicRMWInst::Max;
|
|
case bitc::RMW_MIN: return AtomicRMWInst::Min;
|
|
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
|
|
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
|
|
}
|
|
}
|
|
|
|
static AtomicOrdering getDecodedOrdering(unsigned Val) {
|
|
switch (Val) {
|
|
case bitc::ORDERING_NOTATOMIC: return NotAtomic;
|
|
case bitc::ORDERING_UNORDERED: return Unordered;
|
|
case bitc::ORDERING_MONOTONIC: return Monotonic;
|
|
case bitc::ORDERING_ACQUIRE: return Acquire;
|
|
case bitc::ORDERING_RELEASE: return Release;
|
|
case bitc::ORDERING_ACQREL: return AcquireRelease;
|
|
default: // Map unknown orderings to sequentially-consistent.
|
|
case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
|
|
}
|
|
}
|
|
|
|
static SynchronizationScope getDecodedSynchScope(unsigned Val) {
|
|
switch (Val) {
|
|
case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
|
|
default: // Map unknown scopes to cross-thread.
|
|
case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
|
|
}
|
|
}
|
|
|
|
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown selection kinds to any.
|
|
case bitc::COMDAT_SELECTION_KIND_ANY:
|
|
return Comdat::Any;
|
|
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
|
|
return Comdat::ExactMatch;
|
|
case bitc::COMDAT_SELECTION_KIND_LARGEST:
|
|
return Comdat::Largest;
|
|
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
|
|
return Comdat::NoDuplicates;
|
|
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
|
|
return Comdat::SameSize;
|
|
}
|
|
}
|
|
|
|
static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
|
|
FastMathFlags FMF;
|
|
if (0 != (Val & FastMathFlags::UnsafeAlgebra))
|
|
FMF.setUnsafeAlgebra();
|
|
if (0 != (Val & FastMathFlags::NoNaNs))
|
|
FMF.setNoNaNs();
|
|
if (0 != (Val & FastMathFlags::NoInfs))
|
|
FMF.setNoInfs();
|
|
if (0 != (Val & FastMathFlags::NoSignedZeros))
|
|
FMF.setNoSignedZeros();
|
|
if (0 != (Val & FastMathFlags::AllowReciprocal))
|
|
FMF.setAllowReciprocal();
|
|
return FMF;
|
|
}
|
|
|
|
static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
|
|
switch (Val) {
|
|
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
|
|
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace {
|
|
/// \brief A class for maintaining the slot number definition
|
|
/// as a placeholder for the actual definition for forward constants defs.
|
|
class ConstantPlaceHolder : public ConstantExpr {
|
|
void operator=(const ConstantPlaceHolder &) = delete;
|
|
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) { return User::operator new(s, 1); }
|
|
explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
|
|
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
|
|
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
|
|
}
|
|
|
|
/// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
|
|
static bool classof(const Value *V) {
|
|
return isa<ConstantExpr>(V) &&
|
|
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
}
|
|
|
|
// FIXME: can we inherit this from ConstantExpr?
|
|
template <>
|
|
struct OperandTraits<ConstantPlaceHolder> :
|
|
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
|
|
}
|
|
|
|
bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
|
|
if (Idx == size()) {
|
|
push_back(V);
|
|
return false;
|
|
}
|
|
|
|
if (Idx >= size())
|
|
resize(Idx+1);
|
|
|
|
WeakVH &OldV = ValuePtrs[Idx];
|
|
if (!OldV) {
|
|
OldV = V;
|
|
return false;
|
|
}
|
|
|
|
// Handle constants and non-constants (e.g. instrs) differently for
|
|
// efficiency.
|
|
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
|
|
ResolveConstants.push_back(std::make_pair(PHC, Idx));
|
|
OldV = V;
|
|
} else {
|
|
// If there was a forward reference to this value, replace it.
|
|
Value *PrevVal = OldV;
|
|
// Check operator constraints. We only put cleanuppads or catchpads in
|
|
// the forward value map if the value is constrained to match.
|
|
if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) {
|
|
if (!isa<CatchPadInst>(V))
|
|
return true;
|
|
// Delete the dummy basic block that was created with the sentinel
|
|
// catchpad.
|
|
BasicBlock *DummyBlock = CatchPad->getUnwindDest();
|
|
assert(DummyBlock == CatchPad->getNormalDest());
|
|
CatchPad->dropAllReferences();
|
|
delete DummyBlock;
|
|
} else if (isa<CleanupPadInst>(PrevVal)) {
|
|
if (!isa<CleanupPadInst>(V))
|
|
return true;
|
|
}
|
|
OldV->replaceAllUsesWith(V);
|
|
delete PrevVal;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
|
|
Type *Ty) {
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Value *V = ValuePtrs[Idx]) {
|
|
if (Ty != V->getType())
|
|
report_fatal_error("Type mismatch in constant table!");
|
|
return cast<Constant>(V);
|
|
}
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Constant *C = new ConstantPlaceHolder(Ty, Context);
|
|
ValuePtrs[Idx] = C;
|
|
return C;
|
|
}
|
|
|
|
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty,
|
|
OperatorConstraint OC) {
|
|
// Bail out for a clearly invalid value. This would make us call resize(0)
|
|
if (Idx == UINT_MAX)
|
|
return nullptr;
|
|
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Value *V = ValuePtrs[Idx]) {
|
|
// If the types don't match, it's invalid.
|
|
if (Ty && Ty != V->getType())
|
|
return nullptr;
|
|
if (!OC)
|
|
return V;
|
|
// Use dyn_cast to enforce operator constraints
|
|
switch (OC) {
|
|
case OC_CatchPad:
|
|
return dyn_cast<CatchPadInst>(V);
|
|
case OC_CleanupPad:
|
|
return dyn_cast<CleanupPadInst>(V);
|
|
default:
|
|
llvm_unreachable("Unexpected operator constraint");
|
|
}
|
|
}
|
|
|
|
// No type specified, must be invalid reference.
|
|
if (!Ty) return nullptr;
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Value *V;
|
|
switch (OC) {
|
|
case OC_None:
|
|
V = new Argument(Ty);
|
|
break;
|
|
case OC_CatchPad: {
|
|
BasicBlock *BB = BasicBlock::Create(Context);
|
|
V = CatchPadInst::Create(BB, BB, {});
|
|
break;
|
|
}
|
|
default:
|
|
assert(OC == OC_CleanupPad && "unexpected operator constraint");
|
|
V = CleanupPadInst::Create(Context, {});
|
|
break;
|
|
}
|
|
|
|
ValuePtrs[Idx] = V;
|
|
return V;
|
|
}
|
|
|
|
/// Once all constants are read, this method bulk resolves any forward
|
|
/// references. The idea behind this is that we sometimes get constants (such
|
|
/// as large arrays) which reference *many* forward ref constants. Replacing
|
|
/// each of these causes a lot of thrashing when building/reuniquing the
|
|
/// constant. Instead of doing this, we look at all the uses and rewrite all
|
|
/// the place holders at once for any constant that uses a placeholder.
|
|
void BitcodeReaderValueList::resolveConstantForwardRefs() {
|
|
// Sort the values by-pointer so that they are efficient to look up with a
|
|
// binary search.
|
|
std::sort(ResolveConstants.begin(), ResolveConstants.end());
|
|
|
|
SmallVector<Constant*, 64> NewOps;
|
|
|
|
while (!ResolveConstants.empty()) {
|
|
Value *RealVal = operator[](ResolveConstants.back().second);
|
|
Constant *Placeholder = ResolveConstants.back().first;
|
|
ResolveConstants.pop_back();
|
|
|
|
// Loop over all users of the placeholder, updating them to reference the
|
|
// new value. If they reference more than one placeholder, update them all
|
|
// at once.
|
|
while (!Placeholder->use_empty()) {
|
|
auto UI = Placeholder->user_begin();
|
|
User *U = *UI;
|
|
|
|
// If the using object isn't uniqued, just update the operands. This
|
|
// handles instructions and initializers for global variables.
|
|
if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
|
|
UI.getUse().set(RealVal);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a constant that uses the placeholder. Replace that
|
|
// constant with a new constant that has *all* placeholder uses updated.
|
|
Constant *UserC = cast<Constant>(U);
|
|
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
|
|
I != E; ++I) {
|
|
Value *NewOp;
|
|
if (!isa<ConstantPlaceHolder>(*I)) {
|
|
// Not a placeholder reference.
|
|
NewOp = *I;
|
|
} else if (*I == Placeholder) {
|
|
// Common case is that it just references this one placeholder.
|
|
NewOp = RealVal;
|
|
} else {
|
|
// Otherwise, look up the placeholder in ResolveConstants.
|
|
ResolveConstantsTy::iterator It =
|
|
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
|
|
std::pair<Constant*, unsigned>(cast<Constant>(*I),
|
|
0));
|
|
assert(It != ResolveConstants.end() && It->first == *I);
|
|
NewOp = operator[](It->second);
|
|
}
|
|
|
|
NewOps.push_back(cast<Constant>(NewOp));
|
|
}
|
|
|
|
// Make the new constant.
|
|
Constant *NewC;
|
|
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
|
|
NewC = ConstantArray::get(UserCA->getType(), NewOps);
|
|
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
|
|
NewC = ConstantStruct::get(UserCS->getType(), NewOps);
|
|
} else if (isa<ConstantVector>(UserC)) {
|
|
NewC = ConstantVector::get(NewOps);
|
|
} else {
|
|
assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
|
|
NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
|
|
}
|
|
|
|
UserC->replaceAllUsesWith(NewC);
|
|
UserC->destroyConstant();
|
|
NewOps.clear();
|
|
}
|
|
|
|
// Update all ValueHandles, they should be the only users at this point.
|
|
Placeholder->replaceAllUsesWith(RealVal);
|
|
delete Placeholder;
|
|
}
|
|
}
|
|
|
|
void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) {
|
|
if (Idx == size()) {
|
|
push_back(MD);
|
|
return;
|
|
}
|
|
|
|
if (Idx >= size())
|
|
resize(Idx+1);
|
|
|
|
TrackingMDRef &OldMD = MDValuePtrs[Idx];
|
|
if (!OldMD) {
|
|
OldMD.reset(MD);
|
|
return;
|
|
}
|
|
|
|
// If there was a forward reference to this value, replace it.
|
|
TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
|
|
PrevMD->replaceAllUsesWith(MD);
|
|
--NumFwdRefs;
|
|
}
|
|
|
|
Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
|
|
if (Idx >= size())
|
|
resize(Idx + 1);
|
|
|
|
if (Metadata *MD = MDValuePtrs[Idx])
|
|
return MD;
|
|
|
|
// Track forward refs to be resolved later.
|
|
if (AnyFwdRefs) {
|
|
MinFwdRef = std::min(MinFwdRef, Idx);
|
|
MaxFwdRef = std::max(MaxFwdRef, Idx);
|
|
} else {
|
|
AnyFwdRefs = true;
|
|
MinFwdRef = MaxFwdRef = Idx;
|
|
}
|
|
++NumFwdRefs;
|
|
|
|
// Create and return a placeholder, which will later be RAUW'd.
|
|
Metadata *MD = MDNode::getTemporary(Context, None).release();
|
|
MDValuePtrs[Idx].reset(MD);
|
|
return MD;
|
|
}
|
|
|
|
void BitcodeReaderMDValueList::tryToResolveCycles() {
|
|
if (!AnyFwdRefs)
|
|
// Nothing to do.
|
|
return;
|
|
|
|
if (NumFwdRefs)
|
|
// Still forward references... can't resolve cycles.
|
|
return;
|
|
|
|
// Resolve any cycles.
|
|
for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
|
|
auto &MD = MDValuePtrs[I];
|
|
auto *N = dyn_cast_or_null<MDNode>(MD);
|
|
if (!N)
|
|
continue;
|
|
|
|
assert(!N->isTemporary() && "Unexpected forward reference");
|
|
N->resolveCycles();
|
|
}
|
|
|
|
// Make sure we return early again until there's another forward ref.
|
|
AnyFwdRefs = false;
|
|
}
|
|
|
|
Type *BitcodeReader::getTypeByID(unsigned ID) {
|
|
// The type table size is always specified correctly.
|
|
if (ID >= TypeList.size())
|
|
return nullptr;
|
|
|
|
if (Type *Ty = TypeList[ID])
|
|
return Ty;
|
|
|
|
// If we have a forward reference, the only possible case is when it is to a
|
|
// named struct. Just create a placeholder for now.
|
|
return TypeList[ID] = createIdentifiedStructType(Context);
|
|
}
|
|
|
|
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
|
|
StringRef Name) {
|
|
auto *Ret = StructType::create(Context, Name);
|
|
IdentifiedStructTypes.push_back(Ret);
|
|
return Ret;
|
|
}
|
|
|
|
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
|
|
auto *Ret = StructType::create(Context);
|
|
IdentifiedStructTypes.push_back(Ret);
|
|
return Ret;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions for parsing blocks from the bitcode file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// \brief This fills an AttrBuilder object with the LLVM attributes that have
|
|
/// been decoded from the given integer. This function must stay in sync with
|
|
/// 'encodeLLVMAttributesForBitcode'.
|
|
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
|
|
uint64_t EncodedAttrs) {
|
|
// FIXME: Remove in 4.0.
|
|
|
|
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
|
|
// the bits above 31 down by 11 bits.
|
|
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
|
|
assert((!Alignment || isPowerOf2_32(Alignment)) &&
|
|
"Alignment must be a power of two.");
|
|
|
|
if (Alignment)
|
|
B.addAlignmentAttr(Alignment);
|
|
B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
|
|
(EncodedAttrs & 0xffff));
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseAttributeBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!MAttributes.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
SmallVector<AttributeSet, 8> Attrs;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
|
|
// FIXME: Remove in 4.0.
|
|
if (Record.size() & 1)
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
|
|
AttrBuilder B;
|
|
decodeLLVMAttributesForBitcode(B, Record[i+1]);
|
|
Attrs.push_back(AttributeSet::get(Context, Record[i], B));
|
|
}
|
|
|
|
MAttributes.push_back(AttributeSet::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
}
|
|
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
|
|
for (unsigned i = 0, e = Record.size(); i != e; ++i)
|
|
Attrs.push_back(MAttributeGroups[Record[i]]);
|
|
|
|
MAttributes.push_back(AttributeSet::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns Attribute::None on unrecognized codes.
