mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-17 07:22:54 +00:00
1a21909e98
This patch adds support for the z13 processor type and its vector facility, and adds MC support for all new instructions provided by that facilily. Apart from defining the new instructions, the main changes are: - Adding VR128, VR64 and VR32 register classes. - Making FP64 a subclass of VR64 and FP32 a subclass of VR32. - Adding a D(V,B) addressing mode for scatter/gather operations - Adding 1-, 2-, and 3-bit immediate operands for some 4-bit fields. Until now all immediate operands have been the same width as the underlying field (hence the assert->return change in decode[SU]ImmOperand). In addition, sys::getHostCPUName is extended to detect running natively on a z13 machine. Based on a patch by Richard Sandiford. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236520 91177308-0d34-0410-b5e6-96231b3b80d8
908 lines
30 KiB
C++
908 lines
30 KiB
C++
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the operating system Host concept.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Config/config.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <string.h>
|
|
|
|
// Include the platform-specific parts of this class.
|
|
#ifdef LLVM_ON_UNIX
|
|
#include "Unix/Host.inc"
|
|
#endif
|
|
#ifdef LLVM_ON_WIN32
|
|
#include "Windows/Host.inc"
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#endif
|
|
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_host.h>
|
|
#include <mach/host_info.h>
|
|
#include <mach/machine.h>
|
|
#endif
|
|
|
|
#define DEBUG_TYPE "host-detection"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementations of the CPU detection routines
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using namespace llvm;
|
|
|
|
#if defined(__linux__)
|
|
static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
|
|
// Note: We cannot mmap /proc/cpuinfo here and then process the resulting
|
|
// memory buffer because the 'file' has 0 size (it can be read from only
|
|
// as a stream).
|
|
|
|
int FD;
|
|
std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
|
|
if (EC) {
|
|
DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
|
|
return -1;
|
|
}
|
|
int Ret = read(FD, Buf, Size);
|
|
int CloseStatus = close(FD);
|
|
if (CloseStatus)
|
|
return -1;
|
|
return Ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|
|
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
|
|
/// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
|
|
/// specified arguments. If we can't run cpuid on the host, return true.
|
|
static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
|
|
unsigned *rECX, unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
|
|
asm ("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a" (*rEAX),
|
|
"=S" (*rEBX),
|
|
"=c" (*rECX),
|
|
"=d" (*rEDX)
|
|
: "a" (value));
|
|
return false;
|
|
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
|
|
asm ("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a" (*rEAX),
|
|
"=S" (*rEBX),
|
|
"=c" (*rECX),
|
|
"=d" (*rEDX)
|
|
: "a" (value));
|
|
return false;
|
|
// pedantic #else returns to appease -Wunreachable-code (so we don't generate
|
|
// postprocessed code that looks like "return true; return false;")
|
|
#else
|
|
return true;
|
|
#endif
|
|
#elif defined(_MSC_VER)
|
|
// The MSVC intrinsic is portable across x86 and x64.
|
|
int registers[4];
|
|
__cpuid(registers, value);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
|
|
/// 4 values in the specified arguments. If we can't run cpuid on the host,
|
|
/// return true.
