llvm/test/CodeGen/X86/bmi.ll
Sanjay Patel 2f183e0a89 [x86, BMI] add TLI hook for 'andn' and use it to simplify comparisons
For the sake of minimalism, this patch is x86 only, but I think that at least
PPC, ARM, AArch64, and Sparc probably want to do this too.

We might want to generalize the hook and pattern recognition for a target like
PPC that has a full assortment of negated logic ops (orc, nand).

Note that http://reviews.llvm.org/D18842 will cause this transform to trigger
more often.

For reference, this relates to:
https://llvm.org/bugs/show_bug.cgi?id=27105
https://llvm.org/bugs/show_bug.cgi?id=27202
https://llvm.org/bugs/show_bug.cgi?id=27203
https://llvm.org/bugs/show_bug.cgi?id=27328

Differential Revision: http://reviews.llvm.org/D19087



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268858 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-07 15:03:40 +00:00

649 lines
15 KiB
LLVM

; NOTE: Assertions have been autogenerated by update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+bmi,+bmi2 | FileCheck %s
declare i8 @llvm.cttz.i8(i8, i1)
declare i16 @llvm.cttz.i16(i16, i1)
declare i32 @llvm.cttz.i32(i32, i1)
declare i64 @llvm.cttz.i64(i64, i1)
define i8 @t1(i8 %x) {
; CHECK-LABEL: t1:
; CHECK: # BB#0:
; CHECK-NEXT: movzbl %dil, %eax
; CHECK-NEXT: orl $256, %eax # imm = 0x100
; CHECK-NEXT: tzcntl %eax, %eax
; CHECK-NEXT: retq
%tmp = tail call i8 @llvm.cttz.i8( i8 %x, i1 false )
ret i8 %tmp
}
define i16 @t2(i16 %x) {
; CHECK-LABEL: t2:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntw %di, %ax
; CHECK-NEXT: retq
%tmp = tail call i16 @llvm.cttz.i16( i16 %x, i1 false )
ret i16 %tmp
}
define i32 @t3(i32 %x) {
; CHECK-LABEL: t3:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntl %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.cttz.i32( i32 %x, i1 false )
ret i32 %tmp
}
define i32 @tzcnt32_load(i32* %x) {
; CHECK-LABEL: tzcnt32_load:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntl (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = tail call i32 @llvm.cttz.i32(i32 %x1, i1 false )
ret i32 %tmp
}
define i64 @t4(i64 %x) {
; CHECK-LABEL: t4:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntq %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.cttz.i64( i64 %x, i1 false )
ret i64 %tmp
}
define i8 @t5(i8 %x) {
; CHECK-LABEL: t5:
; CHECK: # BB#0:
; CHECK-NEXT: movzbl %dil, %eax
; CHECK-NEXT: tzcntl %eax, %eax
; CHECK-NEXT: retq
%tmp = tail call i8 @llvm.cttz.i8( i8 %x, i1 true )
ret i8 %tmp
}
define i16 @t6(i16 %x) {
; CHECK-LABEL: t6:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntw %di, %ax
; CHECK-NEXT: retq
%tmp = tail call i16 @llvm.cttz.i16( i16 %x, i1 true )
ret i16 %tmp
}
define i32 @t7(i32 %x) {
; CHECK-LABEL: t7:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntl %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.cttz.i32( i32 %x, i1 true )
ret i32 %tmp
}
define i64 @t8(i64 %x) {
; CHECK-LABEL: t8:
; CHECK: # BB#0:
; CHECK-NEXT: tzcntq %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.cttz.i64( i64 %x, i1 true )
ret i64 %tmp
}
define i32 @andn32(i32 %x, i32 %y) {
; CHECK-LABEL: andn32:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: retq
%tmp1 = xor i32 %x, -1
%tmp2 = and i32 %y, %tmp1
ret i32 %tmp2
}
define i32 @andn32_load(i32 %x, i32* %y) {
; CHECK-LABEL: andn32_load:
; CHECK: # BB#0:
; CHECK-NEXT: andnl (%rsi), %edi, %eax
; CHECK-NEXT: retq
%y1 = load i32, i32* %y
%tmp1 = xor i32 %x, -1
%tmp2 = and i32 %y1, %tmp1
ret i32 %tmp2
}
define i64 @andn64(i64 %x, i64 %y) {
; CHECK-LABEL: andn64:
; CHECK: # BB#0:
; CHECK-NEXT: andnq %rsi, %rdi, %rax
; CHECK-NEXT: retq
%tmp1 = xor i64 %x, -1
%tmp2 = and i64 %tmp1, %y
ret i64 %tmp2
}
; Don't choose a 'test' if an 'andn' can be used.
