llvm/lib/Transforms/Utils/LowerAllocations.cpp
2004-03-03 01:40:53 +00:00

168 lines
6.1 KiB
C++

//===- LowerAllocations.cpp - Reduce malloc & free insts to calls ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LowerAllocations transformation is a target-dependent tranformation
// because it depends on the size of data types and alignment constraints.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
using namespace llvm;
namespace {
Statistic<> NumLowered("lowerallocs", "Number of allocations lowered");
/// LowerAllocations - Turn malloc and free instructions into %malloc and
/// %free calls.
///
class LowerAllocations : public BasicBlockPass {
Function *MallocFunc; // Functions in the module we are processing
Function *FreeFunc; // Initialized by doInitialization
public:
LowerAllocations() : MallocFunc(0), FreeFunc(0) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetData>();
}
/// doPassInitialization - For the lower allocations pass, this ensures that
/// a module contains a declaration for a malloc and a free function.
///
bool doInitialization(Module &M);
/// runOnBasicBlock - This method does the actual work of converting
/// instructions over, assuming that the pass has already been initialized.
///
bool runOnBasicBlock(BasicBlock &BB);
};
RegisterOpt<LowerAllocations>
X("lowerallocs", "Lower allocations from instructions to calls");
}
// createLowerAllocationsPass - Interface to this file...
FunctionPass *llvm::createLowerAllocationsPass() {
return new LowerAllocations();
}
// doInitialization - For the lower allocations pass, this ensures that a
// module contains a declaration for a malloc and a free function.
//
// This function is always successful.
//
bool LowerAllocations::doInitialization(Module &M) {
const Type *SBPTy = PointerType::get(Type::SByteTy);
MallocFunc = M.getNamedFunction("malloc");
FreeFunc = M.getNamedFunction("free");
if (MallocFunc == 0)
MallocFunc = M.getOrInsertFunction("malloc", SBPTy, Type::UIntTy, 0);
if (FreeFunc == 0)
FreeFunc = M.getOrInsertFunction("free" , Type::VoidTy, SBPTy, 0);
return true;
}
// runOnBasicBlock - This method does the actual work of converting
// instructions over, assuming that the pass has already been initialized.
//
bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) {
bool Changed = false;
assert(MallocFunc && FreeFunc && "Pass not initialized!");
BasicBlock::InstListType &BBIL = BB.getInstList();
TargetData &DataLayout = getAnalysis<TargetData>();
// Loop over all of the instructions, looking for malloc or free instructions
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
if (MallocInst *MI = dyn_cast<MallocInst>(I)) {
const Type *AllocTy = MI->getType()->getElementType();
// Get the number of bytes to be allocated for one element of the
// requested type...
unsigned Size = DataLayout.getTypeSize(AllocTy);
// malloc(type) becomes sbyte *malloc(constint)
Value *MallocArg = ConstantUInt::get(Type::UIntTy, Size);
if (MI->getNumOperands() && Size == 1) {
MallocArg = MI->getOperand(0); // Operand * 1 = Operand
} else if (MI->isArrayAllocation()) {
// Multiply it by the array size if necessary...
MallocArg = BinaryOperator::create(Instruction::Mul, MI->getOperand(0),
MallocArg, "", I);
}
const FunctionType *MallocFTy = MallocFunc->getFunctionType();
std::vector<Value*> MallocArgs;
if (MallocFTy->getNumParams() > 0 || MallocFTy->isVarArg()) {
if (MallocFTy->getNumParams() > 0 &&
MallocFTy->getParamType(0) != Type::UIntTy)
MallocArg = new CastInst(MallocArg, MallocFTy->getParamType(0), "",I);
MallocArgs.push_back(MallocArg);
}
// If malloc is prototyped to take extra arguments, pass nulls.
for (unsigned i = 1; i < MallocFTy->getNumParams(); ++i)
MallocArgs.push_back(Constant::getNullValue(MallocFTy->getParamType(i)));
// Create the call to Malloc...
CallInst *MCall = new CallInst(MallocFunc, MallocArgs, "", I);
// Create a cast instruction to convert to the right type...
Value *MCast;
if (MCall->getType() != Type::VoidTy)
MCast = new CastInst(MCall, MI->getType(), "", I);
else
MCast = Constant::getNullValue(MI->getType());
// Replace all uses of the old malloc inst with the cast inst
MI->replaceAllUsesWith(MCast);
I = --BBIL.erase(I); // remove and delete the malloc instr...
Changed = true;
++NumLowered;
} else if (FreeInst *FI = dyn_cast<FreeInst>(I)) {
const FunctionType *FreeFTy = FreeFunc->getFunctionType();
std::vector<Value*> FreeArgs;
if (FreeFTy->getNumParams() > 0 || FreeFTy->isVarArg()) {
Value *MCast = FI->getOperand(0);
if (FreeFTy->getNumParams() > 0 &&
FreeFTy->getParamType(0) != MCast->getType())
MCast = new CastInst(MCast, FreeFTy->getParamType(0), "", I);
FreeArgs.push_back(MCast);
}
// If malloc is prototyped to take extra arguments, pass nulls.
for (unsigned i = 1; i < FreeFTy->getNumParams(); ++i)
FreeArgs.push_back(Constant::getNullValue(FreeFTy->getParamType(i)));
// Insert a call to the free function...
new CallInst(FreeFunc, FreeArgs, "", I);
// Delete the old free instruction
I = --BBIL.erase(I);
Changed = true;
++NumLowered;
}
}
return Changed;
}