|
|
static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
|
|
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
|
|
unsigned *rEDX) {
|
|
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
#if defined(__GNUC__)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
|
|
asm ("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a" (*rEAX),
|
|
"=S" (*rEBX),
|
|
"=c" (*rECX),
|
|
"=d" (*rEDX)
|
|
: "a" (value),
|
|
"c" (subleaf));
|
|
return false;
|
|
#elif defined(_MSC_VER)
|
|
int registers[4];
|
|
__cpuidex(registers, value, subleaf);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
|
|
#if defined(__GNUC__)
|
|
asm ("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a" (*rEAX),
|
|
"=S" (*rEBX),
|
|
"=c" (*rECX),
|
|
"=d" (*rEDX)
|
|
: "a" (value),
|
|
"c" (subleaf));
|
|
return false;
|
|
#elif defined(_MSC_VER)
|
|
__asm {
|
|
mov eax,value
|
|
mov ecx,subleaf
|
|
cpuid
|
|
mov esi,rEAX
|
|
mov dword ptr [esi],eax
|
|
mov esi,rEBX
|
|
mov dword ptr [esi],ebx
|
|
mov esi,rECX
|
|
mov dword ptr [esi],ecx
|
|
mov esi,rEDX
|
|
mov dword ptr [esi],edx
|
|
}
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static bool GetX86XCR0(unsigned *rEAX, unsigned *rEDX) {
|
|
#if defined(__GNUC__)
|
|
// Check xgetbv; this uses a .byte sequence instead of the instruction
|
|
// directly because older assemblers do not include support for xgetbv and
|
|
// there is no easy way to conditionally compile based on the assembler used.
|
|
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (*rEAX), "=d" (*rEDX) : "c" (0));
|
|
return false;
|
|
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
|
|
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
|
|
*rEAX = Result;
|
|
*rEDX = Result >> 32;
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
|
|
unsigned &Model) {
|
|
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
|
|
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
|
|
if (Family == 6 || Family == 0xf) {
|
|
if (Family == 0xf)
|
|
// Examine extended family ID if family ID is F.
|
|
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
|
|
// Examine extended model ID if family ID is 6 or F.
|
|
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
|
|
}
|
|
}
|
|
|
|
StringRef sys::getHostCPUName() {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
|
|
return "generic";
|
|
unsigned Family = 0;
|
|
unsigned Model = 0;
|
|
DetectX86FamilyModel(EAX, Family, Model);
|
|
|
|
union {
|
|
unsigned u[3];
|
|
char c[12];
|
|
} text;
|
|
|
|
unsigned MaxLeaf;
|
|
GetX86CpuIDAndInfo(0, &MaxLeaf, text.u+0, text.u+2, text.u+1);
|
|
|
|
bool HasMMX = (EDX >> 23) & 1;
|
|
bool HasSSE = (EDX >> 25) & 1;
|
|
bool HasSSE2 = (EDX >> 26) & 1;
|
|
bool HasSSE3 = (ECX >> 0) & 1;
|
|
bool HasSSSE3 = (ECX >> 9) & 1;
|
|
bool HasSSE41 = (ECX >> 19) & 1;
|
|
bool HasSSE42 = (ECX >> 20) & 1;
|
|
bool HasMOVBE = (ECX >> 22) & 1;
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
const unsigned AVXBits = (1 << 27) | (1 << 28);
|
|
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !GetX86XCR0(&EAX, &EDX) &&
|
|
((EAX & 0x6) == 0x6);
|
|
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
|
|
bool HasLeaf7 = MaxLeaf >= 0x7 &&
|
|
!GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
|
|
bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
|
|
bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
|
|
|
|
GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
bool Em64T = (EDX >> 29) & 0x1;
|
|
bool HasTBM = (ECX >> 21) & 0x1;
|
|
|
|
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
|
|
switch (Family) {
|
|
case 3:
|
|
return "i386";
|
|
case 4:
|
|
switch (Model) {
|
|
case 0: // Intel486 DX processors
|
|
case 1: // Intel486 DX processors
|
|
case 2: // Intel486 SX processors
|
|
case 3: // Intel487 processors, IntelDX2 OverDrive processors,
|
|
// IntelDX2 processors
|
|
case 4: // Intel486 SL processor
|
|
case 5: // IntelSX2 processors
|
|