define i1 @andn_cmp(i32 %x, i32 %y) {
; CHECK-LABEL: andn_cmp:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%notx = xor i32 %x, -1
%and = and i32 %notx, %y
%cmp = icmp eq i32 %and, 0
ret i1 %cmp
}
; Recognize a disguised andn in the following 4 tests.
define i1 @and_cmp1(i32 %x, i32 %y) {
; CHECK-LABEL: and_cmp1:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%and = and i32 %x, %y
%cmp = icmp eq i32 %and, %y
ret i1 %cmp
}
define i1 @and_cmp2(i32 %x, i32 %y) {
; CHECK-LABEL: and_cmp2:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: setne %al
; CHECK-NEXT: retq
%and = and i32 %y, %x
%cmp = icmp ne i32 %and, %y
ret i1 %cmp
}
define i1 @and_cmp3(i32 %x, i32 %y) {
; CHECK-LABEL: and_cmp3:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%and = and i32 %x, %y
%cmp = icmp eq i32 %y, %and
ret i1 %cmp
}
define i1 @and_cmp4(i32 %x, i32 %y) {
; CHECK-LABEL: and_cmp4:
; CHECK: # BB#0:
; CHECK-NEXT: andnl %esi, %edi, %eax
; CHECK-NEXT: setne %al
; CHECK-NEXT: retq
%and = and i32 %y, %x
%cmp = icmp ne i32 %y, %and
ret i1 %cmp
}
; A mask and compare against constant is ok for an 'andn' too
; even though the BMI instruction doesn't have an immediate form.
define i1 @and_cmp_const(i32 %x) {
; CHECK-LABEL: and_cmp_const:
; CHECK: # BB#0:
; CHECK-NEXT: movl $43, %eax
; CHECK-NEXT: andnl %eax, %edi, %eax
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%and = and i32 %x, 43
%cmp = icmp eq i32 %and, 43
ret i1 %cmp
}
; But don't use 'andn' if the mask is a power-of-two.
define i1 @and_cmp_const_power_of_two(i32 %x, i32 %y) {
; CHECK-LABEL: and_cmp_const_power_of_two:
; CHECK: # BB#0:
; CHECK-NEXT: btl %esi, %edi
; CHECK-NEXT: setae %al
; CHECK-NEXT: retq
;
%shl = shl i32 1, %y
%and = and i32 %x, %shl
%cmp = icmp ne i32 %and, %shl
ret i1 %cmp
}
; Don't transform to 'andn' if there's another use of the 'and'.
define i32 @and_cmp_not_one_use(i32 %x) {
; CHECK-LABEL: and_cmp_not_one_use:
; CHECK: # BB#0:
; CHECK-NEXT: andl $37, %edi
; CHECK-NEXT: cmpl $37, %edi
; CHECK-NEXT: sete %al
; CHECK-NEXT: movzbl %al, %eax
; CHECK-NEXT: addl %edi, %eax
; CHECK-NEXT: retq
;
%and = and i32 %x, 37
%cmp = icmp eq i32 %and, 37
%ext = zext i1 %cmp to i32
%add = add i32 %and, %ext
ret i32 %add
}
; Verify that we're not transforming invalid comparison predicates.
define i1 @not_an_andn1(i32 %x, i32 %y) {
; CHECK-LABEL: not_an_andn1:
; CHECK: # BB#0:
; CHECK-NEXT: andl %esi, %edi
; CHECK-NEXT: cmpl %edi, %esi
; CHECK-NEXT: setg %al
; CHECK-NEXT: retq
%and = and i32 %x, %y
%cmp = icmp sgt i32 %y, %and
ret i1 %cmp
}
define i1 @not_an_andn2(i32 %x, i32 %y) {
; CHECK-LABEL: not_an_andn2:
; CHECK: # BB#0:
; CHECK-NEXT: andl %esi, %edi
; CHECK-NEXT: cmpl %edi, %esi
; CHECK-NEXT: setbe %al
; CHECK-NEXT: retq
%and = and i32 %y, %x
%cmp = icmp ule i32 %y, %and
ret i1 %cmp
}
; Don't choose a 'test' if an 'andn' can be used.