|
|
static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
|
|
switch (Code) {
|
|
default:
|
|
return Attribute::None;
|
|
case bitc::ATTR_KIND_ALIGNMENT:
|
|
return Attribute::Alignment;
|
|
case bitc::ATTR_KIND_ALWAYS_INLINE:
|
|
return Attribute::AlwaysInline;
|
|
case bitc::ATTR_KIND_ARGMEMONLY:
|
|
return Attribute::ArgMemOnly;
|
|
case bitc::ATTR_KIND_BUILTIN:
|
|
return Attribute::Builtin;
|
|
case bitc::ATTR_KIND_BY_VAL:
|
|
return Attribute::ByVal;
|
|
case bitc::ATTR_KIND_IN_ALLOCA:
|
|
return Attribute::InAlloca;
|
|
case bitc::ATTR_KIND_COLD:
|
|
return Attribute::Cold;
|
|
case bitc::ATTR_KIND_CONVERGENT:
|
|
return Attribute::Convergent;
|
|
case bitc::ATTR_KIND_INLINE_HINT:
|
|
return Attribute::InlineHint;
|
|
case bitc::ATTR_KIND_IN_REG:
|
|
return Attribute::InReg;
|
|
case bitc::ATTR_KIND_JUMP_TABLE:
|
|
return Attribute::JumpTable;
|
|
case bitc::ATTR_KIND_MIN_SIZE:
|
|
return Attribute::MinSize;
|
|
case bitc::ATTR_KIND_NAKED:
|
|
return Attribute::Naked;
|
|
case bitc::ATTR_KIND_NEST:
|
|
return Attribute::Nest;
|
|
case bitc::ATTR_KIND_NO_ALIAS:
|
|
return Attribute::NoAlias;
|
|
case bitc::ATTR_KIND_NO_BUILTIN:
|
|
return Attribute::NoBuiltin;
|
|
case bitc::ATTR_KIND_NO_CAPTURE:
|
|
return Attribute::NoCapture;
|
|
case bitc::ATTR_KIND_NO_DUPLICATE:
|
|
return Attribute::NoDuplicate;
|
|
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
|
|
return Attribute::NoImplicitFloat;
|
|
case bitc::ATTR_KIND_NO_INLINE:
|
|
return Attribute::NoInline;
|
|
case bitc::ATTR_KIND_NO_RECURSE:
|
|
return Attribute::NoRecurse;
|
|
case bitc::ATTR_KIND_NON_LAZY_BIND:
|
|
return Attribute::NonLazyBind;
|
|
case bitc::ATTR_KIND_NON_NULL:
|
|
return Attribute::NonNull;
|
|
case bitc::ATTR_KIND_DEREFERENCEABLE:
|
|
return Attribute::Dereferenceable;
|
|
case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
|
|
return Attribute::DereferenceableOrNull;
|
|
case bitc::ATTR_KIND_NO_RED_ZONE:
|
|
return Attribute::NoRedZone;
|
|
case bitc::ATTR_KIND_NO_RETURN:
|
|
return Attribute::NoReturn;
|
|
case bitc::ATTR_KIND_NO_UNWIND:
|
|
return Attribute::NoUnwind;
|
|
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
|
|
return Attribute::OptimizeForSize;
|
|
case bitc::ATTR_KIND_OPTIMIZE_NONE:
|
|
return Attribute::OptimizeNone;
|
|
case bitc::ATTR_KIND_READ_NONE:
|
|
return Attribute::ReadNone;
|
|
case bitc::ATTR_KIND_READ_ONLY:
|
|
return Attribute::ReadOnly;
|
|
case bitc::ATTR_KIND_RETURNED:
|
|
return Attribute::Returned;
|
|
case bitc::ATTR_KIND_RETURNS_TWICE:
|
|
return Attribute::ReturnsTwice;
|
|
case bitc::ATTR_KIND_S_EXT:
|
|
return Attribute::SExt;
|
|
case bitc::ATTR_KIND_STACK_ALIGNMENT:
|
|
return Attribute::StackAlignment;
|
|
case bitc::ATTR_KIND_STACK_PROTECT:
|
|
return Attribute::StackProtect;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
|
|
return Attribute::StackProtectReq;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
|
|
return Attribute::StackProtectStrong;
|
|
case bitc::ATTR_KIND_SAFESTACK:
|
|
return Attribute::SafeStack;
|
|
case bitc::ATTR_KIND_STRUCT_RET:
|
|
return Attribute::StructRet;
|
|
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
|
|
return Attribute::SanitizeAddress;
|
|
case bitc::ATTR_KIND_SANITIZE_THREAD:
|
|
return Attribute::SanitizeThread;
|
|
case bitc::ATTR_KIND_SANITIZE_MEMORY:
|
|
return Attribute::SanitizeMemory;
|
|
case bitc::ATTR_KIND_UW_TABLE:
|
|
return Attribute::UWTable;
|
|
case bitc::ATTR_KIND_Z_EXT:
|
|
return Attribute::ZExt;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
|
|
unsigned &Alignment) {
|
|
// Note: Alignment in bitcode files is incremented by 1, so that zero
|
|
// can be used for default alignment.
|
|
if (Exponent > Value::MaxAlignmentExponent + 1)
|
|
return error("Invalid alignment value");
|
|
Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
|
|
Attribute::AttrKind *Kind) {
|
|
*Kind = getAttrFromCode(Code);
|
|
if (*Kind == Attribute::None)
|
|
return error(BitcodeError::CorruptedBitcode,
|
|
"Unknown attribute kind (" + Twine(Code) + ")");
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseAttributeGroupBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!MAttributeGroups.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
uint64_t GrpID = Record[0];
|
|
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
|
|
|
|
AttrBuilder B;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Record[i] == 0) { // Enum attribute
|
|
Attribute::AttrKind Kind;
|
|
if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
|
|
return EC;
|
|
|
|
B.addAttribute(Kind);
|
|
} else if (Record[i] == 1) { // Integer attribute
|
|
Attribute::AttrKind Kind;
|
|
if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
|
|
return EC;
|
|
if (Kind == Attribute::Alignment)
|
|
B.addAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::StackAlignment)
|
|
B.addStackAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::Dereferenceable)
|
|
B.addDereferenceableAttr(Record[++i]);
|
|
else if (Kind == Attribute::DereferenceableOrNull)
|
|
B.addDereferenceableOrNullAttr(Record[++i]);
|
|
} else { // String attribute
|
|
assert((Record[i] == 3 || Record[i] == 4) &&
|
|
"Invalid attribute group entry");
|
|
bool HasValue = (Record[i++] == 4);
|
|
SmallString<64> KindStr;
|
|
SmallString<64> ValStr;
|
|
|
|
while (Record[i] != 0 && i != e)
|
|
KindStr += Record[i++];
|
|
assert(Record[i] == 0 && "Kind string not null terminated");
|
|
|
|
if (HasValue) {
|
|
// Has a value associated with it.
|
|
++i; // Skip the '0' that terminates the "kind" string.
|
|
while (Record[i] != 0 && i != e)
|
|
ValStr += Record[i++];
|
|
assert(Record[i] == 0 && "Value string not null terminated");
|
|
}
|
|
|
|
B.addAttribute(KindStr.str(), ValStr.str());
|
|
}
|
|
}
|
|
|
|
MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseTypeTable() {
|
|
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
|
|
return error("Invalid record");
|
|
|
|
return parseTypeTableBody();
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseTypeTableBody() {
|
|
if (!TypeList.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
unsigned NumRecords = 0;
|
|
|
|
SmallString<64> TypeName;
|
|
|
|
// Read all the records for this type table.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (NumRecords != TypeList.size())
|
|
return error("Malformed block");
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Type *ResultTy = nullptr;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default:
|
|
return error("Invalid value");
|
|
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
|
|
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
|
|
// type list. This allows us to reserve space.
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
TypeList.resize(Record[0]);
|
|
continue;
|
|
case bitc::TYPE_CODE_VOID: // VOID
|
|
ResultTy = Type::getVoidTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_HALF: // HALF
|
|
ResultTy = Type::getHalfTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FLOAT: // FLOAT
|
|
ResultTy = Type::getFloatTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
|
|
ResultTy = Type::getDoubleTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
|
|
ResultTy = Type::getX86_FP80Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FP128: // FP128
|
|
ResultTy = Type::getFP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
|
|
ResultTy = Type::getPPC_FP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_LABEL: // LABEL
|
|
ResultTy = Type::getLabelTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_METADATA: // METADATA
|
|
ResultTy = Type::getMetadataTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
|
|
ResultTy = Type::getX86_MMXTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_TOKEN: // TOKEN
|
|
ResultTy = Type::getTokenTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
|
|
uint64_t NumBits = Record[0];
|
|
if (NumBits < IntegerType::MIN_INT_BITS ||
|
|
NumBits > IntegerType::MAX_INT_BITS)
|
|
return error("Bitwidth for integer type out of range");
|
|
ResultTy = IntegerType::get(Context, NumBits);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
|
|
// [pointee type, address space]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
unsigned AddressSpace = 0;
|
|
if (Record.size() == 2)
|
|
AddressSpace = Record[1];
|
|
ResultTy = getTypeByID(Record[0]);
|
|
if (!ResultTy ||
|
|
!PointerType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = PointerType::get(ResultTy, AddressSpace);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION_OLD: {
|
|
// FIXME: attrid is dead, remove it in LLVM 4.0
|
|
// FUNCTION: [vararg, attrid, retty, paramty x N]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
ArgTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[2]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-3)
|
|
return error("Invalid type");
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION: {
|
|
// FUNCTION: [vararg, retty, paramty x N]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i])) {
|
|
if (!FunctionType::isValidArgumentType(T))
|
|
return error("Invalid function argument type");
|
|
ArgTys.push_back(T);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-2)
|
|
return error("Invalid type");
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return error("Invalid type");
|
|
ResultTy = StructType::get(Context, EltTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
|
|
if (convertToString(Record, 0, TypeName))
|
|
return error("Invalid record");
|
|
continue;
|
|
|
|
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct.
|
|
Res = createIdentifiedStructType(Context, TypeName);
|
|
TypeName.clear();
|
|
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return error("Invalid record");
|
|
Res->setBody(EltTys, Record[0]);
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
|
|
if (Record.size() != 1)
|
|
return error("Invalid record");
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct with no body.
|
|
Res = createIdentifiedStructType(Context, TypeName);
|
|
TypeName.clear();
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = ArrayType::get(ResultTy, Record[0]);
|
|
break;
|
|
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
if (Record[0] == 0)
|
|
return error("Invalid vector length");
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || !StructType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = VectorType::get(ResultTy, Record[0]);
|
|
break;
|
|
}
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
if (TypeList[NumRecords])
|
|
return error(
|
|
"Invalid TYPE table: Only named structs can be forward referenced");
|
|
assert(ResultTy && "Didn't read a type?");
|
|
TypeList[NumRecords++] = ResultTy;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseOperandBundleTags() {
|
|
if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!BundleTags.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Tags are implicitly mapped to integers by their order.
|
|
|
|
if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
|
|
return error("Invalid record");
|
|
|
|
// OPERAND_BUNDLE_TAG: [strchr x N]
|
|
BundleTags.emplace_back();
|
|
if (convertToString(Record, 0, BundleTags.back()))
|
|
return error("Invalid record");
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
/// Associate a value with its name from the given index in the provided record.
|
|
ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
|
|
unsigned NameIndex, Triple &TT) {
|
|
SmallString<128> ValueName;
|
|
if (convertToString(Record, NameIndex, ValueName))
|
|
return error("Invalid record");
|
|
unsigned ValueID = Record[0];
|
|
if (ValueID >= ValueList.size() || !ValueList[ValueID])
|
|
return error("Invalid record");
|
|
Value *V = ValueList[ValueID];
|
|
|
|
StringRef NameStr(ValueName.data(), ValueName.size());
|
|
if (NameStr.find_first_of(0) != StringRef::npos)
|
|
return error("Invalid value name");
|
|
V->setName(NameStr);
|
|
auto *GO = dyn_cast<GlobalObject>(V);
|
|
if (GO) {
|
|
if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
|
|
if (TT.isOSBinFormatMachO())
|
|
GO->setComdat(nullptr);
|
|
else
|
|
GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// Parse the value symbol table at either the current parsing location or
|
|
/// at the given bit offset if provided.
|
|
std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
|
|
uint64_t CurrentBit;
|
|
// Pass in the Offset to distinguish between calling for the module-level
|
|
// VST (where we want to jump to the VST offset) and the function-level
|
|
// VST (where we don't).
|
|
if (Offset > 0) {
|
|
// Save the current parsing location so we can jump back at the end
|
|
// of the VST read.
|
|
CurrentBit = Stream.GetCurrentBitNo();
|
|
Stream.JumpToBit(Offset * 32);
|
|
#ifndef NDEBUG
|
|
// Do some checking if we are in debug mode.
|
|
BitstreamEntry Entry = Stream.advance();
|
|
assert(Entry.Kind == BitstreamEntry::SubBlock);
|
|
assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
|
|
#else
|
|
// In NDEBUG mode ignore the output so we don't get an unused variable
|
|
// warning.
|
|
Stream.advance();
|
|
#endif
|
|
}
|
|
|
|
// Compute the delta between the bitcode indices in the VST (the word offset
|
|
// to the word-aligned ENTER_SUBBLOCK for the function block, and that
|
|
// expected by the lazy reader. The reader's EnterSubBlock expects to have
|
|
// already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
|
|
// (size BlockIDWidth). Note that we access the stream's AbbrevID width here
|
|
// just before entering the VST subblock because: 1) the EnterSubBlock
|
|
// changes the AbbrevID width; 2) the VST block is nested within the same
|
|
// outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
|
|
// AbbrevID width before calling EnterSubBlock; and 3) when we want to
|
|
// jump to the FUNCTION_BLOCK using this offset later, we don't want
|
|
// to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
|
|
unsigned FuncBitcodeOffsetDelta =
|
|
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
|
|
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
Triple TT(TheModule->getTargetTriple());
|
|
|
|
// Read all the records for this value table.
|
|
SmallString<128> ValueName;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (Offset > 0)
|
|
Stream.JumpToBit(CurrentBit);
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
|
|
ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
|
|
if (std::error_code EC = ValOrErr.getError())
|
|
return EC;
|
|
ValOrErr.get();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_FNENTRY: {
|
|
// VST_FNENTRY: [valueid, offset, namechar x N]
|
|
ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
|
|
if (std::error_code EC = ValOrErr.getError())
|
|
return EC;
|
|
Value *V = ValOrErr.get();
|
|
|
|
auto *GO = dyn_cast<GlobalObject>(V);
|
|
if (!GO) {
|
|
// If this is an alias, need to get the actual Function object
|
|
// it aliases, in order to set up the DeferredFunctionInfo entry below.
|
|
auto *GA = dyn_cast<GlobalAlias>(V);
|
|
if (GA)
|
|
GO = GA->getBaseObject();
|
|
assert(GO);
|
|
}
|
|
|
|
uint64_t FuncWordOffset = Record[1];
|
|
Function *F = dyn_cast<Function>(GO);
|
|
assert(F);
|
|
uint64_t FuncBitOffset = FuncWordOffset * 32;
|
|
DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
|
|
// Set the LastFunctionBlockBit to point to the last function block.
|
|
// Later when parsing is resumed after function materialization,
|
|
// we can simply skip that last function block.
|
|
if (FuncBitOffset > LastFunctionBlockBit)
|
|
LastFunctionBlockBit = FuncBitOffset;
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_BBENTRY: {
|
|
if (convertToString(Record, 1, ValueName))
|
|
return error("Invalid record");
|
|
BasicBlock *BB = getBasicBlock(Record[0]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
|
|
BB->setName(StringRef(ValueName.data(), ValueName.size()));
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parse a single METADATA_KIND record, inserting result in MDKindMap.
|
|
std::error_code
|
|
BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
|
|
unsigned Kind = Record[0];
|
|
SmallString<8> Name(Record.begin() + 1, Record.end());
|
|
|
|
unsigned NewKind = TheModule->getMDKindID(Name.str());
|
|
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
|
|
return error("Conflicting METADATA_KIND records");
|
|
return std::error_code();
|
|
}
|
|
|
|
static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
|
|
|
|
/// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
|
|
/// module level metadata.
|
|
std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
|
|
IsMetadataMaterialized = true;
|
|
unsigned NextMDValueNo = MDValueList.size();
|
|
if (ModuleLevel && SeenModuleValuesRecord) {
|
|
// Now that we are parsing the module level metadata, we want to restart
|
|
// the numbering of the MD values, and replace temp MD created earlier
|
|
// with their real values. If we saw a METADATA_VALUE record then we
|
|
// would have set the MDValueList size to the number specified in that
|
|
// record, to support parsing function-level metadata first, and we need
|
|
// to reset back to 0 to fill the MDValueList in with the parsed module
|
|
// The function-level metadata parsing should have reset the MDValueList
|
|
// size back to the value reported by the METADATA_VALUE record, saved in
|
|
// NumModuleMDs.
|
|
assert(NumModuleMDs == MDValueList.size() &&
|
|
"Expected MDValueList to only contain module level values");
|
|
NextMDValueNo = 0;
|
|
}
|
|
|
|
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
auto getMD =
|
|
[&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
|
|
auto getMDOrNull = [&](unsigned ID) -> Metadata *{
|
|
if (ID)
|
|
return getMD(ID - 1);
|
|
return nullptr;
|
|
};
|
|
auto getMDString = [&](unsigned ID) -> MDString *{
|
|
// This requires that the ID is not really a forward reference. In
|
|
// particular, the MDString must already have been resolved.
|
|
return cast_or_null<MDString>(getMDOrNull(ID));
|
|
};
|
|
|
|
#define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \
|
|
(DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
MDValueList.tryToResolveCycles();
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
unsigned Code = Stream.readRecord(Entry.ID, Record);
|
|
bool IsDistinct = false;
|
|
switch (Code) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::METADATA_NAME: {
|
|
// Read name of the named metadata.
|
|
SmallString<8> Name(Record.begin(), Record.end());
|
|
Record.clear();
|
|
Code = Stream.ReadCode();
|
|
|
|
unsigned NextBitCode = Stream.readRecord(Code, Record);
|
|
if (NextBitCode != bitc::METADATA_NAMED_NODE)
|
|
return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
|
|
|
|
// Read named metadata elements.
|
|
unsigned Size = Record.size();
|
|
NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
|
|
if (!MD)
|
|
return error("Invalid record");
|
|
NMD->addOperand(MD);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::METADATA_OLD_FN_NODE: {
|
|
// FIXME: Remove in 4.0.
|
|
// This is a LocalAsMetadata record, the only type of function-local
|
|
// metadata.
|
|
if (Record.size() % 2 == 1)
|
|
return error("Invalid record");
|
|
|
|
// If this isn't a LocalAsMetadata record, we're dropping it. This used
|
|
// to be legal, but there's no upgrade path.
