llvm/lib/Transforms/Utils/LCSSA.cpp
Chris Lattner 13a68e4257 Use the PotDoms map to memoize 'dominating value' lookup. With this patch,
LCSSA is still the slowest pass when gccas'ing 252.eon, but now it only takes
39s instead of 289s. :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28776 91177308-0d34-0410-b5e6-96231b3b80d8
2006-06-14 01:13:57 +00:00

291 lines
11 KiB
C++

//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary. For example, it turns
// the left into the right code:
//
// for (...) for (...)
// if (c) if(c)
// X1 = ... X1 = ...
// else else
// X2 = ... X2 = ...
// X3 = phi(X1, X2) X3 = phi(X1, X2)
// ... = X3 + 4 X4 = phi(X3)
// ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine. The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <map>
using namespace llvm;
namespace {
static Statistic<> NumLCSSA("lcssa",
"Number of live out of a loop variables");
class LCSSA : public FunctionPass {
public:
LoopInfo *LI; // Loop information
DominatorTree *DT; // Dominator Tree for the current Function...
DominanceFrontier *DF; // Current Dominance Frontier
std::vector<BasicBlock*> LoopBlocks;
virtual bool runOnFunction(Function &F);
bool visitSubloop(Loop* L);
void processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& exitBlocks);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
}
private:
SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
Instruction *getValueDominatingBlock(BasicBlock *BB,
std::map<BasicBlock*, Instruction*>& PotDoms) {
return getValueDominatingDTNode(DT->getNode(BB), PotDoms);
}
Instruction *getValueDominatingDTNode(DominatorTree::Node *Node,
std::map<BasicBlock*, Instruction*>& PotDoms);
/// inLoop - returns true if the given block is within the current loop
const bool inLoop(BasicBlock* B) {
return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
}
};
RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
}
FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
const PassInfo *llvm::LCSSAID = X.getPassInfo();
/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnFunction(Function &F) {
bool changed = false;
LI = &getAnalysis<LoopInfo>();
DF = &getAnalysis<DominanceFrontier>();
DT = &getAnalysis<DominatorTree>();
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
changed |= visitSubloop(*I);
}
return changed;
}
/// visitSubloop - Recursively process all subloops, and then process the given
/// loop if it has live-out values.
bool LCSSA::visitSubloop(Loop* L) {
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
visitSubloop(*I);
// Speed up queries by creating a sorted list of blocks
LoopBlocks.clear();
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
std::sort(LoopBlocks.begin(), LoopBlocks.end());
SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
// If no values are affected, we can save a lot of work, since we know that
// nothing will be changed.
if (AffectedValues.empty())
return false;
std::vector<BasicBlock*> exitBlocks;
L->getExitBlocks(exitBlocks);
// Iterate over all affected values for this loop and insert Phi nodes
// for them in the appropriate exit blocks
for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
E = AffectedValues.end(); I != E; ++I) {
processInstruction(*I, exitBlocks);
}
assert(L->isLCSSAForm());
return true;
}
/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
/// eliminate all out-of-loop uses.
void LCSSA::processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& exitBlocks)
{
++NumLCSSA; // We are applying the transformation
std::map<BasicBlock*, Instruction*> Phis;
// Add the base instruction to the Phis list. This makes tracking down
// the dominating values easier when we're filling in Phi nodes. This will
// be removed later, before we perform use replacement.
Phis[Instr->getParent()] = Instr;
// Phi nodes that need to be IDF-processed
std::vector<PHINode*> workList;
for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
Instruction*& phi = Phis[*BBI];
if (phi == 0 &&
DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
(*BBI)->begin());
workList.push_back(cast<PHINode>(phi));
}
}
// Phi nodes that need to have their incoming values filled.
std::vector<PHINode*> needIncomingValues;
// Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
// necessary. Keep track of these new Phi's in the "Phis" map.
while (!workList.empty()) {
PHINode *CurPHI = workList.back();
workList.pop_back();
// Even though we've removed this Phi from the work list, we still need
// to fill in its incoming values.
needIncomingValues.push_back(CurPHI);
// Get the current Phi's DF, and insert Phi nodes. Add these new
// nodes to our worklist.
DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
if (it != DF->end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P) {
if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) {
Instruction *&Phi = Phis[*P];
if (Phi == 0) {
// Still doesn't have operands...
Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
(*P)->begin());
workList.push_back(cast<PHINode>(Phi));
}
}
}
}
}
// Fill in all Phis we've inserted that need their incoming values filled in.
for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(),
IVE = needIncomingValues.end(); IVI != IVE; ++IVI) {
for (pred_iterator PI = pred_begin((*IVI)->getParent()),
E = pred_end((*IVI)->getParent()); PI != E; ++PI)
(*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis),
*PI);
}
// Find all uses of the affected value, and replace them with the
// appropriate Phi.
std::vector<Instruction*> Uses;
for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
UI != UE; ++UI) {
Instruction* use = cast<Instruction>(*UI);
BasicBlock* UserBB = use->getParent();
if (PHINode* p = dyn_cast<PHINode>(use)) {
unsigned OperandNo = UI.getOperandNo();
UserBB = p->getIncomingBlock(OperandNo/2);
}
// Don't need to update uses within the loop body.
if (!inLoop(use->getParent()))
Uses.push_back(use);
}
for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
II != IE; ++II) {
if (PHINode* phi = dyn_cast<PHINode>(*II)) {
for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
if (phi->getIncomingValue(i) == Instr) {
Instruction* dominator =
getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
phi->setIncomingValue(i, dominator);
}
}
} else {
Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis);
(*II)->replaceUsesOfWith(Instr, NewVal);
}
}
}
/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
/// are used by instructions outside of it.
SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
// FIXME: For large loops, we may be able to avoid a lot of use-scanning
// by using dominance information. In particular, if a block does not
// dominate any of the loop exits, then none of the values defined in the
// block could be used outside the loop.
SetVector<Instruction*> AffectedValues;
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
if (PHINode* p = dyn_cast<PHINode>(*UI)) {
unsigned OperandNo = UI.getOperandNo();
UserBB = p->getIncomingBlock(OperandNo/2);
}
if (!inLoop(UserBB)) {
AffectedValues.insert(I);
break;
}
}
}
return AffectedValues;
}
/// getValueDominatingBlock - Return the value within the potential dominators
/// map that dominates the given block.
Instruction *LCSSA::getValueDominatingDTNode(DominatorTree::Node *Node,
std::map<BasicBlock*, Instruction*>& PotDoms) {
assert(Node != 0 && "Didn't find dom value?");
Instruction *&CacheSlot = PotDoms[Node->getBlock()];
if (CacheSlot) return CacheSlot;
// Otherwise, return the value of the idom and remember this for next time.
return CacheSlot = getValueDominatingDTNode(Node->getIDom(), PotDoms);
}