define i1 @andn_cmp_swap_ops(i64 %x, i64 %y) {
; CHECK-LABEL: andn_cmp_swap_ops:
; CHECK: # BB#0:
; CHECK-NEXT: andnq %rsi, %rdi, %rax
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%notx = xor i64 %x, -1
%and = and i64 %y, %notx
%cmp = icmp eq i64 %and, 0
ret i1 %cmp
}
; Use a 'test' (not an 'and') because 'andn' only works for i32/i64.
define i1 @andn_cmp_i8(i8 %x, i8 %y) {
; CHECK-LABEL: andn_cmp_i8:
; CHECK: # BB#0:
; CHECK-NEXT: notb %sil
; CHECK-NEXT: testb %sil, %dil
; CHECK-NEXT: sete %al
; CHECK-NEXT: retq
%noty = xor i8 %y, -1
%and = and i8 %x, %noty
%cmp = icmp eq i8 %and, 0
ret i1 %cmp
}
define i32 @bextr32(i32 %x, i32 %y) {
; CHECK-LABEL: bextr32:
; CHECK: # BB#0:
; CHECK-NEXT: bextrl %esi, %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.x86.bmi.bextr.32(i32 %x, i32 %y)
ret i32 %tmp
}
define i32 @bextr32_load(i32* %x, i32 %y) {
; CHECK-LABEL: bextr32_load:
; CHECK: # BB#0:
; CHECK-NEXT: bextrl %esi, (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = tail call i32 @llvm.x86.bmi.bextr.32(i32 %x1, i32 %y)
ret i32 %tmp
}
declare i32 @llvm.x86.bmi.bextr.32(i32, i32)
define i32 @bextr32b(i32 %x) uwtable ssp {
; CHECK-LABEL: bextr32b:
; CHECK: # BB#0:
; CHECK-NEXT: movl $3076, %eax # imm = 0xC04
; CHECK-NEXT: bextrl %eax, %edi, %eax
; CHECK-NEXT: retq
%1 = lshr i32 %x, 4
%2 = and i32 %1, 4095
ret i32 %2
}
define i32 @bextr32b_load(i32* %x) uwtable ssp {
; CHECK-LABEL: bextr32b_load:
; CHECK: # BB#0:
; CHECK-NEXT: movl $3076, %eax # imm = 0xC04
; CHECK-NEXT: bextrl %eax, (%rdi), %eax
; CHECK-NEXT: retq
%1 = load i32, i32* %x
%2 = lshr i32 %1, 4
%3 = and i32 %2, 4095
ret i32 %3
}
define i64 @bextr64(i64 %x, i64 %y) {
; CHECK-LABEL: bextr64:
; CHECK: # BB#0:
; CHECK-NEXT: bextrq %rsi, %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.x86.bmi.bextr.64(i64 %x, i64 %y)
ret i64 %tmp
}
declare i64 @llvm.x86.bmi.bextr.64(i64, i64)
define i64 @bextr64b(i64 %x) uwtable ssp {
; CHECK-LABEL: bextr64b:
; CHECK: # BB#0:
; CHECK-NEXT: movl $3076, %eax # imm = 0xC04
; CHECK-NEXT: bextrl %eax, %edi, %eax
; CHECK-NEXT: retq
%1 = lshr i64 %x, 4
%2 = and i64 %1, 4095
ret i64 %2
}
define i64 @bextr64b_load(i64* %x) {
; CHECK-LABEL: bextr64b_load:
; CHECK: # BB#0:
; CHECK-NEXT: movl $3076, %eax # imm = 0xC04
; CHECK-NEXT: bextrl %eax, (%rdi), %eax
; CHECK-NEXT: retq
%1 = load i64, i64* %x, align 8
%2 = lshr i64 %1, 4
%3 = and i64 %2, 4095
ret i64 %3
}
define i32 @non_bextr32(i32 %x) {
; CHECK-LABEL: non_bextr32:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: shrl $2, %edi
; CHECK-NEXT: andl $111, %edi
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i32 %x, 2
%and = and i32 %shr, 111
ret i32 %and
}
define i64 @non_bextr64(i64 %x) {
; CHECK-LABEL: non_bextr64:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: shrq $2, %rdi
; CHECK-NEXT: movabsq $8589934590, %rax # imm = 0x1FFFFFFFE
; CHECK-NEXT: andq %rdi, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i64 %x, 2