case 7: // Write-Back Enhanced IntelDX2 processors
|
|
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
|
|
default: return "i486";
|
|
}
|
|
case 5:
|
|
switch (Model) {
|
|
case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
|
|
// Pentium processors (60, 66)
|
|
case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
|
|
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
|
|
// 150, 166, 200)
|
|
case 3: // Pentium OverDrive processors for Intel486 processor-based
|
|
// systems
|
|
return "pentium";
|
|
|
|
case 4: // Pentium OverDrive processor with MMX technology for Pentium
|
|
// processor (75, 90, 100, 120, 133), Pentium processor with
|
|
// MMX technology (166, 200)
|
|
return "pentium-mmx";
|
|
|
|
default: return "pentium";
|
|
}
|
|
case 6:
|
|
switch (Model) {
|
|
case 1: // Pentium Pro processor
|
|
return "pentiumpro";
|
|
|
|
case 3: // Intel Pentium II OverDrive processor, Pentium II processor,
|
|
// model 03
|
|
case 5: // Pentium II processor, model 05, Pentium II Xeon processor,
|
|
// model 05, and Intel Celeron processor, model 05
|
|
case 6: // Celeron processor, model 06
|
|
return "pentium2";
|
|
|
|
case 7: // Pentium III processor, model 07, and Pentium III Xeon
|
|
// processor, model 07
|
|
case 8: // Pentium III processor, model 08, Pentium III Xeon processor,
|
|
// model 08, and Celeron processor, model 08
|
|
case 10: // Pentium III Xeon processor, model 0Ah
|
|
case 11: // Pentium III processor, model 0Bh
|
|
return "pentium3";
|
|
|
|
case 9: // Intel Pentium M processor, Intel Celeron M processor model 09.
|
|
case 13: // Intel Pentium M processor, Intel Celeron M processor, model
|
|
// 0Dh. All processors are manufactured using the 90 nm process.
|
|
case 21: // Intel EP80579 Integrated Processor and Intel EP80579
|
|
// Integrated Processor with Intel QuickAssist Technology
|
|
return "pentium-m";
|
|
|
|
case 14: // Intel Core Duo processor, Intel Core Solo processor, model
|
|
// 0Eh. All processors are manufactured using the 65 nm process.
|
|
return "yonah";
|
|
|
|
case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
|
|
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
|
|
// mobile processor, Intel Core 2 Extreme processor, Intel
|
|
// Pentium Dual-Core processor, Intel Xeon processor, model
|
|
// 0Fh. All processors are manufactured using the 65 nm process.
|
|
case 22: // Intel Celeron processor model 16h. All processors are
|
|
// manufactured using the 65 nm process
|
|
return "core2";
|
|
|
|
case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
|
|
// 17h. All processors are manufactured using the 45 nm process.
|
|
//
|
|
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
|
|
case 29: // Intel Xeon processor MP. All processors are manufactured using
|
|
// the 45 nm process.
|
|
return "penryn";
|
|
|
|
case 26: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 45 nm process.
|
|
case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
|
|
// As found in a Summer 2010 model iMac.
|
|
case 46: // Nehalem EX
|
|
return "nehalem";
|
|
case 37: // Intel Core i7, laptop version.
|
|
case 44: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 32 nm process.
|
|
case 47: // Westmere EX
|
|
return "westmere";
|
|
|
|
// SandyBridge:
|
|
case 42: // Intel Core i7 processor. All processors are manufactured
|
|
// using the 32 nm process.
|
|
case 45:
|
|
return "sandybridge";
|
|
|
|
// Ivy Bridge:
|
|
case 58:
|
|
case 62: // Ivy Bridge EP
|
|
return "ivybridge";
|
|
|
|
// Haswell:
|
|
case 60:
|
|
case 63:
|
|
case 69:
|
|
case 70:
|
|
return "haswell";
|
|
|
|
// Broadwell:
|
|
case 61:
|
|
return "broadwell";
|
|
|
|
case 28: // Most 45 nm Intel Atom processors
|
|
case 38: // 45 nm Atom Lincroft
|
|
case 39: // 32 nm Atom Medfield
|
|
case 53: // 32 nm Atom Midview
|
|
case 54: // 32 nm Atom Midview
|
|
return "bonnell";
|
|
|
|
// Atom Silvermont codes from the Intel software optimization guide.
