llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
Meador Inge 0c41d57b09 instcombine: Migrate strcpy optimizations
This patch migrates the strcpy optimizations from the simplify-libcalls pass
into the instcombine library call simplifier.  Note also that StrCpyChkOpt
has been updated with a few simplifications that were being done in the
simplify-libcalls version of StrCpyOpt, but not in the migrated implementation
of StrCpyOpt.  There is no reason to overload StrCpyOpt with fortified and
regular simplifications in the new model since there is already a dedicated
simplifier for __strcpy_chk.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166198 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-18 18:12:40 +00:00

627 lines
22 KiB
C++

//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a utility pass used for testing the InstructionSimplify analysis.
// The analysis is applied to every instruction, and if it simplifies then the
// instruction is replaced by the simplification. If you are looking for a pass
// that performs serious instruction folding, use the instcombine pass instead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/DataLayout.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class LibCallOptimization {
protected:
Function *Caller;
const DataLayout *TD;
const TargetLibraryInfo *TLI;
LLVMContext* Context;
public:
LibCallOptimization() { }
virtual ~LibCallOptimization() {}
/// callOptimizer - This pure virtual method is implemented by base classes to
/// do various optimizations. If this returns null then no transformation was
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
Value *optimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = TD;
this->TLI = TLI;
if (CI->getCalledFunction())
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
if (CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return callOptimizer(CI->getCalledFunction(), CI, B);
}
};
//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
struct FortifiedLibCallOptimization : public LibCallOptimization {
protected:
virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
bool isString) const = 0;
};
struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
CallInst *CI;
bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
return true;
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
if (SizeCI->isAllOnesValue())
return true;
if (isString) {
uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
// If the length is 0 we don't know how long it is and so we can't
// remove the check.
if (Len == 0) return false;
return SizeCI->getZExtValue() >= Len;
}
if (ConstantInt *Arg = dyn_cast<ConstantInt>(
CI->getArgOperand(SizeArgOp)))
return SizeCI->getZExtValue() >= Arg->getZExtValue();
}
return false;
}
};
struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
false);
B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
FT->getParamType(2) != TD->getIntPtrType(Context))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // __strcpy_chk(x,x) -> x
return Src;
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
// st[rp]cpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFoldable(2, 1, true)) {
Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
return Ret;
} else {
// Maybe we can stil fold __strcpy_chk to __memcpy_chk.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// This optimization require DataLayout.
if (!TD) return 0;
Value *Ret =
EmitMemCpyChk(Dst, Src,
ConstantInt::get(TD->getIntPtrType(Context), Len),
CI->getArgOperand(2), B, TD, TLI);
return Ret;
}
return 0;
}
};
struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
!FT->getParamType(2)->isIntegerTy() ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TD, TLI,
Name.substr(2, 7));
return Ret;
}
return 0;
}
};
//===----------------------------------------------------------------------===//
// String and Memory Library Call Optimizations
//===----------------------------------------------------------------------===//
struct StrCatOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
--Len; // Unbias length.
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
return emitStrLenMemCpy(Src, Dst, Len, B);
}
Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
IRBuilder<> &B) {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
if (!DstLen)
return 0;
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(CpyDst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
return Dst;
}
};
struct StrNCatOpt : public StrCatOpt {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
uint64_t Len;
// We don't do anything if length is not constant
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Len = LengthArg->getZExtValue();
else
return 0;
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen; // Unbias length.
// Handle the simple, do-nothing cases:
// strncat(x, "", c) -> x
// strncat(x, c, 0) -> x
if (SrcLen == 0 || Len == 0) return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
// We don't optimize this case
if (Len < SrcLen) return 0;
// strncat(x, s, c) -> strcat(x, s)
// s is constant so the strcat can be optimized further
return emitStrLenMemCpy(Src, Dst, SrcLen, B);
}
};
struct StrChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (CharC == 0) {
// These optimizations require DataLayout.
if (!TD) return 0;
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
ConstantInt::get(TD->getIntPtrType(*Context), Len),
B, TD, TLI);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str))
return 0;
// Compute the offset, make sure to handle the case when we're searching for
// zero (a weird way to spell strlen).