%and = and i64 %shr, 8589934590
ret i64 %and
}
define i32 @bzhi32(i32 %x, i32 %y) {
; CHECK-LABEL: bzhi32:
; CHECK: # BB#0:
; CHECK-NEXT: bzhil %esi, %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.x86.bmi.bzhi.32(i32 %x, i32 %y)
ret i32 %tmp
}
define i32 @bzhi32_load(i32* %x, i32 %y) {
; CHECK-LABEL: bzhi32_load:
; CHECK: # BB#0:
; CHECK-NEXT: bzhil %esi, (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = tail call i32 @llvm.x86.bmi.bzhi.32(i32 %x1, i32 %y)
ret i32 %tmp
}
declare i32 @llvm.x86.bmi.bzhi.32(i32, i32)
define i64 @bzhi64(i64 %x, i64 %y) {
; CHECK-LABEL: bzhi64:
; CHECK: # BB#0:
; CHECK-NEXT: bzhiq %rsi, %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.x86.bmi.bzhi.64(i64 %x, i64 %y)
ret i64 %tmp
}
declare i64 @llvm.x86.bmi.bzhi.64(i64, i64)
define i32 @bzhi32b(i32 %x, i8 zeroext %index) {
; CHECK-LABEL: bzhi32b:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: bzhil %esi, %edi, %eax
; CHECK-NEXT: retq
entry:
%conv = zext i8 %index to i32
%shl = shl i32 1, %conv
%sub = add nsw i32 %shl, -1
%and = and i32 %sub, %x
ret i32 %and
}
define i32 @bzhi32b_load(i32* %w, i8 zeroext %index) {
; CHECK-LABEL: bzhi32b_load:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: bzhil %esi, (%rdi), %eax
; CHECK-NEXT: retq
entry:
%x = load i32, i32* %w
%conv = zext i8 %index to i32
%shl = shl i32 1, %conv
%sub = add nsw i32 %shl, -1
%and = and i32 %sub, %x
ret i32 %and
}
define i32 @bzhi32c(i32 %x, i8 zeroext %index) {
; CHECK-LABEL: bzhi32c:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: bzhil %esi, %edi, %eax
; CHECK-NEXT: retq
entry:
%conv = zext i8 %index to i32
%shl = shl i32 1, %conv
%sub = add nsw i32 %shl, -1
%and = and i32 %x, %sub
ret i32 %and
}
define i64 @bzhi64b(i64 %x, i8 zeroext %index) {
; CHECK-LABEL: bzhi64b:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: bzhiq %rsi, %rdi, %rax
; CHECK-NEXT: retq
entry:
%conv = zext i8 %index to i64
%shl = shl i64 1, %conv
%sub = add nsw i64 %shl, -1
%and = and i64 %x, %sub
ret i64 %and
}
define i64 @bzhi64_constant_mask(i64 %x) {
; CHECK-LABEL: bzhi64_constant_mask:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: movb $62, %al
; CHECK-NEXT: bzhiq %rax, %rdi, %rax
; CHECK-NEXT: retq
entry:
%and = and i64 %x, 4611686018427387903
ret i64 %and
}
define i64 @bzhi64_small_constant_mask(i64 %x) {
; CHECK-LABEL: bzhi64_small_constant_mask:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: andl $2147483647, %edi # imm = 0x7FFFFFFF
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: retq
entry:
%and = and i64 %x, 2147483647
ret i64 %and
}
define i32 @blsi32(i32 %x) {
; CHECK-LABEL: blsi32:
; CHECK: # BB#0:
; CHECK-NEXT: blsil %edi, %eax
; CHECK-NEXT: retq
%tmp = sub i32 0, %x
%tmp2 = and i32 %x, %tmp
ret i32 %tmp2
}
define i32 @blsi32_load(i32* %x) {
; CHECK-LABEL: blsi32_load:
; CHECK: # BB#0:
; CHECK-NEXT: blsil (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = sub i32 0, %x1