|
|
case 55:
|
|
case 74:
|
|
case 77:
|
|
return "silvermont";
|
|
|
|
default: // Unknown family 6 CPU, try to guess.
|
|
if (HasAVX512)
|
|
return "knl";
|
|
if (HasADX)
|
|
return "broadwell";
|
|
if (HasAVX2)
|
|
return "haswell";
|
|
if (HasAVX)
|
|
return "sandybridge";
|
|
if (HasSSE42)
|
|
return HasMOVBE ? "silvermont" : "nehalem";
|
|
if (HasSSE41)
|
|
return "penryn";
|
|
if (HasSSSE3)
|
|
return HasMOVBE ? "bonnell" : "core2";
|
|
if (Em64T)
|
|
return "x86-64";
|
|
if (HasSSE2)
|
|
return "pentium-m";
|
|
if (HasSSE)
|
|
return "pentium3";
|
|
if (HasMMX)
|
|
return "pentium2";
|
|
return "pentiumpro";
|
|
}
|
|
case 15: {
|
|
switch (Model) {
|
|
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
|
|
// model 00h and manufactured using the 0.18 micron process.
|
|
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
|
|
// processor MP, and Intel Celeron processor. All processors are
|
|
// model 01h and manufactured using the 0.18 micron process.
|
|
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
|
|
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
|
|
// processor, and Mobile Intel Celeron processor. All processors
|
|
// are model 02h and manufactured using the 0.13 micron process.
|
|
return (Em64T) ? "x86-64" : "pentium4";
|
|
|
|
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
|
|
// processor. All processors are model 03h and manufactured using
|
|
// the 90 nm process.
|
|
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
|
|
// Pentium D processor, Intel Xeon processor, Intel Xeon
|
|
// processor MP, Intel Celeron D processor. All processors are
|
|
// model 04h and manufactured using the 90 nm process.
|
|
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
|
|
// Extreme Edition, Intel Xeon processor, Intel Xeon processor
|
|
// MP, Intel Celeron D processor. All processors are model 06h
|
|
// and manufactured using the 65 nm process.
|
|
return (Em64T) ? "nocona" : "prescott";
|
|
|
|
default:
|
|
return (Em64T) ? "x86-64" : "pentium4";
|
|
}
|
|
}
|
|
|
|
default:
|
|
return "generic";
|
|
}
|
|
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
|
|
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
|
|
// appears to be no way to generate the wide variety of AMD-specific targets
|
|
// from the information returned from CPUID.
|
|
switch (Family) {
|
|
case 4:
|
|
return "i486";
|
|
case 5:
|
|
switch (Model) {
|
|
case 6:
|
|
case 7: return "k6";
|
|
case 8: return "k6-2";
|
|
case 9:
|
|
case 13: return "k6-3";
|
|
case 10: return "geode";
|
|
default: return "pentium";
|
|
}
|
|
case 6:
|
|
switch (Model) {
|
|
case 4: return "athlon-tbird";
|
|
case 6:
|
|
case 7:
|
|
case 8: return "athlon-mp";
|
|
case 10: return "athlon-xp";
|
|
default: return "athlon";
|
|
}
|
|
case 15:
|
|
if (HasSSE3)
|
|
return "k8-sse3";
|
|
switch (Model) {
|
|
case 1: return "opteron";
|
|
case 5: return "athlon-fx"; // also opteron
|
|
default: return "athlon64";
|
|
}
|
|
case 16:
|
|
return "amdfam10";
|
|
case 20:
|
|
return "btver1";
|
|
case 21:
|
|
if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
|
|
return "btver1";
|
|
if (Model >= 0x50)
|
|
return "bdver4"; // 50h-6Fh: Excavator
|
|
if (Model >= 0x30)
|
|
return "bdver3"; // 30h-3Fh: Steamroller
|
|
if (Model >= 0x10 || HasTBM)
|
|
return "bdver2"; // 10h-1Fh: Piledriver
|
|
return "bdver1"; // 00h-0Fh: Bulldozer
|
|
case 22:
|
|
if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
