mirror of
https://github.com/RPCS3/llvm.git
synced 2024-11-28 06:00:30 +00:00
c0d25bf9b8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262757 91177308-0d34-0410-b5e6-96231b3b80d8
187 lines
5.5 KiB
C++
187 lines
5.5 KiB
C++
//===- FuzzerAdapter.h - Arbitrary function Fuzzer adapter -------*- C++ -*===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// W A R N I N G : E X P E R I M E N T A L.
|
|
//
|
|
// Defines an adapter to fuzz functions with (almost) arbitrary signatures.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_FUZZER_ADAPTER_H
|
|
#define LLVM_FUZZER_ADAPTER_H
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
namespace fuzzer {
|
|
|
|
/// Unpacks bytes from \p Data according to \p F argument types
|
|
/// and calls the function.
|
|
/// Use to automatically adapt LLVMFuzzerTestOneInput interface to
|
|
/// a specific function.
|
|
/// Supported argument types: primitive types, std::vector<uint8_t>.
|
|
template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size);
|
|
|
|
// The implementation performs several steps:
|
|
// - function argument types are obtained (Args...)
|
|
// - data is unpacked into std::tuple<Args...> one by one
|
|
// - function is called with std::tuple<Args...> containing arguments.
|
|
namespace impl {
|
|
|
|
// Single argument unpacking.
|
|
|
|
template <typename T>
|
|
size_t UnpackPrimitive(const uint8_t *Data, size_t Size, T *Value) {
|
|
if (Size < sizeof(T))
|
|
return Size;
|
|
*Value = *reinterpret_cast<const T *>(Data);
|
|
return Size - sizeof(T);
|
|
}
|
|
|
|
/// Unpacks into a given Value and returns the Size - num_consumed_bytes.
|
|
/// Return value equal to Size signals inability to unpack the data (typically
|
|
/// because there are not enough bytes).
|
|
template <typename T>
|
|
size_t UnpackSingle(const uint8_t *Data, size_t Size, T *Value);
|
|
|
|
#define UNPACK_SINGLE_PRIMITIVE(Type) \
|
|
template <> \
|
|
size_t UnpackSingle<Type>(const uint8_t *Data, size_t Size, Type *Value) { \
|
|
return UnpackPrimitive(Data, Size, Value); \
|
|
}
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(char)
|
|
UNPACK_SINGLE_PRIMITIVE(signed char)
|
|
UNPACK_SINGLE_PRIMITIVE(unsigned char)
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(short int)
|
|
UNPACK_SINGLE_PRIMITIVE(unsigned short int)
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(int)
|
|
UNPACK_SINGLE_PRIMITIVE(unsigned int)
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(long int)
|
|
UNPACK_SINGLE_PRIMITIVE(unsigned long int)
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(bool)
|
|
UNPACK_SINGLE_PRIMITIVE(wchar_t)
|
|
|
|
UNPACK_SINGLE_PRIMITIVE(float)
|
|
UNPACK_SINGLE_PRIMITIVE(double)
|
|
UNPACK_SINGLE_PRIMITIVE(long double)
|
|
|
|
#undef UNPACK_SINGLE_PRIMITIVE
|
|
|
|
template <>
|
|
size_t UnpackSingle<std::vector<uint8_t>>(const uint8_t *Data, size_t Size,
|
|
std::vector<uint8_t> *Value) {
|
|
if (Size < 1)
|
|
return Size;
|
|
size_t Len = std::min(static_cast<size_t>(*Data), Size - 1);
|
|
std::vector<uint8_t> V(Data + 1, Data + 1 + Len);
|
|
Value->swap(V);
|
|
return Size - Len - 1;
|
|
}
|
|
|
|
template <>
|
|
size_t UnpackSingle<std::string>(const uint8_t *Data, size_t Size,
|
|
std::string *Value) {
|
|
if (Size < 1)
|
|
return Size;
|
|
size_t Len = std::min(static_cast<size_t>(*Data), Size - 1);
|
|
std::string S(Data + 1, Data + 1 + Len);
|
|
Value->swap(S);
|
|
return Size - Len - 1;
|
|
}
|
|
|
|
// Unpacking into arbitrary tuple.
|
|
|
|
// Recursion guard.
|
|
template <int N, typename TupleT>
|
|
typename std::enable_if<N == std::tuple_size<TupleT>::value, bool>::type
|
|
UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) {
|
|
return true;
|
|
}
|
|
|
|
// Unpack tuple elements starting from Nth.
|
|
template <int N, typename TupleT>
|
|
typename std::enable_if<N < std::tuple_size<TupleT>::value, bool>::type
|
|
UnpackImpl(const uint8_t *Data, size_t Size, TupleT *Tuple) {
|
|
size_t NewSize = UnpackSingle(Data, Size, &std::get<N>(*Tuple));
|
|
if (NewSize == Size) {
|
|
return false;
|
|
}
|
|
|
|
return UnpackImpl<N + 1, TupleT>(Data + (Size - NewSize), NewSize, Tuple);
|
|
}
|
|
|
|
// Unpacks into arbitrary tuple and returns true if successful.
|
|
template <typename... Args>
|
|
bool Unpack(const uint8_t *Data, size_t Size, std::tuple<Args...> *Tuple) {
|
|
return UnpackImpl<0, std::tuple<Args...>>(Data, Size, Tuple);
|
|
}
|
|
|
|
// Helper integer sequence templates.
|
|
|
|
template <int...> struct Seq {};
|
|
|
|
template <int N, int... S> struct GenSeq : GenSeq<N - 1, N - 1, S...> {};
|
|
|
|
// GenSeq<N>::type is Seq<0, 1, ..., N-1>
|
|
template <int... S> struct GenSeq<0, S...> { typedef Seq<S...> type; };
|
|
|
|
// Function signature introspection.
|
|
|
|
template <typename T> struct FnTraits {};
|
|
|
|
template <typename ReturnType, typename... Args>
|
|
struct FnTraits<ReturnType (*)(Args...)> {
|
|
enum { Arity = sizeof...(Args) };
|
|
typedef std::tuple<Args...> ArgsTupleT;
|
|
};
|
|
|
|
// Calling a function with arguments in a tuple.
|
|
|
|
template <typename Fn, int... S>
|
|
void ApplyImpl(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params,
|
|
Seq<S...>) {
|
|
F(std::get<S>(Params)...);
|
|
}
|
|
|
|
template <typename Fn>
|
|
void Apply(Fn F, const typename FnTraits<Fn>::ArgsTupleT &Params) {
|
|
// S is Seq<0, ..., Arity-1>
|
|
auto S = typename GenSeq<FnTraits<Fn>::Arity>::type();
|
|
ApplyImpl(F, Params, S);
|
|
}
|
|
|
|
// Unpacking data into arguments tuple of correct type and calling the function.
|
|
template <typename Fn>
|
|
bool UnpackAndApply(Fn F, const uint8_t *Data, size_t Size) {
|
|
typename FnTraits<Fn>::ArgsTupleT Tuple;
|
|
if (!Unpack(Data, Size, &Tuple))
|
|
return false;
|
|
|
|
Apply(F, Tuple);
|
|
return true;
|
|
}
|
|
|
|
} // namespace impl
|
|
|
|
template <typename Fn> bool Adapt(Fn F, const uint8_t *Data, size_t Size) {
|
|
return impl::UnpackAndApply(F, Data, Size);
|
|
}
|
|
|
|
} // namespace fuzzer
|
|
|
|
#endif
|