|
|
auto dropRecord = [&] {
|
|
MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++);
|
|
};
|
|
if (Record.size() != 2) {
|
|
dropRecord();
|
|
break;
|
|
}
|
|
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (Ty->isMetadataTy() || Ty->isVoidTy()) {
|
|
dropRecord();
|
|
break;
|
|
}
|
|
|
|
MDValueList.assignValue(
|
|
LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_OLD_NODE: {
|
|
// FIXME: Remove in 4.0.
|
|
if (Record.size() % 2 == 1)
|
|
return error("Invalid record");
|
|
|
|
unsigned Size = Record.size();
|
|
SmallVector<Metadata *, 8> Elts;
|
|
for (unsigned i = 0; i != Size; i += 2) {
|
|
Type *Ty = getTypeByID(Record[i]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
if (Ty->isMetadataTy())
|
|
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
|
|
else if (!Ty->isVoidTy()) {
|
|
auto *MD =
|
|
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
|
|
assert(isa<ConstantAsMetadata>(MD) &&
|
|
"Expected non-function-local metadata");
|
|
Elts.push_back(MD);
|
|
} else
|
|
Elts.push_back(nullptr);
|
|
}
|
|
MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_VALUE: {
|
|
if (Record.size() != 2)
|
|
return error("Invalid record");
|
|
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (Ty->isMetadataTy() || Ty->isVoidTy())
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_DISTINCT_NODE:
|
|
IsDistinct = true;
|
|
// fallthrough...
|
|
case bitc::METADATA_NODE: {
|
|
SmallVector<Metadata *, 8> Elts;
|
|
Elts.reserve(Record.size());
|
|
for (unsigned ID : Record)
|
|
Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
|
|
MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
|
|
: MDNode::get(Context, Elts),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_LOCATION: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid record");
|
|
|
|
unsigned Line = Record[1];
|
|
unsigned Column = Record[2];
|
|
MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
|
|
Metadata *InlinedAt =
|
|
Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DILocation, Record[0],
|
|
(Context, Line, Column, Scope, InlinedAt)),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_GENERIC_DEBUG: {
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
|
|
unsigned Tag = Record[1];
|
|
unsigned Version = Record[2];
|
|
|
|
if (Tag >= 1u << 16 || Version != 0)
|
|
return error("Invalid record");
|
|
|
|
auto *Header = getMDString(Record[3]);
|
|
SmallVector<Metadata *, 8> DwarfOps;
|
|
for (unsigned I = 4, E = Record.size(); I != E; ++I)
|
|
DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
|
|
: nullptr);
|
|
MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
|
|
(Context, Tag, Header, DwarfOps)),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_SUBRANGE: {
|
|
if (Record.size() != 3)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DISubrange, Record[0],
|
|
(Context, Record[1], unrotateSign(Record[2]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_ENUMERATOR: {
|
|
if (Record.size() != 3)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
|
|
(Context, unrotateSign(Record[1]),
|
|
getMDString(Record[2]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_BASIC_TYPE: {
|
|
if (Record.size() != 6)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIBasicType, Record[0],
|
|
(Context, Record[1], getMDString(Record[2]),
|
|
Record[3], Record[4], Record[5])),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_DERIVED_TYPE: {
|
|
if (Record.size() != 12)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIDerivedType, Record[0],
|
|
(Context, Record[1], getMDString(Record[2]),
|
|
getMDOrNull(Record[3]), Record[4],
|
|
getMDOrNull(Record[5]), getMDOrNull(Record[6]),
|
|
Record[7], Record[8], Record[9], Record[10],
|
|
getMDOrNull(Record[11]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_COMPOSITE_TYPE: {
|
|
if (Record.size() != 16)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DICompositeType, Record[0],
|
|
(Context, Record[1], getMDString(Record[2]),
|
|
getMDOrNull(Record[3]), Record[4],
|
|
getMDOrNull(Record[5]), getMDOrNull(Record[6]),
|
|
Record[7], Record[8], Record[9], Record[10],
|
|
getMDOrNull(Record[11]), Record[12],
|
|
getMDOrNull(Record[13]), getMDOrNull(Record[14]),
|
|
getMDString(Record[15]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_SUBROUTINE_TYPE: {
|
|
if (Record.size() != 3)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DISubroutineType, Record[0],
|
|
(Context, Record[1], getMDOrNull(Record[2]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
|
|
case bitc::METADATA_MODULE: {
|
|
if (Record.size() != 6)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIModule, Record[0],
|
|
(Context, getMDOrNull(Record[1]),
|
|
getMDString(Record[2]), getMDString(Record[3]),
|
|
getMDString(Record[4]), getMDString(Record[5]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
|
|
case bitc::METADATA_FILE: {
|
|
if (Record.size() != 3)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
|
|
getMDString(Record[2]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_COMPILE_UNIT: {
|
|
if (Record.size() < 14 || Record.size() > 15)
|
|
return error("Invalid record");
|
|
|
|
// Ignore Record[1], which indicates whether this compile unit is
|
|
// distinct. It's always distinct.
|
|
MDValueList.assignValue(
|
|
DICompileUnit::getDistinct(
|
|
Context, Record[1], getMDOrNull(Record[2]),
|
|
getMDString(Record[3]), Record[4], getMDString(Record[5]),
|
|
Record[6], getMDString(Record[7]), Record[8],
|
|
getMDOrNull(Record[9]), getMDOrNull(Record[10]),
|
|
getMDOrNull(Record[11]), getMDOrNull(Record[12]),
|
|
getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_SUBPROGRAM: {
|
|
if (Record.size() != 18 && Record.size() != 19)
|
|
return error("Invalid record");
|
|
|
|
bool HasFn = Record.size() == 19;
|
|
DISubprogram *SP = GET_OR_DISTINCT(
|
|
DISubprogram,
|
|
Record[0] || Record[8], // All definitions should be distinct.
|
|
(Context, getMDOrNull(Record[1]), getMDString(Record[2]),
|
|
getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
|
|
getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
|
|
getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
|
|
Record[14], getMDOrNull(Record[15 + HasFn]),
|
|
getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
|
|
MDValueList.assignValue(SP, NextMDValueNo++);
|
|
|
|
// Upgrade sp->function mapping to function->sp mapping.
|
|
if (HasFn && Record[15]) {
|
|
if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
|
|
if (auto *F = dyn_cast<Function>(CMD->getValue())) {
|
|
if (F->isMaterializable())
|
|
// Defer until materialized; unmaterialized functions may not have
|
|
// metadata.
|
|
FunctionsWithSPs[F] = SP;
|
|
else if (!F->empty())
|
|
F->setSubprogram(SP);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case bitc::METADATA_LEXICAL_BLOCK: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DILexicalBlock, Record[0],
|
|
(Context, getMDOrNull(Record[1]),
|
|
getMDOrNull(Record[2]), Record[3], Record[4])),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_LEXICAL_BLOCK_FILE: {
|
|
if (Record.size() != 4)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
|
|
(Context, getMDOrNull(Record[1]),
|
|
getMDOrNull(Record[2]), Record[3])),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_NAMESPACE: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DINamespace, Record[0],
|
|
(Context, getMDOrNull(Record[1]),
|
|
getMDOrNull(Record[2]), getMDString(Record[3]),
|
|
Record[4])),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_TEMPLATE_TYPE: {
|
|
if (Record.size() != 3)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
|
|
Record[0],
|
|
(Context, getMDString(Record[1]),
|
|
getMDOrNull(Record[2]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_TEMPLATE_VALUE: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
|
|
(Context, Record[1], getMDString(Record[2]),
|
|
getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_GLOBAL_VAR: {
|
|
if (Record.size() != 11)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIGlobalVariable, Record[0],
|
|
(Context, getMDOrNull(Record[1]),
|
|
getMDString(Record[2]), getMDString(Record[3]),
|
|
getMDOrNull(Record[4]), Record[5],
|
|
getMDOrNull(Record[6]), Record[7], Record[8],
|
|
getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_LOCAL_VAR: {
|
|
// 10th field is for the obseleted 'inlinedAt:' field.
|
|
if (Record.size() < 8 || Record.size() > 10)
|
|
return error("Invalid record");
|
|
|
|
// 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
|
|
// DW_TAG_arg_variable.
|
|
bool HasTag = Record.size() > 8;
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DILocalVariable, Record[0],
|
|
(Context, getMDOrNull(Record[1 + HasTag]),
|
|
getMDString(Record[2 + HasTag]),
|
|
getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
|
|
getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
|
|
Record[7 + HasTag])),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_EXPRESSION: {
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIExpression, Record[0],
|
|
(Context, makeArrayRef(Record).slice(1))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_OBJC_PROPERTY: {
|
|
if (Record.size() != 8)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIObjCProperty, Record[0],
|
|
(Context, getMDString(Record[1]),
|
|
getMDOrNull(Record[2]), Record[3],
|
|
getMDString(Record[4]), getMDString(Record[5]),
|
|
Record[6], getMDOrNull(Record[7]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_IMPORTED_ENTITY: {
|
|
if (Record.size() != 6)
|
|
return error("Invalid record");
|
|
|
|
MDValueList.assignValue(
|
|
GET_OR_DISTINCT(DIImportedEntity, Record[0],
|
|
(Context, Record[1], getMDOrNull(Record[2]),
|
|
getMDOrNull(Record[3]), Record[4],
|
|
getMDString(Record[5]))),
|
|
NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_STRING: {
|
|
std::string String(Record.begin(), Record.end());
|
|
llvm::UpgradeMDStringConstant(String);
|
|
Metadata *MD = MDString::get(Context, String);
|
|
MDValueList.assignValue(MD, NextMDValueNo++);
|
|
break;
|
|
}
|
|
case bitc::METADATA_KIND: {
|
|
// Support older bitcode files that had METADATA_KIND records in a
|
|
// block with METADATA_BLOCK_ID.
|
|
if (std::error_code EC = parseMetadataKindRecord(Record))
|
|
return EC;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert((!(ModuleLevel && SeenModuleValuesRecord) ||
|
|
NumModuleMDs == MDValueList.size()) &&
|
|
"Inconsistent bitcode: METADATA_VALUES mismatch");
|
|
#undef GET_OR_DISTINCT
|
|
}
|
|
|
|
/// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
|
|
std::error_code BitcodeReader::parseMetadataKinds() {
|
|
if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
unsigned Code = Stream.readRecord(Entry.ID, Record);
|
|
switch (Code) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::METADATA_KIND: {
|
|
if (std::error_code EC = parseMetadataKindRecord(Record))
|
|
return EC;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Decode a signed value stored with the sign bit in the LSB for dense VBR
|
|
/// encoding.
|
|
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
|
|
if ((V & 1) == 0)
|
|
return V >> 1;
|
|
if (V != 1)
|
|
return -(V >> 1);
|
|
// There is no such thing as -0 with integers. "-0" really means MININT.
|
|
return 1ULL << 63;
|
|
}
|
|
|
|
/// Resolve all of the initializers for global values and aliases that we can.
|
|
std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
|
|
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
|
|
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
|
|
std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
|
|
|
|
GlobalInitWorklist.swap(GlobalInits);
|
|
AliasInitWorklist.swap(AliasInits);
|
|
FunctionPrefixWorklist.swap(FunctionPrefixes);
|
|
FunctionPrologueWorklist.swap(FunctionPrologues);
|
|
FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
|
|
|
|
while (!GlobalInitWorklist.empty()) {
|
|
unsigned ValID = GlobalInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
// Not ready to resolve this yet, it requires something later in the file.
|
|
GlobalInits.push_back(GlobalInitWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
GlobalInitWorklist.back().first->setInitializer(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
GlobalInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!AliasInitWorklist.empty()) {
|
|
unsigned ValID = AliasInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
AliasInits.push_back(AliasInitWorklist.back());
|
|
} else {
|
|
Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
|
|
if (!C)
|
|
return error("Expected a constant");
|
|
GlobalAlias *Alias = AliasInitWorklist.back().first;
|
|
if (C->getType() != Alias->getType())
|
|
return error("Alias and aliasee types don't match");
|
|
Alias->setAliasee(C);
|
|
}
|
|
AliasInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPrefixWorklist.empty()) {
|
|
unsigned ValID = FunctionPrefixWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPrefixWorklist.back().first->setPrefixData(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPrefixWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPrologueWorklist.empty()) {
|
|
unsigned ValID = FunctionPrologueWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPrologues.push_back(FunctionPrologueWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPrologueWorklist.back().first->setPrologueData(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPrologueWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPersonalityFnWorklist.empty()) {
|
|
unsigned ValID = FunctionPersonalityFnWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPersonalityFnWorklist.pop_back();
|
|
}
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
|
|
SmallVector<uint64_t, 8> Words(Vals.size());
|
|
std::transform(Vals.begin(), Vals.end(), Words.begin(),
|
|
BitcodeReader::decodeSignRotatedValue);
|
|
|
|
return APInt(TypeBits, Words);
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseConstants() {
|
|
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
Type *CurTy = Type::getInt32Ty(Context);
|
|
unsigned NextCstNo = ValueList.size();
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (NextCstNo != ValueList.size())
|
|
return error("Invalid ronstant reference");
|
|
|
|
// Once all the constants have been read, go through and resolve forward
|
|
// references.
|
|
ValueList.resolveConstantForwardRefs();
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Value *V = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: unknown constant
|
|
case bitc::CST_CODE_UNDEF: // UNDEF
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
|
|
return error("Invalid record");
|
|
CurTy = TypeList[Record[0]];
|
|
continue; // Skip the ValueList manipulation.
|
|
case bitc::CST_CODE_NULL: // NULL
|
|
V = Constant::getNullValue(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return error("Invalid record");
|
|
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
|
|
break;
|
|
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return error("Invalid record");
|
|
|
|
APInt VInt =
|
|
readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
|
|
V = ConstantInt::get(Context, VInt);
|
|
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
if (CurTy->isHalfTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
|
|
APInt(16, (uint16_t)Record[0])));
|
|
else if (CurTy->isFloatTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
|
|
APInt(32, (uint32_t)Record[0])));
|
|
else if (CurTy->isDoubleTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
|
|
APInt(64, Record[0])));
|
|
else if (CurTy->isX86_FP80Ty()) {
|
|
// Bits are not stored the same way as a normal i80 APInt, compensate.
|
|
uint64_t Rearrange[2];
|
|
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
|
|
Rearrange[1] = Record[0] >> 48;
|
|
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
|
|
APInt(80, Rearrange)));
|
|
} else if (CurTy->isFP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
|
|
APInt(128, Record)));
|
|
else if (CurTy->isPPC_FP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
|
|
APInt(128, Record)));
|
|
else
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
}
|
|
|
|
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
unsigned Size = Record.size();
|
|
SmallVector<Constant*, 16> Elts;
|
|
|
|
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
|
|
STy->getElementType(i)));
|
|
V = ConstantStruct::get(STy, Elts);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
|
|
Type *EltTy = ATy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantArray::get(ATy, Elts);
|
|
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
|
|
Type *EltTy = VTy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantVector::get(Elts);
|
|
} else {
|
|
V = UndefValue::get(CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_STRING: // STRING: [values]
|
|
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
SmallString<16> Elts(Record.begin(), Record.end());
|
|
V = ConstantDataArray::getString(Context, Elts,
|
|
BitCode == bitc::CST_CODE_CSTRING);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_DATA: {// DATA: [n x value]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
|
|
unsigned Size = Record.size();
|
|
|
|
if (EltTy->isIntegerTy(8)) {
|
|
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(16)) {
|
|
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(32)) {
|
|
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(64)) {
|
|
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isFloatTy()) {
|
|
SmallVector<float, 16> Elts(Size);
|
|
std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isDoubleTy()) {
|
|
SmallVector<double, 16> Elts(Size);
|
|
std::transform(Record.begin(), Record.end(), Elts.begin(),
|
|
BitsToDouble);
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else {
|
|
return error("Invalid type for value");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown binop.
|
|
} else {
|
|
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
|
|
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
|
|
unsigned Flags = 0;
|
|
if (Record.size() >= 4) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoSignedWrap;
|
|
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[3] & (1 << bitc::PEO_EXACT))
|
|
Flags |= SDivOperator::IsExact;
|
|
}
|
|
}
|
|
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
int Opc = getDecodedCastOpcode(Record[0]);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown cast.