|
|
return "btver1";
|
|
return "btver2";
|
|
default:
|
|
return "generic";
|
|
}
|
|
}
|
|
return "generic";
|
|
}
|
|
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
host_basic_info_data_t hostInfo;
|
|
mach_msg_type_number_t infoCount;
|
|
|
|
infoCount = HOST_BASIC_INFO_COUNT;
|
|
host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
|
|
&infoCount);
|
|
|
|
if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
|
|
|
|
switch(hostInfo.cpu_subtype) {
|
|
case CPU_SUBTYPE_POWERPC_601: return "601";
|
|
case CPU_SUBTYPE_POWERPC_602: return "602";
|
|
case CPU_SUBTYPE_POWERPC_603: return "603";
|
|
case CPU_SUBTYPE_POWERPC_603e: return "603e";
|
|
case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
|
|
case CPU_SUBTYPE_POWERPC_604: return "604";
|
|
case CPU_SUBTYPE_POWERPC_604e: return "604e";
|
|
case CPU_SUBTYPE_POWERPC_620: return "620";
|
|
case CPU_SUBTYPE_POWERPC_750: return "750";
|
|
case CPU_SUBTYPE_POWERPC_7400: return "7400";
|
|
case CPU_SUBTYPE_POWERPC_7450: return "7450";
|
|
case CPU_SUBTYPE_POWERPC_970: return "970";
|
|
default: ;
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
|
|
// and so we must use an operating-system interface to determine the current
|
|
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
|
|
const char *generic = "generic";
|
|
|
|
// The cpu line is second (after the 'processor: 0' line), so if this
|
|
// buffer is too small then something has changed (or is wrong).
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return generic;
|
|
|
|
const char *CPUInfoStart = buffer;
|
|
const char *CPUInfoEnd = buffer + CPUInfoSize;
|
|
|
|
const char *CIP = CPUInfoStart;
|
|
|
|
const char *CPUStart = 0;
|
|
size_t CPULen = 0;
|
|
|
|
// We need to find the first line which starts with cpu, spaces, and a colon.
|
|
// After the colon, there may be some additional spaces and then the cpu type.
|
|
while (CIP < CPUInfoEnd && CPUStart == 0) {
|
|
if (CIP < CPUInfoEnd && *CIP == '\n')
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == 'c') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'p') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'u') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == ':') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd) {
|
|
CPUStart = CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
|
|
*CIP != ',' && *CIP != '\n'))
|
|
++CIP;
|
|
CPULen = CIP - CPUStart;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
while (CIP < CPUInfoEnd && *CIP != '\n')
|
|
++CIP;
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
return generic;
|
|
|
|
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
|
|
.Case("604e", "604e")
|
|
.Case("604", "604")
|
|
.Case("7400", "7400")
|
|
.Case("7410", "7400")
|
|
.Case("7447", "7400")
|
|
.Case("7455", "7450")
|
|
.Case("G4", "g4")
|
|
.Case("POWER4", "970")
|
|
.Case("PPC970FX", "970")
|
|
.Case("PPC970MP", "970")
|
|
.Case("G5", "g5")
|
|
.Case("POWER5", "g5")
|
|
.Case("A2", "a2")
|
|
.Case("POWER6", "pwr6")
|
|
.Case("POWER7", "pwr7")
|
|
.Case("POWER8", "pwr8")
|
|
.Case("POWER8E", "pwr8")
|
|
.Default(generic);
|
|
}
|
|
#elif defined(__linux__) && defined(__arm__)
|
|
StringRef sys::getHostCPUName() {
|
|
// The cpuid register on arm is not accessible from user space. On Linux,
|
|
// it is exposed through the /proc/cpuinfo file.
|
|
|
|
// Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
|
|
// in all cases.
