llvm/test/CodeGen/PowerPC/ppcf128-endian.ll
Ulrich Weigand 1ef2cec146 Fix ppcf128 component access on little-endian systems
The PowerPC 128-bit long double data type (ppcf128 in LLVM) is in fact a
pair of two doubles, where one is considered the "high" or
more-significant part, and the other is considered the "low" or
less-significant part.  When a ppcf128 value is stored in memory or a
register pair, the high part always comes first, i.e. at the lower
memory address or in the lower-numbered register, and the low part
always comes second.  This is true both on big-endian and little-endian
PowerPC systems.  (Similar to how with a complex number, the real part
always comes first and the imaginary part second, no matter the byte
order of the system.)

This was implemented incorrectly for little-endian systems in LLVM.
This commit fixes three related issues:

- When printing an immediate ppcf128 constant to assembler output
  in emitGlobalConstantFP, emit the high part first on both big-
  and little-endian systems.

- When lowering a ppcf128 type to a pair of f64 types in SelectionDAG
  (which is used e.g. when generating code to load an argument into a
  register pair), use correct low/high part ordering on little-endian
  systems.

- In a related issue, because lowering ppcf128 into a pair of f64 must
  operate differently from lowering an int128 into a pair of i64,
  bitcasts between ppcf128 and int128 must not be optimized away by the
  DAG combiner on little-endian systems, but must effect a word-swap.

Reviewed by Hal Finkel.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212274 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-03 15:06:47 +00:00

155 lines
3.4 KiB
LLVM

; RUN: llc -mcpu=pwr7 -mattr=+altivec < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-n32:64"
target triple = "powerpc64le-unknown-linux-gnu"
@g = common global ppc_fp128 0xM00000000000000000000000000000000, align 16
define void @callee(ppc_fp128 %x) {
entry:
%x.addr = alloca ppc_fp128, align 16
store ppc_fp128 %x, ppc_fp128* %x.addr, align 16
%0 = load ppc_fp128* %x.addr, align 16
store ppc_fp128 %0, ppc_fp128* @g, align 16
ret void
}
; CHECK: @callee
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: stfd 2, 8([[REG]])
; CHECK: stfd 1, 0([[REG]])
; CHECK: blr
define void @caller() {
entry:
%0 = load ppc_fp128* @g, align 16
call void @test(ppc_fp128 %0)
ret void
}
; CHECK: @caller
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: lfd 2, 8([[REG]])
; CHECK: lfd 1, 0([[REG]])
; CHECK: bl test
declare void @test(ppc_fp128)
define void @caller_const() {
entry:
call void @test(ppc_fp128 0xM3FF00000000000000000000000000000)
ret void
}
; CHECK: .LCPI[[LC:[0-9]+]]_0:
; CHECK: .long 1065353216
; CHECK: .LCPI[[LC]]_1:
; CHECK: .long 0
; CHECK: @caller_const
; CHECK: addi [[REG0:[0-9]+]], {{[0-9]+}}, .LCPI[[LC]]_0
; CHECK: addi [[REG1:[0-9]+]], {{[0-9]+}}, .LCPI[[LC]]_1
; CHECK: lfs 1, 0([[REG0]])
; CHECK: lfs 2, 0([[REG1]])
; CHECK: bl test
define ppc_fp128 @result() {
entry:
%0 = load ppc_fp128* @g, align 16
ret ppc_fp128 %0
}
; CHECK: @result
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: lfd 1, 0([[REG]])
; CHECK: lfd 2, 8([[REG]])
; CHECK: blr
define void @use_result() {
entry:
%call = tail call ppc_fp128 @test_result() #3
store ppc_fp128 %call, ppc_fp128* @g, align 16
ret void
}
; CHECK: @use_result
; CHECK: bl test_result
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK: stfd 2, 8([[REG]])
; CHECK: stfd 1, 0([[REG]])
; CHECK: blr
declare ppc_fp128 @test_result()
define void @caller_result() {
entry:
%call = tail call ppc_fp128 @test_result()
tail call void @test(ppc_fp128 %call)
ret void
}
; CHECK: @caller_result
; CHECK: bl test_result
; CHECK-NEXT: nop
; CHECK-NEXT: bl test
; CHECK-NEXT: nop
define i128 @convert_from(ppc_fp128 %x) {
entry:
%0 = bitcast ppc_fp128 %x to i128
ret i128 %0
}
; CHECK: @convert_from
; CHECK: stfd 1, [[OFF1:.*]](1)
; CHECK: stfd 2, [[OFF2:.*]](1)
; CHECK: ld 3, [[OFF1]](1)
; CHECK: ld 4, [[OFF2]](1)
; CHECK: blr
define ppc_fp128 @convert_to(i128 %x) {
entry:
%0 = bitcast i128 %x to ppc_fp128
ret ppc_fp128 %0
}
; CHECK: @convert_to
; CHECK: std 3, [[OFF1:.*]](1)
; CHECK: std 4, [[OFF2:.*]](1)
; CHECK: lfd 1, [[OFF1]](1)
; CHECK: lfd 2, [[OFF2]](1)
; CHECK: blr
define ppc_fp128 @convert_to2(i128 %x) {
entry:
%shl = shl i128 %x, 1
%0 = bitcast i128 %shl to ppc_fp128
ret ppc_fp128 %0
}
; CHECK: @convert_to
; CHECK: std 3, [[OFF1:.*]](1)
; CHECK: std 4, [[OFF2:.*]](1)
; CHECK: lfd 1, [[OFF1]](1)
; CHECK: lfd 2, [[OFF2]](1)
; CHECK: blr
define double @convert_vector(<4 x i32> %x) {
entry:
%cast = bitcast <4 x i32> %x to ppc_fp128
%conv = fptrunc ppc_fp128 %cast to double
ret double %conv
}
; CHECK: @convert_vector
; CHECK: addi [[REG:[0-9]+]], 1, [[OFF:.*]]
; CHECK: stvx 2, 0, [[REG]]
; CHECK: lfd 1, [[OFF]](1)
; CHECK: blr
declare void @llvm.va_start(i8*)
define double @vararg(i32 %a, ...) {
entry:
%va = alloca i8*, align 8
%va1 = bitcast i8** %va to i8*
call void @llvm.va_start(i8* %va1)
%arg = va_arg i8** %va, ppc_fp128
%conv = fptrunc ppc_fp128 %arg to double
ret double %conv
}
; CHECK: @vararg
; CHECK: lfd 1, 0({{[0-9]+}})
; CHECK: blr