|
|
} else {
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
V = UpgradeBitCastExpr(Opc, Op, CurTy);
|
|
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INBOUNDS_GEP:
|
|
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
|
|
unsigned OpNum = 0;
|
|
Type *PointeeType = nullptr;
|
|
if (Record.size() % 2)
|
|
PointeeType = getTypeByID(Record[OpNum++]);
|
|
SmallVector<Constant*, 16> Elts;
|
|
while (OpNum != Record.size()) {
|
|
Type *ElTy = getTypeByID(Record[OpNum++]);
|
|
if (!ElTy)
|
|
return error("Invalid record");
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
|
|
}
|
|
|
|
if (PointeeType &&
|
|
PointeeType !=
|
|
cast<SequentialType>(Elts[0]->getType()->getScalarType())
|
|
->getElementType())
|
|
return error("Explicit gep operator type does not match pointee type "
|
|
"of pointer operand");
|
|
|
|
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
|
|
V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
|
|
BitCode ==
|
|
bitc::CST_CODE_CE_INBOUNDS_GEP);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
Type *SelectorTy = Type::getInt1Ty(Context);
|
|
|
|
// The selector might be an i1 or an <n x i1>
|
|
// Get the type from the ValueList before getting a forward ref.
|
|
if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
|
|
if (Value *V = ValueList[Record[0]])
|
|
if (SelectorTy != V->getType())
|
|
SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
|
|
|
|
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
|
|
SelectorTy),
|
|
ValueList.getConstantFwdRef(Record[1],CurTy),
|
|
ValueList.getConstantFwdRef(Record[2],CurTy));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_EXTRACTELT
|
|
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return error("Invalid record");
|
|
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op1)
|
|
return error("Invalid record");
|
|
V = ConstantExpr::getExtractElement(Op0, Op1);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INSERTELT
|
|
: { // CE_INSERTELT: [opval, opval, opty, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
|
|
OpTy->getElementType());
|
|
Constant *Op2 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return error("Invalid record");
|
|
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op2)
|
|
return error("Invalid record");
|
|
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
OpTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
|
|
VectorType *RTy = dyn_cast<VectorType>(CurTy);
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (Record.size() < 4 || !RTy || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
RTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
|
|
if (OpTy->isFPOrFPVectorTy())
|
|
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
|
|
else
|
|
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
|
|
break;
|
|
}
|
|
// This maintains backward compatibility, pre-asm dialect keywords.
|
|
// FIXME: Remove with the 4.0 release.
|
|
case bitc::CST_CODE_INLINEASM_OLD: {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = Record[0] >> 1;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return error("Invalid record");
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
|
|
break;
|
|
}
|
|
// This version adds support for the asm dialect keywords (e.g.,
|
|
// inteldialect).
|
|
case bitc::CST_CODE_INLINEASM: {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = (Record[0] >> 1) & 1;
|
|
unsigned AsmDialect = Record[0] >> 2;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return error("Invalid record");
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
|
|
InlineAsm::AsmDialect(AsmDialect));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_BLOCKADDRESS:{
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
Type *FnTy = getTypeByID(Record[0]);
|
|
if (!FnTy)
|
|
return error("Invalid record");
|
|
Function *Fn =
|
|
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
|
|
if (!Fn)
|
|
return error("Invalid record");
|
|
|
|
// Don't let Fn get dematerialized.
|
|
BlockAddressesTaken.insert(Fn);
|
|
|
|
// If the function is already parsed we can insert the block address right
|
|
// away.
|
|
BasicBlock *BB;
|
|
unsigned BBID = Record[2];
|
|
if (!BBID)
|
|
// Invalid reference to entry block.
|
|
return error("Invalid ID");
|
|
if (!Fn->empty()) {
|
|
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
|
|
for (size_t I = 0, E = BBID; I != E; ++I) {
|
|
if (BBI == BBE)
|
|
return error("Invalid ID");
|
|
++BBI;
|
|
}
|
|
BB = &*BBI;
|
|
} else {
|
|
// Otherwise insert a placeholder and remember it so it can be inserted
|
|
// when the function is parsed.
|
|
auto &FwdBBs = BasicBlockFwdRefs[Fn];
|
|
if (FwdBBs.empty())
|
|
BasicBlockFwdRefQueue.push_back(Fn);
|
|
if (FwdBBs.size() < BBID + 1)
|
|
FwdBBs.resize(BBID + 1);
|
|
if (!FwdBBs[BBID])
|
|
FwdBBs[BBID] = BasicBlock::Create(Context);
|
|
BB = FwdBBs[BBID];
|
|
}
|
|
V = BlockAddress::get(Fn, BB);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ValueList.assignValue(V, NextCstNo))
|
|
return error("Invalid forward reference");
|
|
++NextCstNo;
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseUseLists() {
|
|
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a use list record.
|
|
Record.clear();
|
|
bool IsBB = false;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::USELIST_CODE_BB:
|
|
IsBB = true;
|
|
// fallthrough
|
|
case bitc::USELIST_CODE_DEFAULT: {
|
|
unsigned RecordLength = Record.size();
|
|
if (RecordLength < 3)
|
|
// Records should have at least an ID and two indexes.
|
|
return error("Invalid record");
|
|
unsigned ID = Record.back();
|
|
Record.pop_back();
|
|
|
|
Value *V;
|
|
if (IsBB) {
|
|
assert(ID < FunctionBBs.size() && "Basic block not found");
|
|
V = FunctionBBs[ID];
|
|
} else
|
|
V = ValueList[ID];
|
|
unsigned NumUses = 0;
|
|
SmallDenseMap<const Use *, unsigned, 16> Order;
|
|
for (const Use &U : V->uses()) {
|
|
if (++NumUses > Record.size())
|
|
break;
|
|
Order[&U] = Record[NumUses - 1];
|
|
}
|
|
if (Order.size() != Record.size() || NumUses > Record.size())
|
|
// Mismatches can happen if the functions are being materialized lazily
|
|
// (out-of-order), or a value has been upgraded.
|
|
break;
|
|
|
|
V->sortUseList([&](const Use &L, const Use &R) {
|
|
return Order.lookup(&L) < Order.lookup(&R);
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When we see the block for metadata, remember where it is and then skip it.
|
|
/// This lets us lazily deserialize the metadata.
|
|
std::error_code BitcodeReader::rememberAndSkipMetadata() {
|
|
// Save the current stream state.
|
|
uint64_t CurBit = Stream.GetCurrentBitNo();
|
|
DeferredMetadataInfo.push_back(CurBit);
|
|
|
|
// Skip over the block for now.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::materializeMetadata() {
|
|
for (uint64_t BitPos : DeferredMetadataInfo) {
|
|
// Move the bit stream to the saved position.
|
|
Stream.JumpToBit(BitPos);
|
|
if (std::error_code EC = parseMetadata(true))
|
|
return EC;
|
|
}
|
|
DeferredMetadataInfo.clear();
|
|
return std::error_code();
|
|
}
|
|
|
|
void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
|
|
|
|
/// When we see the block for a function body, remember where it is and then
|
|
/// skip it. This lets us lazily deserialize the functions.
|
|
std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
|
|
// Get the function we are talking about.
|
|
if (FunctionsWithBodies.empty())
|
|
return error("Insufficient function protos");
|
|
|
|
Function *Fn = FunctionsWithBodies.back();
|
|
FunctionsWithBodies.pop_back();
|
|
|
|
// Save the current stream state.
|
|
uint64_t CurBit = Stream.GetCurrentBitNo();
|
|
assert(
|
|
(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
|
|
"Mismatch between VST and scanned function offsets");
|
|
DeferredFunctionInfo[Fn] = CurBit;
|
|
|
|
// Skip over the function block for now.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code BitcodeReader::globalCleanup() {
|
|
// Patch the initializers for globals and aliases up.
|
|
resolveGlobalAndAliasInits();
|
|
if (!GlobalInits.empty() || !AliasInits.empty())
|
|
return error("Malformed global initializer set");
|
|
|
|
// Look for intrinsic functions which need to be upgraded at some point
|
|
for (Function &F : *TheModule) {
|
|
Function *NewFn;
|
|
if (UpgradeIntrinsicFunction(&F, NewFn))
|
|
UpgradedIntrinsics[&F] = NewFn;
|
|
}
|
|
|
|
// Look for global variables which need to be renamed.
|
|
for (GlobalVariable &GV : TheModule->globals())
|
|
UpgradeGlobalVariable(&GV);
|
|
|
|
// Force deallocation of memory for these vectors to favor the client that
|
|
// want lazy deserialization.
|
|
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
|
|
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
|
|
return std::error_code();
|
|
}
|
|
|
|
/// Support for lazy parsing of function bodies. This is required if we
|
|
/// either have an old bitcode file without a VST forward declaration record,
|
|
/// or if we have an anonymous function being materialized, since anonymous
|
|
/// functions do not have a name and are therefore not in the VST.
|
|
std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
|
|
Stream.JumpToBit(NextUnreadBit);
|
|
|
|
if (Stream.AtEndOfStream())
|
|
return error("Could not find function in stream");
|
|
|
|
if (!SeenFirstFunctionBody)
|
|
return error("Trying to materialize functions before seeing function blocks");
|
|
|
|
// An old bitcode file with the symbol table at the end would have
|
|
// finished the parse greedily.
|
|
assert(SeenValueSymbolTable);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
default:
|
|
return error("Expect SubBlock");
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default:
|
|
return error("Expect function block");
|
|
case bitc::FUNCTION_BLOCK_ID:
|
|
if (std::error_code EC = rememberAndSkipFunctionBody())
|
|
return EC;
|
|
NextUnreadBit = Stream.GetCurrentBitNo();
|
|
return std::error_code();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseBitcodeVersion() {
|
|
if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
default:
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: reject
|
|
return error("Invalid value");
|
|
case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x
|
|
// N]
|
|
convertToString(Record, 0, ProducerIdentification);
|
|
break;
|
|
}
|
|
case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
|
|
unsigned epoch = (unsigned)Record[0];
|
|
if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
|
|
return error(
|
|
Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
|
|
"' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
|
|
bool ShouldLazyLoadMetadata) {
|
|
if (ResumeBit)
|
|
Stream.JumpToBit(ResumeBit);
|
|
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
std::vector<std::string> SectionTable;
|
|
std::vector<std::string> GCTable;
|
|
|
|
// Read all the records for this module.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return globalCleanup();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
if (Stream.ReadBlockInfoBlock())
|
|
return error("Malformed block");
|
|
break;
|
|
case bitc::PARAMATTR_BLOCK_ID:
|
|
if (std::error_code EC = parseAttributeBlock())
|
|
return EC;
|
|
break;
|
|
case bitc::PARAMATTR_GROUP_BLOCK_ID:
|
|
if (std::error_code EC = parseAttributeGroupBlock())
|
|
return EC;
|
|
break;
|
|
case bitc::TYPE_BLOCK_ID_NEW:
|
|
if (std::error_code EC = parseTypeTable())
|
|
return EC;
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (!SeenValueSymbolTable) {
|
|
// Either this is an old form VST without function index and an
|
|
// associated VST forward declaration record (which would have caused
|
|
// the VST to be jumped to and parsed before it was encountered
|
|
// normally in the stream), or there were no function blocks to
|
|
// trigger an earlier parsing of the VST.
|
|
assert(VSTOffset == 0 || FunctionsWithBodies.empty());
|
|
if (std::error_code EC = parseValueSymbolTable())
|
|
return EC;
|
|
SeenValueSymbolTable = true;
|
|
} else {
|
|
// We must have had a VST forward declaration record, which caused
|
|
// the parser to jump to and parse the VST earlier.
|
|
assert(VSTOffset > 0);
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
}
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (std::error_code EC = parseConstants())
|
|
return EC;
|
|
if (std::error_code EC = resolveGlobalAndAliasInits())
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
|
|
if (std::error_code EC = rememberAndSkipMetadata())
|
|
return EC;
|
|
break;
|
|
}
|
|
assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
|
|
if (std::error_code EC = parseMetadata(true))
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_KIND_BLOCK_ID:
|
|
if (std::error_code EC = parseMetadataKinds())
|
|
return EC;
|
|
break;
|
|
case bitc::FUNCTION_BLOCK_ID:
|
|
// If this is the first function body we've seen, reverse the
|
|
// FunctionsWithBodies list.
|
|
if (!SeenFirstFunctionBody) {
|
|
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
|
|
if (std::error_code EC = globalCleanup())
|
|
return EC;
|
|
SeenFirstFunctionBody = true;
|
|
}
|
|
|
|
if (VSTOffset > 0) {
|
|
// If we have a VST forward declaration record, make sure we
|
|
// parse the VST now if we haven't already. It is needed to
|
|
// set up the DeferredFunctionInfo vector for lazy reading.
|
|
if (!SeenValueSymbolTable) {
|
|
if (std::error_code EC =
|
|
BitcodeReader::parseValueSymbolTable(VSTOffset))
|
|
return EC;
|
|
SeenValueSymbolTable = true;
|
|
// Fall through so that we record the NextUnreadBit below.
|
|
// This is necessary in case we have an anonymous function that
|
|
// is later materialized. Since it will not have a VST entry we
|
|
// need to fall back to the lazy parse to find its offset.
|
|
} else {
|
|
// If we have a VST forward declaration record, but have already
|
|
// parsed the VST (just above, when the first function body was
|
|
// encountered here), then we are resuming the parse after
|
|
// materializing functions. The ResumeBit points to the
|
|
// start of the last function block recorded in the
|
|
// DeferredFunctionInfo map. Skip it.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Support older bitcode files that did not have the function
|
|
// index in the VST, nor a VST forward declaration record, as
|
|
// well as anonymous functions that do not have VST entries.
|
|
// Build the DeferredFunctionInfo vector on the fly.
|
|
if (std::error_code EC = rememberAndSkipFunctionBody())
|
|
return EC;
|
|
|
|
// Suspend parsing when we reach the function bodies. Subsequent
|
|
// materialization calls will resume it when necessary. If the bitcode
|
|
// file is old, the symbol table will be at the end instead and will not
|
|
// have been seen yet. In this case, just finish the parse now.
|
|
if (SeenValueSymbolTable) {
|
|
NextUnreadBit = Stream.GetCurrentBitNo();
|
|
return std::error_code();
|
|
}
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (std::error_code EC = parseUseLists())
|
|
return EC;
|
|
break;
|
|
case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
|
|
if (std::error_code EC = parseOperandBundleTags())
|
|
return EC;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
|
|
// Read a record.
|
|
auto BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
// Only version #0 and #1 are supported so far.
|
|
unsigned module_version = Record[0];
|
|
switch (module_version) {
|
|
default:
|
|
return error("Invalid value");
|
|
case 0:
|
|
UseRelativeIDs = false;
|
|
break;
|
|
case 1:
|
|
UseRelativeIDs = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setTargetTriple(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setDataLayout(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setModuleInlineAsm(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
|
|
// FIXME: Remove in 4.0.
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
// Ignore value.
