llvm/lib/Analysis/LazyValueInfo.cpp
Chris Lattner b52675b643 Add a new getPredicateOnEdge method which returns more rich information for
constant constraints.  Improve the LVI lattice to include inequality 
constraints.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86950 91177308-0d34-0410-b5e6-96231b3b80d8
2009-11-12 04:36:58 +00:00

382 lines
12 KiB
C++

//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
using namespace llvm;
char LazyValueInfo::ID = 0;
static RegisterPass<LazyValueInfo>
X("lazy-value-info", "Lazy Value Information Analysis", false, true);
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}
//===----------------------------------------------------------------------===//
// LVILatticeVal
//===----------------------------------------------------------------------===//
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
/// value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
enum LatticeValueTy {
/// undefined - This LLVM Value has no known value yet.
undefined,
/// constant - This LLVM Value has a specific constant value.
constant,
/// notconstant - This LLVM value is known to not have the specified value.
notconstant,
/// overdefined - This instruction is not known to be constant, and we know
/// it has a value.
overdefined
};
/// Val: This stores the current lattice value along with the Constant* for
/// the constant if this is a 'constant' or 'notconstant' value.
PointerIntPair<Constant *, 2, LatticeValueTy> Val;
public:
LVILatticeVal() : Val(0, undefined) {}
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
Res.markConstant(C);
return Res;
}
static LVILatticeVal getNot(Constant *C) {
LVILatticeVal Res;
Res.markNotConstant(C);
return Res;
}
bool isUndefined() const { return Val.getInt() == undefined; }
bool isConstant() const { return Val.getInt() == constant; }
bool isNotConstant() const { return Val.getInt() == notconstant; }
bool isOverdefined() const { return Val.getInt() == overdefined; }
Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return Val.getPointer();
}
Constant *getNotConstant() const {
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
return Val.getPointer();
}
/// markOverdefined - Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
Val.setInt(overdefined);
return true;
}
/// markConstant - Return true if this is a change in status.
bool markConstant(Constant *V) {
if (isConstant()) {
assert(getConstant() == V && "Marking constant with different value");
return false;
}
assert(isUndefined());
Val.setInt(constant);
assert(V && "Marking constant with NULL");
Val.setPointer(V);
return true;
}
/// markNotConstant - Return true if this is a change in status.
bool markNotConstant(Constant *V) {
if (isNotConstant()) {
assert(getNotConstant() == V && "Marking !constant with different value");
return false;
}
if (isConstant())
assert(getConstant() != V && "Marking not constant with different value");
else
assert(isUndefined());
Val.setInt(notconstant);
assert(V && "Marking constant with NULL");
Val.setPointer(V);
return true;
}
/// mergeIn - Merge the specified lattice value into this one, updating this
/// one and returning true if anything changed.
bool mergeIn(const LVILatticeVal &RHS) {
if (RHS.isUndefined() || isOverdefined()) return false;
if (RHS.isOverdefined()) return markOverdefined();
if (RHS.isNotConstant()) {
if (isNotConstant()) {
if (getNotConstant() != RHS.getNotConstant())
return markOverdefined();
return false;
}
if (isConstant() && getConstant() != RHS.getNotConstant())
return markOverdefined();
return markNotConstant(RHS.getNotConstant());
}
// RHS must be a constant, we must be undef or constant.
if (isConstant() && getConstant() != RHS.getConstant())
return markOverdefined();
return markConstant(RHS.getConstant());
}
};
} // end anonymous namespace.
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
if (Val.isUndefined())
return OS << "undefined";
if (Val.isOverdefined())
return OS << "overdefined";
if (Val.isNotConstant())
return OS << "notconstant<" << *Val.getNotConstant() << '>';
return OS << "constant<" << *Val.getConstant() << '>';
}
}
//===----------------------------------------------------------------------===//
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
bool LazyValueInfo::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<TargetData>();
// Fully lazy.
return false;
}
void LazyValueInfo::releaseMemory() {
// No caching yet.