%tmp2 = and i32 %x1, %tmp
ret i32 %tmp2
}
define i64 @blsi64(i64 %x) {
; CHECK-LABEL: blsi64:
; CHECK: # BB#0:
; CHECK-NEXT: blsiq %rdi, %rax
; CHECK-NEXT: retq
%tmp = sub i64 0, %x
%tmp2 = and i64 %tmp, %x
ret i64 %tmp2
}
define i32 @blsmsk32(i32 %x) {
; CHECK-LABEL: blsmsk32:
; CHECK: # BB#0:
; CHECK-NEXT: blsmskl %edi, %eax
; CHECK-NEXT: retq
%tmp = sub i32 %x, 1
%tmp2 = xor i32 %x, %tmp
ret i32 %tmp2
}
define i32 @blsmsk32_load(i32* %x) {
; CHECK-LABEL: blsmsk32_load:
; CHECK: # BB#0:
; CHECK-NEXT: blsmskl (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = sub i32 %x1, 1
%tmp2 = xor i32 %x1, %tmp
ret i32 %tmp2
}
define i64 @blsmsk64(i64 %x) {
; CHECK-LABEL: blsmsk64:
; CHECK: # BB#0:
; CHECK-NEXT: blsmskq %rdi, %rax
; CHECK-NEXT: retq
%tmp = sub i64 %x, 1
%tmp2 = xor i64 %tmp, %x
ret i64 %tmp2
}
define i32 @blsr32(i32 %x) {
; CHECK-LABEL: blsr32:
; CHECK: # BB#0:
; CHECK-NEXT: blsrl %edi, %eax
; CHECK-NEXT: retq
%tmp = sub i32 %x, 1
%tmp2 = and i32 %x, %tmp
ret i32 %tmp2
}
define i32 @blsr32_load(i32* %x) {
; CHECK-LABEL: blsr32_load:
; CHECK: # BB#0:
; CHECK-NEXT: blsrl (%rdi), %eax
; CHECK-NEXT: retq
%x1 = load i32, i32* %x
%tmp = sub i32 %x1, 1
%tmp2 = and i32 %x1, %tmp
ret i32 %tmp2
}
define i64 @blsr64(i64 %x) {
; CHECK-LABEL: blsr64:
; CHECK: # BB#0:
; CHECK-NEXT: blsrq %rdi, %rax
; CHECK-NEXT: retq
%tmp = sub i64 %x, 1
%tmp2 = and i64 %tmp, %x
ret i64 %tmp2
}
define i32 @pdep32(i32 %x, i32 %y) {
; CHECK-LABEL: pdep32:
; CHECK: # BB#0:
; CHECK-NEXT: pdepl %esi, %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.x86.bmi.pdep.32(i32 %x, i32 %y)
ret i32 %tmp
}
define i32 @pdep32_load(i32 %x, i32* %y) {
; CHECK-LABEL: pdep32_load:
; CHECK: # BB#0:
; CHECK-NEXT: pdepl (%rsi), %edi, %eax
; CHECK-NEXT: retq
%y1 = load i32, i32* %y
%tmp = tail call i32 @llvm.x86.bmi.pdep.32(i32 %x, i32 %y1)
ret i32 %tmp
}
declare i32 @llvm.x86.bmi.pdep.32(i32, i32)
define i64 @pdep64(i64 %x, i64 %y) {
; CHECK-LABEL: pdep64:
; CHECK: # BB#0:
; CHECK-NEXT: pdepq %rsi, %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.x86.bmi.pdep.64(i64 %x, i64 %y)
ret i64 %tmp
}
declare i64 @llvm.x86.bmi.pdep.64(i64, i64)
define i32 @pext32(i32 %x, i32 %y) {
; CHECK-LABEL: pext32:
; CHECK: # BB#0:
; CHECK-NEXT: pextl %esi, %edi, %eax
; CHECK-NEXT: retq
%tmp = tail call i32 @llvm.x86.bmi.pext.32(i32 %x, i32 %y)
ret i32 %tmp
}
define i32 @pext32_load(i32 %x, i32* %y) {
; CHECK-LABEL: pext32_load:
; CHECK: # BB#0:
; CHECK-NEXT: pextl (%rsi), %edi, %eax
; CHECK-NEXT: retq
%y1 = load i32, i32* %y
%tmp = tail call i32 @llvm.x86.bmi.pext.32(i32 %x, i32 %y1)
ret i32 %tmp
}
declare i32 @llvm.x86.bmi.pext.32(i32, i32)
define i64 @pext64(i64 %x, i64 %y) {
; CHECK-LABEL: pext64:
; CHECK: # BB#0:
; CHECK-NEXT: pextq %rsi, %rdi, %rax
; CHECK-NEXT: retq
%tmp = tail call i64 @llvm.x86.bmi.pext.64(i64 %x, i64 %y)
ret i64 %tmp
}
declare i64 @llvm.x86.bmi.pext.64(i64, i64)