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return "generic";
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
// Look for the CPU implementer line.
|
|
StringRef Implementer;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU implementer"))
|
|
Implementer = Lines[I].substr(15).ltrim("\t :");
|
|
|
|
if (Implementer == "0x41") // ARM Ltd.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x926", "arm926ej-s")
|
|
.Case("0xb02", "mpcore")
|
|
.Case("0xb36", "arm1136j-s")
|
|
.Case("0xb56", "arm1156t2-s")
|
|
.Case("0xb76", "arm1176jz-s")
|
|
.Case("0xc08", "cortex-a8")
|
|
.Case("0xc09", "cortex-a9")
|
|
.Case("0xc0f", "cortex-a15")
|
|
.Case("0xc20", "cortex-m0")
|
|
.Case("0xc23", "cortex-m3")
|
|
.Case("0xc24", "cortex-m4")
|
|
.Default("generic");
|
|
|
|
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x06f", "krait") // APQ8064
|
|
.Default("generic");
|
|
|
|
return "generic";
|
|
}
|
|
#elif defined(__linux__) && defined(__s390x__)
|
|
StringRef sys::getHostCPUName() {
|
|
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
|
|
|
|
// The "processor 0:" line comes after a fair amount of other information,
|
|
// including a cache breakdown, but this should be plenty.
|
|
char buffer[2048];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return "generic";
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
// Look for the CPU features.
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("features")) {
|
|
size_t Pos = Lines[I].find(":");
|
|
if (Pos != StringRef::npos) {
|
|
Lines[I].drop_front(Pos + 1).split(CPUFeatures, " ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We need to check for the presence of vector support independently of
|
|
// the machine type, since we may only use the vector register set when
|
|
// supported by the kernel (and hypervisor).
|
|
bool HaveVectorSupport = false;
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
if (CPUFeatures[I] == "vx")
|
|
HaveVectorSupport = true;
|
|
}
|
|
|
|
// Now check the processor machine type.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("processor ")) {
|
|
size_t Pos = Lines[I].find("machine = ");
|
|
if (Pos != StringRef::npos) {
|
|
Pos += sizeof("machine = ") - 1;
|
|
unsigned int Id;
|
|
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
|
|
if (Id >= 2964 && HaveVectorSupport)
|
|
return "z13";
|
|
if (Id >= 2827)
|
|
return "zEC12";
|
|
if (Id >= 2817)
|
|
return "z196";
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#else
|
|
StringRef sys::getHostCPUName() {
|
|
return "generic";
|
|
}
|
|
#endif
|
|
|
|
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|
|
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLevel;
|
|
union {
|
|
unsigned u[3];
|
|
char c[12];
|
|
} text;
|
|
|
|
if (GetX86CpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
|
|
MaxLevel < 1)
|
|
return false;
|
|
|
|
GetX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
Features["cmov"] = (EDX >> 15) & 1;
|
|
Features["mmx"] = (EDX >> 23) & 1;
|
|
Features["sse"] = (EDX >> 25) & 1;
|
|
Features["sse2"] = (EDX >> 26) & 1;
|
|
Features["sse3"] = (ECX >> 0) & 1;
|
|
Features["ssse3"] = (ECX >> 9) & 1;
|
|
Features["sse4.1"] = (ECX >> 19) & 1;
|
|
Features["sse4.2"] = (ECX >> 20) & 1;
|
|
|
|
Features["pclmul"] = (ECX >> 1) & 1;
|
|
Features["cx16"] = (ECX >> 13) & 1;
|
|
Features["movbe"] = (ECX >> 22) & 1;
|
|
Features["popcnt"] = (ECX >> 23) & 1;
|
|
Features["aes"] = (ECX >> 25) & 1;
|
|
Features["rdrnd"] = (ECX >> 30) & 1;
|
|
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
bool HasAVX = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
|
|
!GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
|
|
Features["avx"] = HasAVX;
|
|
Features["fma"] = HasAVX && (ECX >> 12) & 1;
|
|
Features["f16c"] = HasAVX && (ECX >> 29) & 1;
|
|
|
|
// AVX512 requires additional context to be saved by the OS.