}
static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB,
DenseMap<BasicBlock*, LVILatticeVal> &);
static LVILatticeVal GetValueOnEdge(Value *V, BasicBlock *BBFrom,
BasicBlock *BBTo,
DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) {
// FIXME: Pull edge logic out of jump threading.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
// we maybe able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
"BBTo isn't a successor of BBFrom");
// If V is the condition of the branch itself, then we know exactly what
// it is.
if (BI->getCondition() == V)
return LVILatticeVal::get(ConstantInt::get(
Type::getInt1Ty(V->getContext()), isTrueDest));
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
if (ICI->isEquality() && ICI->getOperand(0) == V &&
isa<Constant>(ICI->getOperand(1))) {
// We know that V has the RHS constant if this is a true SETEQ or
// false SETNE.
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
}
}
}
// TODO: Info from switch.
// Otherwise see if the value is known in the block.
return GetValueInBlock(V, BBFrom, BlockVals);
}
static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB,
DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) {
// See if we already have a value for this block.
LVILatticeVal &BBLV = BlockVals[BB];
// If we've already computed this block's value, return it.
if (!BBLV.isUndefined())
return BBLV;
// Otherwise, this is the first time we're seeing this block. Reset the
// lattice value to overdefined, so that cycles will terminate and be
// conservatively correct.
BBLV.markOverdefined();
LVILatticeVal Result; // Start Undefined.
// If V is live in to BB, see if our predecessors know anything about it.
Instruction *BBI = dyn_cast<Instruction>(V);
if (BBI == 0 || BBI->getParent() != BB) {
unsigned NumPreds = 0;
// Loop over all of our predecessors, merging what we know from them into
// result.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Result.mergeIn(GetValueOnEdge(V, *PI, BB, BlockVals));
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined())
return Result;
++NumPreds;
}
// If this is the entry block, we must be asking about an argument. The
// value is overdefined.
if (NumPreds == 0 && BB == &BB->getParent()->front()) {
assert(isa<Argument>(V) && "Unknown live-in to the entry block");
Result.markOverdefined();
return Result;
}
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
return BlockVals[BB] = Result;
}
// If this value is defined by an instruction in this block, we have to
// process it here somehow or return overdefined.
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
(void)PN;
// TODO: PHI Translation in preds.
} else {
}
Result.markOverdefined();
return BlockVals[BB] = Result;
}
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
// If already a constant, return it.
if (Constant *VC = dyn_cast<Constant>(V))
return VC;
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
DEBUG(errs() << "Getting value " << *V << " at end of block '"
<< BB->getName() << "'\n");
LVILatticeVal Result = GetValueInBlock(V, BB, BlockValues);
DEBUG(errs() << " Result = " << Result << "\n");
if (Result.isConstant())
return Result.getConstant();
return 0;
}
/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB) {
// If already a constant, return it.
if (Constant *VC = dyn_cast<Constant>(V))
return VC;
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
DEBUG(errs() << "Getting value " << *V << " on edge from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
LVILatticeVal Result = GetValueOnEdge(V, FromBB, ToBB, BlockValues);
DEBUG(errs() << " Result = " << Result << "\n");
if (Result.isConstant())
return Result.getConstant();
return 0;
}
/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB) {
LVILatticeVal Result;
// If already a constant, we can use constant folding.
if (Constant *VC = dyn_cast<Constant>(V)) {
Result = LVILatticeVal::get(VC);
} else {
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
DEBUG(errs() << "Getting value " << *V << " on edge from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
Result = GetValueOnEdge(V, FromBB, ToBB, BlockValues);
DEBUG(errs() << " Result = " << Result << "\n");
}
// If we know the value is a constant, evaluate the conditional.
Constant *Res = 0;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
return ResCI->isZero() ? False : True;
} else if (Result.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, TD);
if (Res->isNullValue())
return False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ,
Result.getNotConstant(), C, TD);
if (Res->isNullValue())
return True;
}
}
return Unknown;
}