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.find(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. strchr returns null.
return Constant::getNullValue(CI->getType());
// strchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
}
};
struct StrRChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strrchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
// Cannot fold anything if we're not looking for a constant.
if (!CharC)
return 0;
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
if (TD && CharC->isZero())
return EmitStrChr(SrcStr, '\0', B, TD, TLI);
return 0;
}
// Compute the offset.
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.rfind(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. Return null.
return Constant::getNullValue(CI->getType());
// strrchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
}
};
struct StrCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ConstantInt::get(CI->getType(), 0);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(), Str1.compare(Str2));
if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
// These optimizations require DataLayout.
if (!TD) return 0;
return EmitMemCmp(Str1P, Str2P,
ConstantInt::get(TD->getIntPtrType(*Context),
std::min(Len1, Len2)), B, TD, TLI);
}
return 0;
}
};
struct StrNCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
return ConstantInt::get(CI->getType(), 0);
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Length = LengthArg->getZExtValue();
else
return 0;
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strncmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2) {
StringRef SubStr1 = Str1.substr(0, Length);
StringRef SubStr2 = Str2.substr(0, Length);
return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
}
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
return 0;
}
};
struct StrCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
// These optimizations require DataLayout.
if (!TD) return 0;
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
return Dst;
}
};
} // End anonymous namespace.
namespace llvm {
class LibCallSimplifierImpl {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
StringMap<LibCallOptimization*> Optimizations;
// Fortified library call optimizations.
MemCpyChkOpt MemCpyChk;
MemMoveChkOpt MemMoveChk;
MemSetChkOpt MemSetChk;
StrCpyChkOpt StrCpyChk;
StrNCpyChkOpt StrNCpyChk;
// String and memory library call optimizations.
StrCatOpt StrCat;
StrNCatOpt StrNCat;
StrChrOpt StrChr;
StrRChrOpt StrRChr;
StrCmpOpt StrCmp;
StrNCmpOpt StrNCmp;
StrCpyOpt StrCpy;
void initOptimizations();
public:
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI) {
this->TD = TD;
this->TLI = TLI;
}
Value *optimizeCall(CallInst *CI);
};
void LibCallSimplifierImpl::initOptimizations() {
// Fortified library call optimizations.
Optimizations["__memcpy_chk"] = &MemCpyChk;
Optimizations["__memmove_chk"] = &MemMoveChk;
Optimizations["__memset_chk"] = &MemSetChk;
Optimizations["__strcpy_chk"] = &StrCpyChk;
Optimizations["__stpcpy_chk"] = &StrCpyChk;
Optimizations["__strncpy_chk"] = &StrNCpyChk;
Optimizations["__stpncpy_chk"] = &StrNCpyChk;
Optimizations["strcmp"] = &StrCmp;
Optimizations["strncmp"] = &StrNCmp;
// String and memory library call optimizations.
Optimizations["strcat"] = &StrCat;
Optimizations["strncat"] = &StrNCat;
Optimizations["strchr"] = &StrChr;
Optimizations["strrchr"] = &StrRChr;
Optimizations["strcpy"] = &StrCpy;
}
Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
if (Optimizations.empty())
initOptimizations();
Function *Callee = CI->getCalledFunction();
LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
if (LCO) {
IRBuilder<> Builder(CI);
return LCO->optimizeCall(CI, TD, TLI, Builder);
}
return 0;
}
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
const TargetLibraryInfo *TLI) {
Impl = new LibCallSimplifierImpl(TD, TLI);
}
LibCallSimplifier::~LibCallSimplifier() {
delete Impl;
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
return Impl->optimizeCall(CI);
}
}