llvm/lib/CodeGen/VirtRegMap.cpp
2004-09-30 02:59:33 +00:00

380 lines
14 KiB
C++

//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
Statistic<> NumSpills("spiller", "Number of register spills");
Statistic<> NumStores("spiller", "Number of stores added");
Statistic<> NumLoads ("spiller", "Number of loads added");
enum SpillerName { simple, local };
cl::opt<SpillerName>
SpillerOpt("spiller",
cl::desc("Spiller to use: (default: simple)"),
cl::Prefix,
cl::values(clEnumVal(simple, " simple spiller"),
clEnumVal(local, " local spiller"),
clEnumValEnd),
cl::init(simple));
}
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
void VirtRegMap::grow() {
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
Virt2StackSlotMap[virtReg] = frameIndex;
++NumSpills;
return frameIndex;
}
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
Virt2StackSlotMap[virtReg] = frameIndex;
}
void VirtRegMap::virtFolded(unsigned virtReg,
MachineInstr* oldMI,
MachineInstr* newMI) {
// move previous memory references folded to new instruction
MI2VirtMapTy::iterator i, e;
std::vector<MI2VirtMapTy::mapped_type> regs;
for (tie(i, e) = MI2VirtMap.equal_range(oldMI); i != e; ) {
regs.push_back(i->second);
MI2VirtMap.erase(i++);
}
for (unsigned i = 0, e = regs.size(); i != e; ++i)
MI2VirtMap.insert(std::make_pair(newMI, i));
// add new memory reference
MI2VirtMap.insert(std::make_pair(newMI, virtReg));
}
void VirtRegMap::print(std::ostream &OS) const {
const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
OS << "********** REGISTER MAP **********\n";
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
}
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
OS << '\n';
}
void VirtRegMap::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//
Spiller::~Spiller() {}
namespace {
struct SimpleSpiller : public Spiller {
bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
};
}
bool SimpleSpiller::runOnMachineFunction(MachineFunction& MF,
const VirtRegMap& VRM) {
DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
DEBUG(std::cerr << "********** Function: "
<< MF.getFunction()->getName() << '\n');
const TargetMachine& TM = MF.getTarget();
const MRegisterInfo& MRI = *TM.getRegisterInfo();
// LoadedRegs - Keep track of which vregs are loaded, so that we only load
// each vreg once (in the case where a spilled vreg is used by multiple
// operands). This is always smaller than the number of operands to the
// current machine instr, so it should be small.
std::vector<unsigned> LoadedRegs;
for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::iterator MII = MBB.begin(),
E = MBB.end(); MII != E; ++MII) {
MachineInstr &MI = *MII;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MOP = MI.getOperand(i);
if (MOP.isRegister() && MOP.getReg() &&
MRegisterInfo::isVirtualRegister(MOP.getReg())){
unsigned VirtReg = MOP.getReg();
unsigned PhysReg = VRM.getPhys(VirtReg);
if (VRM.hasStackSlot(VirtReg)) {
int StackSlot = VRM.getStackSlot(VirtReg);
if (MOP.isUse() &&
std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
== LoadedRegs.end()) {
MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
LoadedRegs.push_back(VirtReg);
++NumLoads;
DEBUG(std::cerr << '\t'; prior(MII)->print(std::cerr, &TM));
}
if (MOP.isDef()) {
MRI.storeRegToStackSlot(MBB, next(MII), PhysReg,
VRM.getStackSlot(VirtReg));
++NumStores;
}
}
MI.SetMachineOperandReg(i, PhysReg);
}
}
DEBUG(std::cerr << '\t'; MI.print(std::cerr, &TM));
LoadedRegs.clear();
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Local Spiller Implementation
//===----------------------------------------------------------------------===//
namespace {
class LocalSpiller : public Spiller {
typedef std::vector<unsigned> Phys2VirtMap;
typedef std::vector<bool> PhysFlag;
typedef DenseMap<MachineInstr*, VirtReg2IndexFunctor> Virt2MI;
MachineFunction *MF;
const TargetMachine *TM;
const TargetInstrInfo *TII;
const MRegisterInfo *MRI;
const VirtRegMap *VRM;
Phys2VirtMap p2vMap_;
PhysFlag dirty_;
Virt2MI lastDef_;
public:
bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM);
private:
void vacateJustPhysReg(MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII,
unsigned PhysReg);
void vacatePhysReg(MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII,
unsigned PhysReg) {
vacateJustPhysReg(MBB, MII, PhysReg);
for (const unsigned* as = MRI->getAliasSet(PhysReg); *as; ++as)
vacateJustPhysReg(MBB, MII, *as);
}
void handleUse(MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII,