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
SectionTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
GCTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
|
|
unsigned ComdatNameSize = Record[1];
|
|
std::string ComdatName;
|
|
ComdatName.reserve(ComdatNameSize);
|
|
for (unsigned i = 0; i != ComdatNameSize; ++i)
|
|
ComdatName += (char)Record[2 + i];
|
|
Comdat *C = TheModule->getOrInsertComdat(ComdatName);
|
|
C->setSelectionKind(SK);
|
|
ComdatList.push_back(C);
|
|
break;
|
|
}
|
|
// GLOBALVAR: [pointer type, isconst, initid,
|
|
// linkage, alignment, section, visibility, threadlocal,
|
|
// unnamed_addr, externally_initialized, dllstorageclass,
|
|
// comdat]
|
|
case bitc::MODULE_CODE_GLOBALVAR: {
|
|
if (Record.size() < 6)
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
bool isConstant = Record[1] & 1;
|
|
bool explicitType = Record[1] & 2;
|
|
unsigned AddressSpace;
|
|
if (explicitType) {
|
|
AddressSpace = Record[1] >> 2;
|
|
} else {
|
|
if (!Ty->isPointerTy())
|
|
return error("Invalid type for value");
|
|
AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
|
|
Ty = cast<PointerType>(Ty)->getElementType();
|
|
}
|
|
|
|
uint64_t RawLinkage = Record[3];
|
|
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
|
|
unsigned Alignment;
|
|
if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
|
|
return EC;
|
|
std::string Section;
|
|
if (Record[5]) {
|
|
if (Record[5]-1 >= SectionTable.size())
|
|
return error("Invalid ID");
|
|
Section = SectionTable[Record[5]-1];
|
|
}
|
|
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
|
|
// Local linkage must have default visibility.
|
|
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Visibility = getDecodedVisibility(Record[6]);
|
|
|
|
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
|
|
if (Record.size() > 7)
|
|
TLM = getDecodedThreadLocalMode(Record[7]);
|
|
|
|
bool UnnamedAddr = false;
|
|
if (Record.size() > 8)
|
|
UnnamedAddr = Record[8];
|
|
|
|
bool ExternallyInitialized = false;
|
|
if (Record.size() > 9)
|
|
ExternallyInitialized = Record[9];
|
|
|
|
GlobalVariable *NewGV =
|
|
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
|
|
TLM, AddressSpace, ExternallyInitialized);
|
|
NewGV->setAlignment(Alignment);
|
|
if (!Section.empty())
|
|
NewGV->setSection(Section);
|
|
NewGV->setVisibility(Visibility);
|
|
NewGV->setUnnamedAddr(UnnamedAddr);
|
|
|
|
if (Record.size() > 10)
|
|
NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
|
|
else
|
|
upgradeDLLImportExportLinkage(NewGV, RawLinkage);
|
|
|
|
ValueList.push_back(NewGV);
|
|
|
|
// Remember which value to use for the global initializer.
|
|
if (unsigned InitID = Record[2])
|
|
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
|
|
|
|
if (Record.size() > 11) {
|
|
if (unsigned ComdatID = Record[11]) {
|
|
if (ComdatID > ComdatList.size())
|
|
return error("Invalid global variable comdat ID");
|
|
NewGV->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
} else if (hasImplicitComdat(RawLinkage)) {
|
|
NewGV->setComdat(reinterpret_cast<Comdat *>(1));
|
|
}
|
|
break;
|
|
}
|
|
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
|
|
// alignment, section, visibility, gc, unnamed_addr,
|
|
// prologuedata, dllstorageclass, comdat, prefixdata]
|
|
case bitc::MODULE_CODE_FUNCTION: {
|
|
if (Record.size() < 8)
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
if (auto *PTy = dyn_cast<PointerType>(Ty))
|
|
Ty = PTy->getElementType();
|
|
auto *FTy = dyn_cast<FunctionType>(Ty);
|
|
if (!FTy)
|
|
return error("Invalid type for value");
|
|
auto CC = static_cast<CallingConv::ID>(Record[1]);
|
|
if (CC & ~CallingConv::MaxID)
|
|
return error("Invalid calling convention ID");
|
|
|
|
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
"", TheModule);
|
|
|
|
Func->setCallingConv(CC);
|
|
bool isProto = Record[2];
|
|
uint64_t RawLinkage = Record[3];
|
|
Func->setLinkage(getDecodedLinkage(RawLinkage));
|
|
Func->setAttributes(getAttributes(Record[4]));
|
|
|
|
unsigned Alignment;
|
|
if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
|
|
return EC;
|
|
Func->setAlignment(Alignment);
|
|
if (Record[6]) {
|
|
if (Record[6]-1 >= SectionTable.size())
|
|
return error("Invalid ID");
|
|
Func->setSection(SectionTable[Record[6]-1]);
|
|
}
|
|
// Local linkage must have default visibility.
|
|
if (!Func->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Func->setVisibility(getDecodedVisibility(Record[7]));
|
|
if (Record.size() > 8 && Record[8]) {
|
|
if (Record[8]-1 >= GCTable.size())
|
|
return error("Invalid ID");
|
|
Func->setGC(GCTable[Record[8]-1].c_str());
|
|
}
|
|
bool UnnamedAddr = false;
|
|
if (Record.size() > 9)
|
|
UnnamedAddr = Record[9];
|
|
Func->setUnnamedAddr(UnnamedAddr);
|
|
if (Record.size() > 10 && Record[10] != 0)
|
|
FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
|
|
|
|
if (Record.size() > 11)
|
|
Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
|
|
else
|
|
upgradeDLLImportExportLinkage(Func, RawLinkage);
|
|
|
|
if (Record.size() > 12) {
|
|
if (unsigned ComdatID = Record[12]) {
|
|
if (ComdatID > ComdatList.size())
|
|
return error("Invalid function comdat ID");
|
|
Func->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
} else if (hasImplicitComdat(RawLinkage)) {
|
|
Func->setComdat(reinterpret_cast<Comdat *>(1));
|
|
}
|
|
|
|
if (Record.size() > 13 && Record[13] != 0)
|
|
FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
|
|
|
|
if (Record.size() > 14 && Record[14] != 0)
|
|
FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
|
|
|
|
ValueList.push_back(Func);
|
|
|
|
// If this is a function with a body, remember the prototype we are
|
|
// creating now, so that we can match up the body with them later.
|
|
if (!isProto) {
|
|
Func->setIsMaterializable(true);
|
|
FunctionsWithBodies.push_back(Func);
|
|
DeferredFunctionInfo[Func] = 0;
|
|
}
|
|
break;
|
|
}
|
|
// ALIAS: [alias type, addrspace, aliasee val#, linkage]
|
|
// ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
|
|
case bitc::MODULE_CODE_ALIAS:
|
|
case bitc::MODULE_CODE_ALIAS_OLD: {
|
|
bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
|
|
if (Record.size() < (3 + (unsigned)NewRecord))
|
|
return error("Invalid record");
|
|
unsigned OpNum = 0;
|
|
Type *Ty = getTypeByID(Record[OpNum++]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
|
|
unsigned AddrSpace;
|
|
if (!NewRecord) {
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
if (!PTy)
|
|
return error("Invalid type for value");
|
|
Ty = PTy->getElementType();
|
|
AddrSpace = PTy->getAddressSpace();
|
|
} else {
|
|
AddrSpace = Record[OpNum++];
|
|
}
|
|
|
|
auto Val = Record[OpNum++];
|
|
auto Linkage = Record[OpNum++];
|
|
auto *NewGA = GlobalAlias::create(
|
|
Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
|
|
// Old bitcode files didn't have visibility field.
|
|
// Local linkage must have default visibility.
|
|
if (OpNum != Record.size()) {
|
|
auto VisInd = OpNum++;
|
|
if (!NewGA->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
|
|
}
|
|
if (OpNum != Record.size())
|
|
NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
|
|
else
|
|
upgradeDLLImportExportLinkage(NewGA, Linkage);
|
|
if (OpNum != Record.size())
|
|
NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
|
|
if (OpNum != Record.size())
|
|
NewGA->setUnnamedAddr(Record[OpNum++]);
|
|
ValueList.push_back(NewGA);
|
|
AliasInits.push_back(std::make_pair(NewGA, Val));
|
|
break;
|
|
}
|
|
/// MODULE_CODE_PURGEVALS: [numvals]
|
|
case bitc::MODULE_CODE_PURGEVALS:
|
|
// Trim down the value list to the specified size.
|
|
if (Record.size() < 1 || Record[0] > ValueList.size())
|
|
return error("Invalid record");
|
|
ValueList.shrinkTo(Record[0]);
|
|
break;
|
|
/// MODULE_CODE_VSTOFFSET: [offset]
|
|
case bitc::MODULE_CODE_VSTOFFSET:
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
VSTOffset = Record[0];
|
|
break;
|
|
/// MODULE_CODE_METADATA_VALUES: [numvals]
|
|
case bitc::MODULE_CODE_METADATA_VALUES:
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
assert(!IsMetadataMaterialized);
|
|
// This record contains the number of metadata values in the module-level
|
|
// METADATA_BLOCK. It is used to support lazy parsing of metadata as
|
|
// a postpass, where we will parse function-level metadata first.
|
|
// This is needed because the ids of metadata are assigned implicitly
|
|
// based on their ordering in the bitcode, with the function-level
|
|
// metadata ids starting after the module-level metadata ids. Otherwise,
|
|
// we would have to parse the module-level metadata block to prime the
|
|
// MDValueList when we are lazy loading metadata during function
|
|
// importing. Initialize the MDValueList size here based on the
|
|
// record value, regardless of whether we are doing lazy metadata
|
|
// loading, so that we have consistent handling and assertion
|
|
// checking in parseMetadata for module-level metadata.
|
|
NumModuleMDs = Record[0];
|
|
SeenModuleValuesRecord = true;
|
|
assert(MDValueList.size() == 0);
|
|
MDValueList.resize(NumModuleMDs);
|
|
break;
|
|
}
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
/// Helper to read the header common to all bitcode files.
|
|
static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
|
|
// Sniff for the signature.
|
|
if (Stream.Read(8) != 'B' ||
|
|
Stream.Read(8) != 'C' ||
|
|
Stream.Read(4) != 0x0 ||
|
|
Stream.Read(4) != 0xC ||
|
|
Stream.Read(4) != 0xE ||
|
|
Stream.Read(4) != 0xD)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
std::error_code
|
|
BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
|
|
Module *M, bool ShouldLazyLoadMetadata) {
|
|
TheModule = M;
|
|
|
|
if (std::error_code EC = initStream(std::move(Streamer)))
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
if (Stream.AtEndOfStream()) {
|
|
// We didn't really read a proper Module.
|
|
return error("Malformed IR file");
|
|
}
|
|
|
|
BitstreamEntry Entry =
|
|
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
|
|
|
|
if (Entry.Kind != BitstreamEntry::SubBlock)
|
|
return error("Malformed block");
|
|
|
|
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
|
|
parseBitcodeVersion();
|
|
continue;
|
|
}
|
|
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return parseModule(0, ShouldLazyLoadMetadata);
|
|
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
}
|
|
}
|
|
|
|
ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
std::string Triple;
|
|
// Read all the records for this module.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Triple;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
Triple = S;
|
|
break;
|
|
}
|
|
}
|
|
Record.clear();
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
ErrorOr<std::string> BitcodeReader::parseTriple() {
|
|
if (std::error_code EC = initStream(nullptr))
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return parseModuleTriple();
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
|
|
if (std::error_code EC = initStream(nullptr))
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
|
|
if (std::error_code EC = parseBitcodeVersion())
|
|
return EC;
|
|
return ProducerIdentification;
|
|
}
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parse metadata attachments.
|
|
std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
|
|
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a metadata attachment record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::METADATA_ATTACHMENT: {
|
|
unsigned RecordLength = Record.size();
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
if (RecordLength % 2 == 0) {
|
|
// A function attachment.
|
|
for (unsigned I = 0; I != RecordLength; I += 2) {
|
|
auto K = MDKindMap.find(Record[I]);
|
|
if (K == MDKindMap.end())
|
|
return error("Invalid ID");
|
|
Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
|
|
F.setMetadata(K->second, cast<MDNode>(MD));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// An instruction attachment.
|
|
Instruction *Inst = InstructionList[Record[0]];
|
|
for (unsigned i = 1; i != RecordLength; i = i+2) {
|
|
unsigned Kind = Record[i];
|
|
DenseMap<unsigned, unsigned>::iterator I =
|
|
MDKindMap.find(Kind);
|
|
if (I == MDKindMap.end())
|
|
return error("Invalid ID");
|
|
Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
|
|
if (isa<LocalAsMetadata>(Node))
|
|
// Drop the attachment. This used to be legal, but there's no
|
|
// upgrade path.
|
|
break;
|
|
Inst->setMetadata(I->second, cast<MDNode>(Node));
|
|
if (I->second == LLVMContext::MD_tbaa)
|
|
InstsWithTBAATag.push_back(Inst);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH,
|
|
Type *ValType, Type *PtrType) {
|
|
if (!isa<PointerType>(PtrType))
|
|
return error(DH, "Load/Store operand is not a pointer type");
|
|
Type *ElemType = cast<PointerType>(PtrType)->getElementType();
|
|
|
|
if (ValType && ValType != ElemType)
|
|
return error(DH, "Explicit load/store type does not match pointee type of "
|
|
"pointer operand");
|
|
if (!PointerType::isLoadableOrStorableType(ElemType))
|
|
return error(DH, "Cannot load/store from pointer");
|
|
return std::error_code();
|
|
}
|
|
|
|
/// Lazily parse the specified function body block.
|
|
std::error_code BitcodeReader::parseFunctionBody(Function *F) {
|
|
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
InstructionList.clear();
|
|
unsigned ModuleValueListSize = ValueList.size();
|
|
unsigned ModuleMDValueListSize = MDValueList.size();
|
|
|
|
// Add all the function arguments to the value table.
|
|
for (Argument &I : F->args())
|
|
ValueList.push_back(&I);
|
|
|
|
unsigned NextValueNo = ValueList.size();
|
|
BasicBlock *CurBB = nullptr;
|
|
unsigned CurBBNo = 0;
|
|
|
|
DebugLoc LastLoc;
|
|
auto getLastInstruction = [&]() -> Instruction * {
|
|
if (CurBB && !CurBB->empty())
|
|
return &CurBB->back();
|
|
else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
|
|
!FunctionBBs[CurBBNo - 1]->empty())
|
|
return &FunctionBBs[CurBBNo - 1]->back();
|
|
return nullptr;
|
|
};
|
|
|
|
std::vector<OperandBundleDef> OperandBundles;
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
goto OutOfRecordLoop;
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (std::error_code EC = parseConstants())
|
|
return EC;
|
|
NextValueNo = ValueList.size();
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (std::error_code EC = parseValueSymbolTable())
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_ATTACHMENT_ID:
|
|
if (std::error_code EC = parseMetadataAttachment(*F))
|
|
return EC;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
if (std::error_code EC = parseMetadata())
|
|
return EC;
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (std::error_code EC = parseUseLists())
|
|
return EC;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Instruction *I = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: reject
|
|
return error("Invalid value");
|
|
case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
|
|
if (Record.size() < 1 || Record[0] == 0)
|
|
return error("Invalid record");
|
|
// Create all the basic blocks for the function.
|
|
FunctionBBs.resize(Record[0]);
|
|
|
|
// See if anything took the address of blocks in this function.
|
|
auto BBFRI = BasicBlockFwdRefs.find(F);
|
|
if (BBFRI == BasicBlockFwdRefs.end()) {
|
|
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
|
|
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
|
|
} else {
|
|
auto &BBRefs = BBFRI->second;
|
|
// Check for invalid basic block references.
|
|
if (BBRefs.size() > FunctionBBs.size())
|
|
return error("Invalid ID");
|
|
assert(!BBRefs.empty() && "Unexpected empty array");
|
|
assert(!BBRefs.front() && "Invalid reference to entry block");
|
|
for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
|
|
++I)
|
|
if (I < RE && BBRefs[I]) {
|
|
BBRefs[I]->insertInto(F);
|
|
FunctionBBs[I] = BBRefs[I];
|
|
} else {
|
|
FunctionBBs[I] = BasicBlock::Create(Context, "", F);
|
|
}
|
|
|
|
// Erase from the table.
|
|
BasicBlockFwdRefs.erase(BBFRI);
|
|
}
|
|
|
|
CurBB = FunctionBBs[0];
|
|
continue;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
|
|
// This record indicates that the last instruction is at the same
|
|
// location as the previous instruction with a location.