|
|
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
|
|
|
|
unsigned MaxExtLevel;
|
|
GetX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
|
|
!GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
|
|
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
|
|
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
|
|
Features["xop"] = HasAVX && HasExtLeaf1 && ((ECX >> 11) & 1);
|
|
Features["fma4"] = HasAVX && HasExtLeaf1 && ((ECX >> 16) & 1);
|
|
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
|
|
|
|
bool HasLeaf7 = MaxLevel >= 7 &&
|
|
!GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
// AVX2 is only supported if we have the OS save support from AVX.
|
|
Features["avx2"] = HasAVX && HasLeaf7 && (EBX >> 5) & 1;
|
|
|
|
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
|
|
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
|
|
Features["hle"] = HasLeaf7 && ((EBX >> 4) & 1);
|
|
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
|
|
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
|
|
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
|
|
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
|
|
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
|
|
|
|
// AVX512 is only supported if the OS supports the context save for it.
|
|
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
|
|
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
|
|
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
|
|
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
|
|
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
|
|
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
|
|
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
|
|
|
|
return true;
|
|
}
|
|
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
// Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
|
|
// in all cases.
|
|
char buffer[1024];
|
|
ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
|
|
if (CPUInfoSize == -1)
|
|
return false;
|
|
|
|
StringRef Str(buffer, CPUInfoSize);
|
|
|
|
SmallVector<StringRef, 32> Lines;
|
|
Str.split(Lines, "\n");
|
|
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
|
|
// Look for the CPU features.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("Features")) {
|
|
Lines[I].split(CPUFeatures, " ");
|
|
break;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// Keep track of which crypto features we have seen
|
|
enum {
|
|
CAP_AES = 0x1,
|
|
CAP_PMULL = 0x2,
|
|
CAP_SHA1 = 0x4,
|
|
CAP_SHA2 = 0x8
|
|
};
|
|
uint32_t crypto = 0;
|
|
#endif
|
|
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
|
|
#if defined(__aarch64__)
|
|
.Case("asimd", "neon")
|
|
.Case("fp", "fp-armv8")
|
|
.Case("crc32", "crc")
|
|
#else
|
|
.Case("half", "fp16")
|
|
.Case("neon", "neon")
|
|
.Case("vfpv3", "vfp3")
|
|
.Case("vfpv3d16", "d16")
|
|
.Case("vfpv4", "vfp4")
|
|
.Case("idiva", "hwdiv-arm")
|
|
.Case("idivt", "hwdiv")
|
|
#endif
|
|
.Default("");
|
|
|
|
#if defined(__aarch64__)
|
|
// We need to check crypto separately since we need all of the crypto
|
|
// extensions to enable the subtarget feature
|
|
if (CPUFeatures[I] == "aes")
|
|
crypto |= CAP_AES;
|
|
else if (CPUFeatures[I] == "pmull")
|
|
crypto |= CAP_PMULL;
|
|
else if (CPUFeatures[I] == "sha1")
|
|
crypto |= CAP_SHA1;
|
|
else if (CPUFeatures[I] == "sha2")
|
|
crypto |= CAP_SHA2;
|
|
#endif
|
|
|
|
if (LLVMFeatureStr != "")
|
|
Features[LLVMFeatureStr] = true;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// If we have all crypto bits we can add the feature
|
|
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
|
|
Features["crypto"] = true;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features){
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
std::string sys::getProcessTriple() {
|
|
Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
|
|
|
|
if (sizeof(void *) == 8 && PT.isArch32Bit())
|
|
PT = PT.get64BitArchVariant();
|
|
if (sizeof(void *) == 4 && PT.isArch64Bit())
|
|
PT = PT.get32BitArchVariant();
|
|
|
|
return PT.str();
|
|
}
|