unsigned VirtReg,
unsigned PhysReg) {
// check if we are replacing a previous mapping
if (p2vMap_[PhysReg] != VirtReg) {
vacatePhysReg(MBB, MII, PhysReg);
p2vMap_[PhysReg] = VirtReg;
// load if necessary
if (VRM->hasStackSlot(VirtReg)) {
MRI->loadRegFromStackSlot(MBB, MII, PhysReg,
VRM->getStackSlot(VirtReg));
++NumLoads;
DEBUG(std::cerr << "added: ";
prior(MII)->print(std::cerr, TM));
lastDef_[VirtReg] = MII;
}
}
}
void handleDef(MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII,
unsigned VirtReg,
unsigned PhysReg) {
// check if we are replacing a previous mapping
if (p2vMap_[PhysReg] != VirtReg)
vacatePhysReg(MBB, MII, PhysReg);
p2vMap_[PhysReg] = VirtReg;
dirty_[PhysReg] = true;
lastDef_[VirtReg] = MII;
}
void eliminateVirtRegsInMBB(MachineBasicBlock& MBB);
};
}
bool LocalSpiller::runOnMachineFunction(MachineFunction &mf,
const VirtRegMap &vrm) {
MF = &mf;
TM = &MF->getTarget();
TII = TM->getInstrInfo();
MRI = TM->getRegisterInfo();
VRM = &vrm;
p2vMap_.assign(MRI->getNumRegs(), 0);
dirty_.assign(MRI->getNumRegs(), false);
DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
DEBUG(std::cerr << "********** Function: "
<< MF->getFunction()->getName() << '\n');
for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
MBB != E; ++MBB) {
lastDef_.grow(MF->getSSARegMap()->getLastVirtReg());
DEBUG(std::cerr << MBB->getBasicBlock()->getName() << ":\n");
eliminateVirtRegsInMBB(*MBB);
// clear map, dirty flag and last ref
p2vMap_.assign(p2vMap_.size(), 0);
dirty_.assign(dirty_.size(), false);
lastDef_.clear();
}
return true;
}
void LocalSpiller::vacateJustPhysReg(MachineBasicBlock& MBB,
MachineBasicBlock::iterator MII,
unsigned PhysReg) {
unsigned VirtReg = p2vMap_[PhysReg];
if (dirty_[PhysReg] && VRM->hasStackSlot(VirtReg)) {
assert(lastDef_[VirtReg] && "virtual register is mapped "
"to a register and but was not defined!");
MachineBasicBlock::iterator lastDef = lastDef_[VirtReg];
MachineBasicBlock::iterator nextLastRef = next(lastDef);
MRI->storeRegToStackSlot(*lastDef->getParent(),
nextLastRef,
PhysReg,
VRM->getStackSlot(VirtReg));
++NumStores;
DEBUG(std::cerr << "added: ";
prior(nextLastRef)->print(std::cerr, TM);
std::cerr << "after: ";
lastDef->print(std::cerr, TM));
lastDef_[VirtReg] = 0;
}
p2vMap_[PhysReg] = 0;
dirty_[PhysReg] = false;
}
void LocalSpiller::eliminateVirtRegsInMBB(MachineBasicBlock &MBB) {
for (MachineBasicBlock::iterator MI = MBB.begin(), E = MBB.end();
MI != E; ++MI) {
// if we have references to memory operands make sure
// we clear all physical registers that may contain
// the value of the spilled virtual register
VirtRegMap::MI2VirtMapTy::const_iterator i, e;
for (tie(i, e) = VRM->getFoldedVirts(MI); i != e; ++i) {
if (VRM->hasPhys(i->second))
vacateJustPhysReg(MBB, MI, VRM->getPhys(i->second));
}
// rewrite all used operands
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& op = MI->getOperand(i);
if (op.isRegister() && op.getReg() && op.isUse() &&
MRegisterInfo::isVirtualRegister(op.getReg())) {
unsigned VirtReg = op.getReg();
unsigned PhysReg = VRM->getPhys(VirtReg);
handleUse(MBB, MI, VirtReg, PhysReg);
MI->SetMachineOperandReg(i, PhysReg);
// mark as dirty if this is def&use
if (op.isDef()) {
dirty_[PhysReg] = true;
lastDef_[VirtReg] = MI;
}
}
}
// spill implicit physical register defs
const TargetInstrDescriptor& tid = TII->get(MI->getOpcode());
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
vacatePhysReg(MBB, MI, *id);
// spill explicit physical register defs
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& op = MI->getOperand(i);
if (op.isRegister() && op.getReg() && !op.isUse() &&
MRegisterInfo::isPhysicalRegister(op.getReg()))
vacatePhysReg(MBB, MI, op.getReg());
}
// rewrite def operands (def&use was handled with the
// uses so don't check for those here)
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& op = MI->getOperand(i);
if (op.isRegister() && op.getReg() && !op.isUse())
if (MRegisterInfo::isPhysicalRegister(op.getReg()))
vacatePhysReg(MBB, MI, op.getReg());
else {
unsigned PhysReg = VRM->getPhys(op.getReg());
handleDef(MBB, MI, op.getReg(), PhysReg);
MI->SetMachineOperandReg(i, PhysReg);
}
}
DEBUG(std::cerr << '\t'; MI->print(std::cerr, TM));
}
for (unsigned i = 1, e = p2vMap_.size(); i != e; ++i)
vacateJustPhysReg(MBB, MBB.getFirstTerminator(), i);
}
llvm::Spiller* llvm::createSpiller() {
switch (SpillerOpt) {
default: assert(0 && "Unreachable!");
case local:
return new LocalSpiller();
case simple:
return new SimpleSpiller();
}
}