|
|
I = getLastInstruction();
|
|
|
|
if (!I)
|
|
return error("Invalid record");
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
|
|
I = getLastInstruction();
|
|
if (!I || Record.size() < 4)
|
|
return error("Invalid record");
|
|
|
|
unsigned Line = Record[0], Col = Record[1];
|
|
unsigned ScopeID = Record[2], IAID = Record[3];
|
|
|
|
MDNode *Scope = nullptr, *IA = nullptr;
|
|
if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
|
|
if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
|
|
LastLoc = DebugLoc::get(Line, Col, Scope, IA);
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
|
|
OpNum+1 > Record.size())
|
|
return error("Invalid record");
|
|
|
|
int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
|
|
if (Opc == -1)
|
|
return error("Invalid record");
|
|
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
InstructionList.push_back(I);
|
|
if (OpNum < Record.size()) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
|
|
cast<BinaryOperator>(I)->setIsExact(true);
|
|
} else if (isa<FPMathOperator>(I)) {
|
|
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
OpNum+2 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
Type *ResTy = getTypeByID(Record[OpNum]);
|
|
int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
|
|
if (Opc == -1 || !ResTy)
|
|
return error("Invalid record");
|
|
Instruction *Temp = nullptr;
|
|
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
|
|
if (Temp) {
|
|
InstructionList.push_back(Temp);
|
|
CurBB->getInstList().push_back(Temp);
|
|
}
|
|
} else {
|
|
auto CastOp = (Instruction::CastOps)Opc;
|
|
if (!CastInst::castIsValid(CastOp, Op, ResTy))
|
|
return error("Invalid cast");
|
|
I = CastInst::Create(CastOp, Op, ResTy);
|
|
}
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
|
|
case bitc::FUNC_CODE_INST_GEP_OLD:
|
|
case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
|
|
unsigned OpNum = 0;
|
|
|
|
Type *Ty;
|
|
bool InBounds;
|
|
|
|
if (BitCode == bitc::FUNC_CODE_INST_GEP) {
|
|
InBounds = Record[OpNum++];
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
} else {
|
|
InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
|
|
Ty = nullptr;
|
|
}
|
|
|
|
Value *BasePtr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
|
|
return error("Invalid record");
|
|
|
|
if (!Ty)
|
|
Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
|
|
->getElementType();
|
|
else if (Ty !=
|
|
cast<SequentialType>(BasePtr->getType()->getScalarType())
|
|
->getElementType())
|
|
return error(
|
|
"Explicit gep type does not match pointee type of pointer operand");
|
|
|
|
SmallVector<Value*, 16> GEPIdx;
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
GEPIdx.push_back(Op);
|
|
}
|
|
|
|
I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
|
|
|
|
InstructionList.push_back(I);
|
|
if (InBounds)
|
|
cast<GetElementPtrInst>(I)->setIsInBounds(true);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
|
|
// EXTRACTVAL: [opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return error("Invalid record");
|
|
|
|
unsigned RecSize = Record.size();
|
|
if (OpNum == RecSize)
|
|
return error("EXTRACTVAL: Invalid instruction with 0 indices");
|
|
|
|
SmallVector<unsigned, 4> EXTRACTVALIdx;
|
|
Type *CurTy = Agg->getType();
|
|
for (; OpNum != RecSize; ++OpNum) {
|
|
bool IsArray = CurTy->isArrayTy();
|
|
bool IsStruct = CurTy->isStructTy();
|
|
uint64_t Index = Record[OpNum];
|
|
|
|
if (!IsStruct && !IsArray)
|
|
return error("EXTRACTVAL: Invalid type");
|
|
if ((unsigned)Index != Index)
|
|
return error("Invalid value");
|
|
if (IsStruct && Index >= CurTy->subtypes().size())
|
|
return error("EXTRACTVAL: Invalid struct index");
|
|
if (IsArray && Index >= CurTy->getArrayNumElements())
|
|
return error("EXTRACTVAL: Invalid array index");
|
|
EXTRACTVALIdx.push_back((unsigned)Index);
|
|
|
|
if (IsStruct)
|
|
CurTy = CurTy->subtypes()[Index];
|
|
else
|
|
CurTy = CurTy->subtypes()[0];
|
|
}
|
|
|
|
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTVAL: {
|
|
// INSERTVAL: [opty, opval, opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return error("Invalid record");
|
|
Value *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
|
|
unsigned RecSize = Record.size();
|
|
if (OpNum == RecSize)
|
|
return error("INSERTVAL: Invalid instruction with 0 indices");
|
|
|
|
SmallVector<unsigned, 4> INSERTVALIdx;
|
|
Type *CurTy = Agg->getType();
|
|
for (; OpNum != RecSize; ++OpNum) {
|
|
bool IsArray = CurTy->isArrayTy();
|
|
bool IsStruct = CurTy->isStructTy();
|
|
uint64_t Index = Record[OpNum];
|
|
|
|
if (!IsStruct && !IsArray)
|
|
return error("INSERTVAL: Invalid type");
|
|
if ((unsigned)Index != Index)
|
|
return error("Invalid value");
|
|
if (IsStruct && Index >= CurTy->subtypes().size())
|
|
return error("INSERTVAL: Invalid struct index");
|
|
if (IsArray && Index >= CurTy->getArrayNumElements())
|
|
return error("INSERTVAL: Invalid array index");
|
|
|
|
INSERTVALIdx.push_back((unsigned)Index);
|
|
if (IsStruct)
|
|
CurTy = CurTy->subtypes()[Index];
|
|
else
|
|
CurTy = CurTy->subtypes()[0];
|
|
}
|
|
|
|
if (CurTy != Val->getType())
|
|
return error("Inserted value type doesn't match aggregate type");
|
|
|
|
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
|
|
// obsolete form of select
|
|
// handles select i1 ... in old bitcode
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
|
|
return error("Invalid record");
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
|
|
// new form of select
|
|
// handles select i1 or select [N x i1]
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Cond))
|
|
return error("Invalid record");
|
|
|
|
// select condition can be either i1 or [N x i1]
|
|
if (VectorType* vector_type =
|
|
dyn_cast<VectorType>(Cond->getType())) {
|
|
// expect <n x i1>
|
|
if (vector_type->getElementType() != Type::getInt1Ty(Context))
|
|
return error("Invalid type for value");
|
|
} else {
|
|
// expect i1
|
|
if (Cond->getType() != Type::getInt1Ty(Context))
|
|
return error("Invalid type for value");
|
|
}
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return error("Invalid record");
|
|
if (!Vec->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
I = ExtractElementInst::Create(Vec, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Elt, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
|
|
return error("Invalid record");
|
|
if (!Vec->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
if (popValue(Record, OpNum, NextValueNo,
|
|
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return error("Invalid record");
|
|
I = InsertElementInst::Create(Vec, Elt, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec1, *Vec2, *Mask;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
|
|
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
|
|
return error("Invalid record");
|
|
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
|
|
return error("Invalid record");
|
|
if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
|
|
// Old form of ICmp/FCmp returning bool
|
|
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
|
|
// both legal on vectors but had different behaviour.
|
|
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
|
|
// FCmp/ICmp returning bool or vector of bool
|
|
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
|
|
return error("Invalid record");
|
|
|
|
unsigned PredVal = Record[OpNum];
|
|
bool IsFP = LHS->getType()->isFPOrFPVectorTy();
|
|
FastMathFlags FMF;
|
|
if (IsFP && Record.size() > OpNum+1)
|
|
FMF = getDecodedFastMathFlags(Record[++OpNum]);
|
|
|
|
if (OpNum+1 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (LHS->getType()->isFPOrFPVectorTy())
|
|
I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
|
|
else
|
|
I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
|
|
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
|
|
{
|
|
unsigned Size = Record.size();
|
|
if (Size == 0) {
|
|
I = ReturnInst::Create(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
unsigned OpNum = 0;
|
|
Value *Op = nullptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
if (OpNum != Record.size())
|
|
return error("Invalid record");
|
|
|
|
I = ReturnInst::Create(Context, Op);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
|
|
if (Record.size() != 1 && Record.size() != 3)
|
|
return error("Invalid record");
|
|
BasicBlock *TrueDest = getBasicBlock(Record[0]);
|
|
if (!TrueDest)
|
|
return error("Invalid record");
|
|
|
|
if (Record.size() == 1) {
|
|
I = BranchInst::Create(TrueDest);
|
|
InstructionList.push_back(I);
|
|
}
|
|
else {
|
|
BasicBlock *FalseDest = getBasicBlock(Record[1]);
|
|
Value *Cond = getValue(Record, 2, NextValueNo,
|
|
Type::getInt1Ty(Context));
|
|
if (!FalseDest || !Cond)
|
|
return error("Invalid record");
|
|
I = BranchInst::Create(TrueDest, FalseDest, Cond);
|
|
InstructionList.push_back(I);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
|
|
if (Record.size() != 1 && Record.size() != 2)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
Value *CleanupPad = getValue(Record, Idx++, NextValueNo,
|
|
Type::getTokenTy(Context), OC_CleanupPad);
|
|
if (!CleanupPad)
|
|
return error("Invalid record");
|
|
BasicBlock *UnwindDest = nullptr;
|
|
if (Record.size() == 2) {
|
|
UnwindDest = getBasicBlock(Record[Idx++]);
|
|
if (!UnwindDest)
|
|
return error("Invalid record");
|
|
}
|
|
|
|
I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad),
|
|
UnwindDest);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
|
|
if (Record.size() != 2)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
Value *CatchPad = getValue(Record, Idx++, NextValueNo,
|
|
Type::getTokenTy(Context), OC_CatchPad);
|
|
if (!CatchPad)
|
|
return error("Invalid record");
|
|
BasicBlock *BB = getBasicBlock(Record[Idx++]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
|
|
I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
BasicBlock *NormalBB = getBasicBlock(Record[Idx++]);
|
|
if (!NormalBB)
|
|
return error("Invalid record");
|
|
BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]);
|
|
if (!UnwindBB)
|
|
return error("Invalid record");
|
|
unsigned NumArgOperands = Record[Idx++];
|
|
SmallVector<Value *, 2> Args;
|
|
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
|
|
Value *Val;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
Args.push_back(Val);
|
|
}
|
|
if (Record.size() != Idx)
|
|
return error("Invalid record");
|
|
|
|
I = CatchPadInst::Create(NormalBB, UnwindBB, Args);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
bool HasUnwindDest = !!Record[Idx++];
|
|
BasicBlock *UnwindDest = nullptr;
|
|
if (HasUnwindDest) {
|
|
if (Idx == Record.size())
|
|
return error("Invalid record");
|
|
UnwindDest = getBasicBlock(Record[Idx++]);
|
|
if (!UnwindDest)
|
|
return error("Invalid record");
|
|
}
|
|
unsigned NumArgOperands = Record[Idx++];
|
|
SmallVector<Value *, 2> Args;
|
|
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
|
|
Value *Val;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
Args.push_back(Val);
|
|
}
|
|
if (Record.size() != Idx)
|
|
return error("Invalid record");
|
|
|
|
I = TerminatePadInst::Create(Context, UnwindDest, Args);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
unsigned NumArgOperands = Record[Idx++];
|
|
SmallVector<Value *, 2> Args;
|
|
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
|
|
Value *Val;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
Args.push_back(Val);
|
|
}
|
|
if (Record.size() != Idx)
|
|
return error("Invalid record");
|
|
|
|
I = CleanupPadInst::Create(Context, Args);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or []
|
|
if (Record.size() > 1)
|
|
return error("Invalid record");
|
|
BasicBlock *BB = nullptr;
|
|
if (Record.size() == 1) {
|
|
BB = getBasicBlock(Record[0]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
}
|
|
I = CatchEndPadInst::Create(Context, BB);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#]
|
|
if (Record.size() != 1 && Record.size() != 2)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
Value *CleanupPad = getValue(Record, Idx++, NextValueNo,
|
|
Type::getTokenTy(Context), OC_CleanupPad);
|
|
if (!CleanupPad)
|
|
return error("Invalid record");
|
|
|
|
BasicBlock *BB = nullptr;
|
|
if (Record.size() == 2) {
|
|
BB = getBasicBlock(Record[Idx++]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
}
|
|
I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
|
|
// Check magic
|
|
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
|
|
// "New" SwitchInst format with case ranges. The changes to write this
|
|
// format were reverted but we still recognize bitcode that uses it.
|
|
// Hopefully someday we will have support for case ranges and can use
|
|
// this format again.
|
|
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
|
|
|
|
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[3]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return error("Invalid record");
|
|
|
|
unsigned NumCases = Record[4];
|
|
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
|
|
unsigned CurIdx = 5;
|
|
for (unsigned i = 0; i != NumCases; ++i) {
|
|
SmallVector<ConstantInt*, 1> CaseVals;
|
|
unsigned NumItems = Record[CurIdx++];
|
|
for (unsigned ci = 0; ci != NumItems; ++ci) {
|
|
bool isSingleNumber = Record[CurIdx++];
|
|
|
|
APInt Low;
|
|
unsigned ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
|
|
ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
if (!isSingleNumber) {
|
|
ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
APInt High = readWideAPInt(
|
|
makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
// FIXME: It is not clear whether values in the range should be
|
|
// compared as signed or unsigned values. The partially
|
|
// implemented changes that used this format in the past used
|
|
// unsigned comparisons.
|
|
for ( ; Low.ule(High); ++Low)
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
} else
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
}
|
|
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
|
|
for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
|
|
cve = CaseVals.end(); cvi != cve; ++cvi)
|
|
SI->addCase(*cvi, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
|
|
// Old SwitchInst format without case ranges.
|
|
|
|
if (Record.size() < 3 || (Record.size() & 1) == 0)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[2]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return error("Invalid record");
|
|
unsigned NumCases = (Record.size()-3)/2;
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
for (unsigned i = 0, e = NumCases; i != e; ++i) {
|
|
ConstantInt *CaseVal =
|
|
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
|
|
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
|
|
if (!CaseVal || !DestBB) {
|
|
delete SI;
|
|
return error("Invalid record");
|
|
}
|
|
SI->addCase(CaseVal, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
|
|
if (!OpTy || !Address)
|
|
return error("Invalid record");
|
|
unsigned NumDests = Record.size()-2;
|
|
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
|
|
InstructionList.push_back(IBI);
|
|
for (unsigned i = 0, e = NumDests; i != e; ++i) {
|
|
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
|
|
IBI->addDestination(DestBB);
|
|
} else {
|
|
delete IBI;
|
|
return error("Invalid record");
|
|
}
|
|
}
|
|
I = IBI;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INVOKE: {
|
|
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
unsigned OpNum = 0;
|
|
AttributeSet PAL = getAttributes(Record[OpNum++]);
|
|
unsigned CCInfo = Record[OpNum++];
|
|
BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
|
|
BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
|
|
|
|
FunctionType *FTy = nullptr;
|
|
if (CCInfo >> 13 & 1 &&
|
|
!(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
|
|
return error("Explicit invoke type is not a function type");
|
|
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return error("Invalid record");
|
|
|
|
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
|
|
if (!CalleeTy)
|
|
return error("Callee is not a pointer");
|
|
if (!FTy) {
|
|
FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
|
|
if (!FTy)
|
|
return error("Callee is not of pointer to function type");
|
|
} else if (CalleeTy->getElementType() != FTy)
|
|
return error("Explicit invoke type does not match pointee type of "
|
|
"callee operand");
|
|
if (Record.size() < FTy->getNumParams() + OpNum)
|
|
return error("Insufficient operands to call");
|
|
|
|
SmallVector<Value*, 16> Ops;
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
Ops.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Ops.back())
|
|
return error("Invalid record");
|
|
}
|
|
|
|
if (!FTy->isVarArg()) {
|
|
if (Record.size() != OpNum)
|
|
return error("Invalid record");
|
|
} else {
|
|
// Read type/value pairs for varargs params.
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Ops.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
|
|
OperandBundles.clear();
|
|
InstructionList.push_back(I);
|
|
cast<InvokeInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
|
|
cast<InvokeInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
|
|
unsigned Idx = 0;
|
|
Value *Val = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
I = ResumeInst::Create(Val);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
|
|
I = new UnreachableInst(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
|
|
if (Record.size() < 1 || ((Record.size()-1)&1))
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
|
|
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
|
|
InstructionList.push_back(PN);
|
|
|
|
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
|
|
Value *V;
|
|
// With the new function encoding, it is possible that operands have
|
|
// negative IDs (for forward references). Use a signed VBR
|
|
// representation to keep the encoding small.
|
|
if (UseRelativeIDs)
|
|
V = getValueSigned(Record, 1+i, NextValueNo, Ty);
|
|
else
|
|
V = getValue(Record, 1+i, NextValueNo, Ty);
|
|
BasicBlock *BB = getBasicBlock(Record[2+i]);
|
|
if (!V || !BB)
|
|
return error("Invalid record");
|
|
PN->addIncoming(V, BB);
|
|
}
|
|
I = PN;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_LANDINGPAD:
|
|
case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
|
|
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
|
|
unsigned Idx = 0;
|
|
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
} else {
|
|
assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
}
|
|
Type *Ty = getTypeByID(Record[Idx++]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
|
|
Value *PersFn = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
|
|
return error("Invalid record");
|
|
|
|
if (!F->hasPersonalityFn())
|
|
F->setPersonalityFn(cast<Constant>(PersFn));
|
|
else if (F->getPersonalityFn() != cast<Constant>(PersFn))
|
|
return error("Personality function mismatch");
|
|
}
|
|
|
|
bool IsCleanup = !!Record[Idx++];
|
|
unsigned NumClauses = Record[Idx++];
|
|
LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
|
|
LP->setCleanup(IsCleanup);
|
|
for (unsigned J = 0; J != NumClauses; ++J) {
|
|
LandingPadInst::ClauseType CT =
|
|
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
|
|
Value *Val;
|
|
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
|
|
delete LP;
|
|
return error("Invalid record");
|
|
}
|
|
|
|
assert((CT != LandingPadInst::Catch ||
|
|
!isa<ArrayType>(Val->getType())) &&
|
|
"Catch clause has a invalid type!");
|
|
assert((CT != LandingPadInst::Filter ||
|
|
isa<ArrayType>(Val->getType())) &&
|
|
"Filter clause has invalid type!");
|
|
LP->addClause(cast<Constant>(Val));
|
|
}
|
|
|
|
I = LP;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
|
|
if (Record.size() != 4)
|
|
return error("Invalid record");
|
|
uint64_t AlignRecord = Record[3];
|
|
const uint64_t InAllocaMask = uint64_t(1) << 5;
|
|
const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
|
|
// Reserve bit 7 for SwiftError flag.
|
|
// const uint64_t SwiftErrorMask = uint64_t(1) << 7;
|
|
const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
|
|
bool InAlloca = AlignRecord & InAllocaMask;
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if ((AlignRecord & ExplicitTypeMask) == 0) {
|
|
auto *PTy = dyn_cast_or_null<PointerType>(Ty);
|
|
if (!PTy)
|
|
return error("Old-style alloca with a non-pointer type");
|
|
Ty = PTy->getElementType();
|
|
}
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
Value *Size = getFnValueByID(Record[2], OpTy);
|
|
unsigned Align;
|
|
if (std::error_code EC =
|
|
parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
|
|
return EC;
|
|
}
|
|
if (!Ty || !Size)
|
|
return error("Invalid record");
|
|
AllocaInst *AI = new AllocaInst(Ty, Size, Align);
|
|
AI->setUsedWithInAlloca(InAlloca);
|
|
I = AI;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
(OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
|
|
return error("Invalid record");
|
|
|
|
Type *Ty = nullptr;
|
|
if (OpNum + 3 == Record.size())
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
if (std::error_code EC =
|
|
typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
|
|
return EC;
|
|
if (!Ty)
|
|
Ty = cast<PointerType>(Op->getType())->getElementType();
|
|
|
|
unsigned Align;
|
|
if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
|
|
return EC;
|
|
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOADATOMIC: {
|
|
// LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
(OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
|
|
return error("Invalid record");
|
|
|
|
Type *Ty = nullptr;
|
|
if (OpNum + 5 == Record.size())
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
if (std::error_code EC =
|
|
typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
|
|
return EC;
|
|
if (!Ty)
|
|
Ty = cast<PointerType>(Op->getType())->getElementType();
|
|
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == NotAtomic || Ordering == Release ||
|
|
Ordering == AcquireRelease)
|
|
return error("Invalid record");
|
|
if (Ordering != NotAtomic && Record[OpNum] == 0)
|
|
return error("Invalid record");
|
|
SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
|
|
|
|
unsigned Align;
|
|
if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
|
|
return EC;
|
|
I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STORE:
|
|
case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_STORE
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Val)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Val)) ||
|
|
OpNum + 2 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (std::error_code EC = typeCheckLoadStoreInst(
|
|
DiagnosticHandler, Val->getType(), Ptr->getType()))
|
|
return EC;
|
|
unsigned Align;
|
|
if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
|
|
return EC;
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STOREATOMIC:
|
|
case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
|
|
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Val)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Val)) ||
|
|
OpNum + 4 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (std::error_code EC = typeCheckLoadStoreInst(
|
|
DiagnosticHandler, Val->getType(), Ptr->getType()))
|
|
return EC;
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == NotAtomic || Ordering == Acquire ||
|
|
Ordering == AcquireRelease)
|
|
return error("Invalid record");
|
|
SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
|
|
if (Ordering != NotAtomic && Record[OpNum] == 0)
|
|
return error("Invalid record");
|
|
|
|
unsigned Align;
|
|
if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
|
|
return EC;
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
|
|
case bitc::FUNC_CODE_INST_CMPXCHG: {
|
|
// CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
|
|
// failureordering?, isweak?]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Cmp, *New;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_CMPXCHG
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Cmp)) ||
|
|
popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
|
|
Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
|
|
return error("Invalid record");
|
|
AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
|
|
if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
|
|
return error("Invalid record");
|
|
SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
|
|
|
|
if (std::error_code EC = typeCheckLoadStoreInst(
|
|
DiagnosticHandler, Cmp->getType(), Ptr->getType()))
|
|
return EC;
|
|
AtomicOrdering FailureOrdering;
|
|
if (Record.size() < 7)
|
|
FailureOrdering =
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
|
|
else
|
|
FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
|
|
|
|
I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
|
|
SynchScope);
|
|
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
|
|
|
|
if (Record.size() < 8) {
|
|
// Before weak cmpxchgs existed, the instruction simply returned the
|
|
// value loaded from memory, so bitcode files from that era will be
|
|
// expecting the first component of a modern cmpxchg.
|
|
CurBB->getInstList().push_back(I);
|
|
I = ExtractValueInst::Create(I, 0);
|
|
} else {
|
|
cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
|
|
}
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_ATOMICRMW: {
|
|
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
|
|
OpNum+4 != Record.size())
|
|
return error("Invalid record");
|
|
AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
|
|
if (Operation < AtomicRMWInst::FIRST_BINOP ||
|
|
Operation > AtomicRMWInst::LAST_BINOP)
|
|
return error("Invalid record");
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == NotAtomic || Ordering == Unordered)
|
|
return error("Invalid record");
|
|
SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
|
|
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
|
|
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
|
|
if (2 != Record.size())
|
|
return error("Invalid record");
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
|
|
if (Ordering == NotAtomic || Ordering == Unordered ||
|
|
Ordering == Monotonic)
|
|
return error("Invalid record");
|
|
SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
|
|
I = new FenceInst(Context, Ordering, SynchScope);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CALL: {
|
|
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
unsigned OpNum = 0;
|
|
AttributeSet PAL = getAttributes(Record[OpNum++]);
|
|
unsigned CCInfo = Record[OpNum++];
|
|
|
|
FunctionType *FTy = nullptr;
|
|
if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
|
|
!(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
|
|
return error("Explicit call type is not a function type");
|
|
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return error("Invalid record");
|
|
|
|
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
|
|
if (!OpTy)
|
|
return error("Callee is not a pointer type");
|
|
if (!FTy) {
|
|
FTy = dyn_cast<FunctionType>(OpTy->getElementType());
|
|
if (!FTy)
|
|
return error("Callee is not of pointer to function type");
|
|
} else if (OpTy->getElementType() != FTy)
|
|
return error("Explicit call type does not match pointee type of "
|
|
"callee operand");
|
|
if (Record.size() < FTy->getNumParams() + OpNum)
|
|
return error("Insufficient operands to call");
|
|
|
|
SmallVector<Value*, 16> Args;
|
|
// Read the fixed params.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Args.push_back(getBasicBlock(Record[OpNum]));
|
|
else
|
|
Args.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Args.back())
|
|
return error("Invalid record");
|
|
}
|
|
|
|
// Read type/value pairs for varargs params.
|
|
if (!FTy->isVarArg()) {
|
|
if (OpNum != Record.size())
|
|
return error("Invalid record");
|
|
} else {
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Args.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = CallInst::Create(FTy, Callee, Args, OperandBundles);
|
|
OperandBundles.clear();
|
|
InstructionList.push_back(I);
|
|
cast<CallInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
|
|
CallInst::TailCallKind TCK = CallInst::TCK_None;
|
|
if (CCInfo & 1 << bitc::CALL_TAIL)
|
|
TCK = CallInst::TCK_Tail;
|
|
if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
|
|
TCK = CallInst::TCK_MustTail;
|
|
if (CCInfo & (1 << bitc::CALL_NOTAIL))
|
|
TCK = CallInst::TCK_NoTail;
|
|
cast<CallInst>(I)->setTailCallKind(TCK);
|
|
cast<CallInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
|
|
Type *ResTy = getTypeByID(Record[2]);
|
|
if (!OpTy || !Op || !ResTy)
|
|
return error("Invalid record");
|
|
I = new VAArgInst(Op, ResTy);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_OPERAND_BUNDLE: {
|
|
// A call or an invoke can be optionally prefixed with some variable
|
|
// number of operand bundle blocks. These blocks are read into
|
|
// OperandBundles and consumed at the next call or invoke instruction.
|
|
|
|
if (Record.size() < 1 || Record[0] >= BundleTags.size())
|
|
return error("Invalid record");
|
|
|
|
std::vector<Value *> Inputs;
|
|
|
|
unsigned OpNum = 1;
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Inputs.push_back(Op);
|
|
}
|
|
|
|
OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Add instruction to end of current BB. If there is no current BB, reject
|
|
// this file.
|
|
if (!CurBB) {
|
|
delete I;
|
|
return error("Invalid instruction with no BB");
|
|
}
|
|
if (!OperandBundles.empty()) {
|
|
delete I;
|
|
return error("Operand bundles found with no consumer");
|
|
}
|
|
CurBB->getInstList().push_back(I);
|
|
|
|
// If this was a terminator instruction, move to the next block.
|
|
if (isa<TerminatorInst>(I)) {
|
|
++CurBBNo;
|
|
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
|
|
}
|
|
|
|
// Non-void values get registered in the value table for future use.
|
|
if (I && !I->getType()->isVoidTy())
|
|
if (ValueList.assignValue(I, NextValueNo++))
|
|
return error("Invalid forward reference");
|
|
}
|
|
|
|
OutOfRecordLoop:
|
|
|
|
if (!OperandBundles.empty())
|
|
return error("Operand bundles found with no consumer");
|
|
|
|
// Check the function list for unresolved values.
|
|
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
|
|
if (!A->getParent()) {
|
|
// We found at least one unresolved value. Nuke them all to avoid leaks.
|
|
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
|
|
if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
|
|
A->replaceAllUsesWith(UndefValue::get(A->getType()));
|
|
delete A;
|
|
}
|
|
}
|
|
return error("Never resolved value found in function");
|
|
}
|
|
}
|
|
|
|
// FIXME: Check for unresolved forward-declared metadata references
|
|
// and clean up leaks.
|
|
|
|
// Trim the value list down to the size it was before we parsed this function.
|
|
ValueList.shrinkTo(ModuleValueListSize);
|
|
MDValueList.shrinkTo(ModuleMDValueListSize);
|
|
std::vector<BasicBlock*>().swap(FunctionBBs);
|
|
return std::error_code();
|
|
}
|
|
|
|
/// Find the function body in the bitcode stream
|
|
std::error_code BitcodeReader::findFunctionInStream(
|
|
Function *F,
|
|
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
|
|
while (DeferredFunctionInfoIterator->second == 0) {
|
|
// This is the fallback handling for the old format bitcode that
|
|
// didn't contain the function index in the VST, or when we have
|
|
// an anonymous function which would not have a VST entry.
|
|
// Assert that we have one of those two cases.
|
|
assert(VSTOffset == 0 || !F->hasName());
|
|
// Parse the next body in the stream and set its position in the
|
|
// DeferredFunctionInfo map.
|
|
if (std::error_code EC = rememberAndSkipFunctionBodies())
|
|
return EC;
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVMaterializer implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BitcodeReader::releaseBuffer() { Buffer.release(); }
|
|
|
|
std::error_code BitcodeReader::materialize(GlobalValue *GV) {
|
|
// In older bitcode we must materialize the metadata before parsing
|
|
// any functions, in order to set up the MDValueList properly.
|
|
if (!SeenModuleValuesRecord) {
|
|
if (std::error_code EC = materializeMetadata())
|
|
return EC;
|
|
}
|
|
|
|
Function *F = dyn_cast<Function>(GV);
|
|
// If it's not a function or is already material, ignore the request.
|
|
if (!F || !F->isMaterializable())
|
|
return std::error_code();
|
|
|
|
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
|
|
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
|
|
// If its position is recorded as 0, its body is somewhere in the stream
|
|
// but we haven't seen it yet.
|
|
if (DFII->second == 0)
|
|
if (std::error_code EC = findFunctionInStream(F, DFII))
|
|
return EC;
|
|
|
|
// Move the bit stream to the saved position of the deferred function body.
|
|
Stream.JumpToBit(DFII->second);
|
|
|
|
if (std::error_code EC = parseFunctionBody(F))
|
|
return EC;
|
|
F->setIsMaterializable(false);
|
|
|
|
if (StripDebugInfo)
|
|
stripDebugInfo(*F);
|
|
|
|
// Upgrade any old intrinsic calls in the function.
|
|
for (auto &I : UpgradedIntrinsics) {
|
|
for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) {
|
|
User *U = *UI;
|
|
++UI;
|
|
if (CallInst *CI = dyn_cast<CallInst>(U))
|
|
UpgradeIntrinsicCall(CI, I.second);
|
|
}
|
|
}
|
|
|
|
// Finish fn->subprogram upgrade for materialized functions.
|
|
if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
|
|
F->setSubprogram(SP);
|
|
|
|
// Bring in any functions that this function forward-referenced via
|
|
// blockaddresses.
|
|
return materializeForwardReferencedFunctions();
|
|
}
|
|
|
|
bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
|
|
const Function *F = dyn_cast<Function>(GV);
|
|
if (!F || F->isDeclaration())
|
|
return false;
|
|
|
|
// Dematerializing F would leave dangling references that wouldn't be
|
|
// reconnected on re-materialization.
|
|
if (BlockAddressesTaken.count(F))
|
|
return false;
|
|
|
|
return DeferredFunctionInfo.count(const_cast<Function*>(F));
|
|
}
|
|
|
|
void BitcodeReader::dematerialize(GlobalValue *GV) {
|
|
Function *F = dyn_cast<Function>(GV);
|
|
// If this function isn't dematerializable, this is a noop.
|
|
if (!F || !isDematerializable(F))
|
|
return;
|
|
|
|
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
|
|
|
|
// Just forget the function body, we can remat it later.
|
|
F->dropAllReferences();
|
|
F->setIsMaterializable(true);
|
|
}
|
|
|
|
std::error_code BitcodeReader::materializeModule(Module *M) {
|
|
assert(M == TheModule &&
|
|
"Can only Materialize the Module this BitcodeReader is attached to.");
|
|
|
|
if (std::error_code EC = materializeMetadata())
|
|
return EC;
|
|
|
|
// Promise to materialize all forward references.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
// Iterate over the module, deserializing any functions that are still on
|
|
// disk.
|
|
for (Function &F : *TheModule) {
|
|
if (std::error_code EC = materialize(&F))
|
|
return EC;
|
|
}
|
|
// At this point, if there are any function bodies, parse the rest of
|
|
// the bits in the module past the last function block we have recorded
|
|
// through either lazy scanning or the VST.
|
|
if (LastFunctionBlockBit || NextUnreadBit)
|
|
parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
|
|
: NextUnreadBit);
|
|
|
|
// Check that all block address forward references got resolved (as we
|
|
// promised above).
|
|
if (!BasicBlockFwdRefs.empty())
|
|
return error("Never resolved function from blockaddress");
|
|
|
|
// Upgrade any intrinsic calls that slipped through (should not happen!) and
|
|
// delete the old functions to clean up. We can't do this unless the entire
|
|
// module is materialized because there could always be another function body
|
|
// with calls to the old function.
|
|
for (auto &I : UpgradedIntrinsics) {
|
|
for (auto *U : I.first->users()) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(U))
|
|
UpgradeIntrinsicCall(CI, I.second);
|
|
}
|
|
if (!I.first->use_empty())
|
|
I.first->replaceAllUsesWith(I.second);
|
|
I.first->eraseFromParent();
|
|
}
|
|
UpgradedIntrinsics.clear();
|
|
|
|
for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
|
|
UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
|
|
|
|
UpgradeDebugInfo(*M);
|
|
return std::error_code();
|
|
}
|
|
|
|
std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
|
|
return IdentifiedStructTypes;
|
|
}
|
|
|
|
std::error_code
|
|
BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
|
|
if (Streamer)
|
|
return initLazyStream(std::move(Streamer));
|
|
return initStreamFromBuffer();
|
|
}
|
|
|
|
std::error_code BitcodeReader::initStreamFromBuffer() {
|
|
const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
|
|
const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
|
|
|
|
if (Buffer->getBufferSize() & 3)
|
|
return error("Invalid bitcode signature");
|
|
|
|
// If we have a wrapper header, parse it and ignore the non-bc file contents.
|
|
// The magic number is 0x0B17C0DE stored in little endian.
|
|
if (isBitcodeWrapper(BufPtr, BufEnd))
|
|
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
|
|
return error("Invalid bitcode wrapper header");
|
|
|
|
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
|
|
Stream.init(&*StreamFile);
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code
|
|
BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
|
|
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
|
|
// see it.
|
|
auto OwnedBytes =
|
|
llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
|
|
StreamingMemoryObject &Bytes = *OwnedBytes;
|
|
StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
|
|
Stream.init(&*StreamFile);
|
|
|
|
unsigned char buf[16];
|
|
if (Bytes.readBytes(buf, 16, 0) != 16)
|
|
return error("Invalid bitcode signature");
|
|
|
|
if (!isBitcode(buf, buf + 16))
|
|
return error("Invalid bitcode signature");
|
|
|
|
if (isBitcodeWrapper(buf, buf + 4)) {
|
|
const unsigned char *bitcodeStart = buf;
|
|
const unsigned char *bitcodeEnd = buf + 16;
|
|
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
|
|
Bytes.dropLeadingBytes(bitcodeStart - buf);
|
|
Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
|
|
const Twine &Message) {
|
|
return ::error(DiagnosticHandler, make_error_code(E), Message);
|
|
}
|
|
|
|
std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
|
|
return ::error(DiagnosticHandler,
|
|
make_error_code(BitcodeError::CorruptedBitcode), Message);
|
|
}
|
|
|
|
std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
|
|
return ::error(DiagnosticHandler, make_error_code(E));
|
|
}
|
|
|
|
FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
|
|
MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
|
|
bool IsLazy, bool CheckFuncSummaryPresenceOnly)
|
|
: DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
|
|
CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
|
|
|
|
FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
|
|
DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
|
|
bool CheckFuncSummaryPresenceOnly)
|
|
: DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
|
|
CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
|
|
|
|
void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
|
|
|
|
void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
|
|
|
|
// Specialized value symbol table parser used when reading function index
|
|
// blocks where we don't actually create global values.
|
|
// At the end of this routine the function index is populated with a map
|
|
// from function name to FunctionInfo. The function info contains
|
|
// the function block's bitcode offset as well as the offset into the
|
|
// function summary section.
|
|
std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
SmallString<128> ValueName;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
|
|
break;
|
|
case bitc::VST_CODE_FNENTRY: {
|
|
// VST_FNENTRY: [valueid, offset, namechar x N]
|
|
if (convertToString(Record, 2, ValueName))
|
|
return error("Invalid record");
|
|
unsigned ValueID = Record[0];
|
|
uint64_t FuncOffset = Record[1];
|
|
std::unique_ptr<FunctionInfo> FuncInfo =
|
|
llvm::make_unique<FunctionInfo>(FuncOffset);
|
|
if (foundFuncSummary() && !IsLazy) {
|
|
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
|
|
SummaryMap.find(ValueID);
|
|
assert(SMI != SummaryMap.end() && "Summary info not found");
|
|
FuncInfo->setFunctionSummary(std::move(SMI->second));
|
|
}
|
|
TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
|
|
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_COMBINED_FNENTRY: {
|
|
// VST_FNENTRY: [offset, namechar x N]
|
|
if (convertToString(Record, 1, ValueName))
|
|
return error("Invalid record");
|
|
uint64_t FuncSummaryOffset = Record[0];
|
|
std::unique_ptr<FunctionInfo> FuncInfo =
|
|
llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
|
|
if (foundFuncSummary() && !IsLazy) {
|
|
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
|
|
SummaryMap.find(FuncSummaryOffset);
|
|
assert(SMI != SummaryMap.end() && "Summary info not found");
|
|
FuncInfo->setFunctionSummary(std::move(SMI->second));
|
|
}
|
|
TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
|
|
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse just the blocks needed for function index building out of the module.
|
|
// At the end of this routine the function Index is populated with a map
|
|
// from function name to FunctionInfo. The function info contains
|
|
// either the parsed function summary information (when parsing summaries
|
|
// eagerly), or just to the function summary record's offset
|
|
// if parsing lazily (IsLazy).
|
|
std::error_code FunctionIndexBitcodeReader::parseModule() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Read the function index for this module.
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (CheckFuncSummaryPresenceOnly) {
|
|
if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID)
|
|
SeenFuncSummary = true;
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
// No need to parse the rest since we found the summary.
|
|
return std::error_code();
|
|
}
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
// Need to parse these to get abbrev ids (e.g. for VST)
|
|
if (Stream.ReadBlockInfoBlock())
|
|
return error("Malformed block");
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (std::error_code EC = parseValueSymbolTable())
|
|
return EC;
|
|
break;
|
|
case bitc::FUNCTION_SUMMARY_BLOCK_ID:
|
|
SeenFuncSummary = true;
|
|
if (IsLazy) {
|
|
// Lazy parsing of summary info, skip it.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
} else if (std::error_code EC = parseEntireSummary())
|
|
return EC;
|
|
break;
|
|
case bitc::MODULE_STRTAB_BLOCK_ID:
|
|
if (std::error_code EC = parseModuleStringTable())
|
|
return EC;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Eagerly parse the entire function summary block (i.e. for all functions
|
|
// in the index). This populates the FunctionSummary objects in
|
|
// the index.
|
|
std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
|
|
if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record. The record format depends on whether this
|
|
// is a per-module index or a combined index file. In the per-module
|
|
// case the records contain the associated value's ID for correlation
|
|
// with VST entries. In the combined index the correlation is done
|
|
// via the bitcode offset of the summary records (which were saved
|
|
// in the combined index VST entries). The records also contain
|
|
// information used for ThinLTO renaming and importing.
|
|
Record.clear();
|
|
uint64_t CurRecordBit = Stream.GetCurrentBitNo();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
// FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
|
|
case bitc::FS_CODE_PERMODULE_ENTRY: {
|
|
unsigned ValueID = Record[0];
|
|
bool IsLocal = Record[1];
|
|
unsigned InstCount = Record[2];
|
|
std::unique_ptr<FunctionSummary> FS =
|
|
llvm::make_unique<FunctionSummary>(InstCount);
|
|
FS->setLocalFunction(IsLocal);
|
|
// The module path string ref set in the summary must be owned by the
|
|
// index's module string table. Since we don't have a module path
|
|
// string table section in the per-module index, we create a single
|
|
// module path string table entry with an empty (0) ID to take
|
|
// ownership.
|
|
FS->setModulePath(
|
|
TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
|
|
SummaryMap[ValueID] = std::move(FS);
|
|
}
|
|
// FS_COMBINED_ENTRY: [modid, instcount]
|
|
case bitc::FS_CODE_COMBINED_ENTRY: {
|
|
uint64_t ModuleId = Record[0];
|
|
unsigned InstCount = Record[1];
|
|
std::unique_ptr<FunctionSummary> FS =
|
|
llvm::make_unique<FunctionSummary>(InstCount);
|
|
FS->setModulePath(ModuleIdMap[ModuleId]);
|
|
SummaryMap[CurRecordBit] = std::move(FS);
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
// Parse the module string table block into the Index.
|
|
// This populates the ModulePathStringTable map in the index.
|
|
std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
SmallString<128> ModulePath;
|
|
while (1) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return std::error_code();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::MST_CODE_ENTRY: {
|
|
// MST_ENTRY: [modid, namechar x N]
|
|
if (convertToString(Record, 1, ModulePath))
|
|
return error("Invalid record");
|
|
uint64_t ModuleId = Record[0];
|
|
StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
|
|
ModuleIdMap[ModuleId] = ModulePathInMap;
|
|
ModulePath.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
// Parse the function info index from the bitcode streamer into the given index.
|
|
std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
|
|
std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
|
|
TheIndex = I;
|
|
|
|
if (std::error_code EC = initStream(std::move(Streamer)))
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (1) {
|
|
if (Stream.AtEndOfStream()) {
|
|
// We didn't really read a proper Module block.
|
|
return error("Malformed block");
|
|
}
|
|
|
|
BitstreamEntry Entry =
|
|
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
|
|
|
|
if (Entry.Kind != BitstreamEntry::SubBlock)
|
|
return error("Malformed block");
|
|
|
|
// If we see a MODULE_BLOCK, parse it to find the blocks needed for
|
|
// building the function summary index.
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return parseModule();
|
|
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
}
|
|
}
|
|
|
|
// Parse the function information at the given offset in the buffer into
|
|
// the index. Used to support lazy parsing of function summaries from the
|
|
// combined index during importing.
|
|
// TODO: This function is not yet complete as it won't have a consumer
|
|
// until ThinLTO function importing is added.
|
|
std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
|
|
std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
|
|
size_t FunctionSummaryOffset) {
|
|
TheIndex = I;
|
|
|
|
if (std::error_code EC = initStream(std::move(Streamer)))
|
|
return EC;
|
|
|
|
// Sniff for the signature.
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
Stream.JumpToBit(FunctionSummaryOffset);
|
|
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
default:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::Record:
|
|
// The expected case.
|
|
break;
|
|
}
|
|
|
|
// TODO: Read a record. This interface will be completed when ThinLTO
|
|
// importing is added so that it can be tested.
|
|
SmallVector<uint64_t, 64> Record;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
case bitc::FS_CODE_COMBINED_ENTRY:
|
|
default:
|
|
return error("Invalid record");
|
|
}
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code
|
|
FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
|
|
if (Streamer)
|
|
return initLazyStream(std::move(Streamer));
|
|
return initStreamFromBuffer();
|
|
}
|
|
|
|
std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
|
|
const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
|
|
const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
|
|
|
|
if (Buffer->getBufferSize() & 3)
|
|
return error("Invalid bitcode signature");
|
|
|
|
// If we have a wrapper header, parse it and ignore the non-bc file contents.
|
|
// The magic number is 0x0B17C0DE stored in little endian.
|
|
if (isBitcodeWrapper(BufPtr, BufEnd))
|
|
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
|
|
return error("Invalid bitcode wrapper header");
|
|
|
|
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
|
|
Stream.init(&*StreamFile);
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
std::error_code FunctionIndexBitcodeReader::initLazyStream(
|
|
std::unique_ptr<DataStreamer> Streamer) {
|
|
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
|
|
// see it.
|
|
auto OwnedBytes =
|
|
llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
|
|
StreamingMemoryObject &Bytes = *OwnedBytes;
|
|
StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
|
|
Stream.init(&*StreamFile);
|
|
|
|
unsigned char buf[16];
|
|
if (Bytes.readBytes(buf, 16, 0) != 16)
|
|
return error("Invalid bitcode signature");
|
|
|
|
if (!isBitcode(buf, buf + 16))
|
|
return error("Invalid bitcode signature");
|
|
|
|
if (isBitcodeWrapper(buf, buf + 4)) {
|
|
const unsigned char *bitcodeStart = buf;
|
|
const unsigned char *bitcodeEnd = buf + 16;
|
|
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
|
|
Bytes.dropLeadingBytes(bitcodeStart - buf);
|
|
Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
namespace {
|
|
class BitcodeErrorCategoryType : public std::error_category {
|
|
const char *name() const LLVM_NOEXCEPT override {
|
|
return "llvm.bitcode";
|
|
}
|
|
std::string message(int IE) const override {
|
|
BitcodeError E = static_cast<BitcodeError>(IE);
|
|
switch (E) {
|
|
case BitcodeError::InvalidBitcodeSignature:
|
|
return "Invalid bitcode signature";
|
|
case BitcodeError::CorruptedBitcode:
|
|
return "Corrupted bitcode";
|
|
}
|
|
llvm_unreachable("Unknown error type!");
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
|
|
|
|
const std::error_category &llvm::BitcodeErrorCategory() {
|
|
return *ErrorCategory;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External interface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static ErrorOr<std::unique_ptr<Module>>
|
|
getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
|
|
BitcodeReader *R, LLVMContext &Context,
|
|
bool MaterializeAll, bool ShouldLazyLoadMetadata) {
|
|
std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
|
|
M->setMaterializer(R);
|
|
|
|
auto cleanupOnError = [&](std::error_code EC) {
|
|
R->releaseBuffer(); // Never take ownership on error.
|
|
return EC;
|
|
};
|
|
|
|
// Delay parsing Metadata if ShouldLazyLoadMetadata is true.
|
|
if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
|
|
ShouldLazyLoadMetadata))
|
|
return cleanupOnError(EC);
|
|
|
|
if (MaterializeAll) {
|
|
// Read in the entire module, and destroy the BitcodeReader.
|
|
if (std::error_code EC = M->materializeAllPermanently())
|
|
return cleanupOnError(EC);
|
|
} else {
|
|
// Resolve forward references from blockaddresses.
|
|
if (std::error_code EC = R->materializeForwardReferencedFunctions())
|
|
return cleanupOnError(EC);
|
|
}
|
|
return std::move(M);
|
|
}
|
|
|
|
/// \brief Get a lazy one-at-time loading module from bitcode.
|
|
///
|
|
/// This isn't always used in a lazy context. In particular, it's also used by
|
|
/// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull
|
|
/// in forward-referenced functions from block address references.
|
|
///
|
|
/// \param[in] MaterializeAll Set to \c true if we should materialize
|
|
/// everything.
|
|
static ErrorOr<std::unique_ptr<Module>>
|
|
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
|
|
LLVMContext &Context, bool MaterializeAll,
|
|
DiagnosticHandlerFunction DiagnosticHandler,
|
|
bool ShouldLazyLoadMetadata = false) {
|
|
BitcodeReader *R =
|
|
new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
|
|
|
|
ErrorOr<std::unique_ptr<Module>> Ret =
|
|
getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
|
|
MaterializeAll, ShouldLazyLoadMetadata);
|
|
if (!Ret)
|
|
return Ret;
|
|
|
|
Buffer.release(); // The BitcodeReader owns it now.
|
|
return Ret;
|
|
}
|
|
|
|
ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule(
|
|
std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) {
|
|
return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
|
|
DiagnosticHandler, ShouldLazyLoadMetadata);
|
|
}
|
|
|
|
ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule(
|
|
StringRef Name, std::unique_ptr<DataStreamer> Streamer,
|
|
LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
|
|
BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler);
|
|
|
|
return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
|
|
false);
|
|
}
|
|
|
|
ErrorOr<std::unique_ptr<Module>>
|
|
llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
return getLazyBitcodeModuleImpl(std::move(Buf), Context, true,
|
|
DiagnosticHandler);
|
|
// TODO: Restore the use-lists to the in-memory state when the bitcode was
|
|
// written. We must defer until the Module has been fully materialized.
|
|
}
|
|
|
|
std::string
|
|
llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
|
|
DiagnosticHandler);
|
|
ErrorOr<std::string> Triple = R->parseTriple();
|
|
if (Triple.getError())
|
|
return "";
|
|
return Triple.get();
|
|
}
|
|
|
|
std::string
|
|
llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context,
|
|
DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
BitcodeReader R(Buf.release(), Context, DiagnosticHandler);
|
|
ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
|
|
if (ProducerString.getError())
|
|
return "";
|
|
return ProducerString.get();
|
|
}
|
|
|
|
// Parse the specified bitcode buffer, returning the function info index.
|
|
// If IsLazy is false, parse the entire function summary into
|
|
// the index. Otherwise skip the function summary section, and only create
|
|
// an index object with a map from function name to function summary offset.
|
|
// The index is used to perform lazy function summary reading later.
|
|
ErrorOr<std::unique_ptr<FunctionInfoIndex>>
|
|
llvm::getFunctionInfoIndex(MemoryBufferRef Buffer,
|
|
DiagnosticHandlerFunction DiagnosticHandler,
|
|
const Module *ExportingModule, bool IsLazy) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
|
|
|
|
std::unique_ptr<FunctionInfoIndex> Index =
|
|
llvm::make_unique<FunctionInfoIndex>(ExportingModule);
|
|
|
|
auto cleanupOnError = [&](std::error_code EC) {
|
|
R.releaseBuffer(); // Never take ownership on error.
|
|
return EC;
|
|
};
|
|
|
|
if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
|
|
return cleanupOnError(EC);
|
|
|
|
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
|
|
return std::move(Index);
|
|
}
|
|
|
|
// Check if the given bitcode buffer contains a function summary block.
|
|
bool llvm::hasFunctionSummary(MemoryBufferRef Buffer,
|
|
DiagnosticHandlerFunction DiagnosticHandler) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
|
|
|
|
auto cleanupOnError = [&](std::error_code EC) {
|
|
R.releaseBuffer(); // Never take ownership on error.
|
|
return false;
|
|
};
|
|
|
|
if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
|
|
return cleanupOnError(EC);
|
|
|
|
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
|
|
return R.foundFuncSummary();
|
|
}
|
|
|
|
// This method supports lazy reading of function summary data from the combined
|
|
// index during ThinLTO function importing. When reading the combined index
|
|
// file, getFunctionInfoIndex is first invoked with IsLazy=true.
|
|
// Then this method is called for each function considered for importing,
|
|
// to parse the summary information for the given function name into
|
|
// the index.
|
|
std::error_code llvm::readFunctionSummary(
|
|
MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
|
|
StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) {
|
|
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
|
|
FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
|
|
|
|
auto cleanupOnError = [&](std::error_code EC) {
|
|
R.releaseBuffer(); // Never take ownership on error.
|
|
return EC;
|
|
};
|
|
|
|
// Lookup the given function name in the FunctionMap, which may
|
|
// contain a list of function infos in the case of a COMDAT. Walk through
|
|
// and parse each function summary info at the function summary offset
|
|
// recorded when parsing the value symbol table.
|
|
for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
|
|
size_t FunctionSummaryOffset = FI->bitcodeIndex();
|
|
if (std::error_code EC =
|
|
R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
|
|
return cleanupOnError(EC);
|
|
}
|
|
|
|
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
|
|
return std::error_code();
|
|
}
|