mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-21 01:06:46 +00:00
14925e6b88
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172010 91177308-0d34-0410-b5e6-96231b3b80d8
384 lines
12 KiB
C++
384 lines
12 KiB
C++
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// X86 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86tti"
|
|
#include "X86.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't havve a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeX86TTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class X86TTI : public ImmutablePass, public TargetTransformInfo {
|
|
const X86TargetMachine *TM;
|
|
const X86Subtarget *ST;
|
|
const X86TargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
X86TTI(const X86TargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeX86TTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
virtual void finalizePass() {
|
|
popTTIStack();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
virtual unsigned getNumberOfRegisters(bool Vector) const;
|
|
virtual unsigned getRegisterBitWidth(bool Vector) const;
|
|
virtual unsigned getMaximumUnrollFactor() const;
|
|
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
|
|
virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const;
|
|
virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const;
|
|
virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const;
|
|
virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const;
|
|
virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const;
|
|
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
|
|
"X86 Target Transform Info", true, true, false)
|
|
char X86TTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
|
|
return new X86TTI(TM);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// X86 cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct X86CostTblEntry {
|
|
int ISD;
|
|
MVT Type;
|
|
unsigned Cost;
|
|
};
|
|
}
|
|
|
|
static int
|
|
FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
|
|
return i;
|
|
|
|
// Could not find an entry.
|
|
return -1;
|
|
}
|
|
|
|
namespace {
|
|
struct X86TypeConversionCostTblEntry {
|
|
int ISD;
|
|
MVT Dst;
|
|
MVT Src;
|
|
unsigned Cost;
|
|
};
|
|
}
|
|
|
|
static int
|
|
FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
|
|
int ISD, MVT Dst, MVT Src) {
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
|
|
return i;
|
|
|
|
// Could not find an entry.
|
|
return -1;
|
|
}
|
|
|
|
X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
// TODO: Currently the __builtin_popcount() implementation using SSE3
|
|
// instructions is inefficient. Once the problem is fixed, we should
|
|
// call ST->hasSSE3() instead of ST->hasSSE4().
|
|
return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
|
|
}
|
|
|
|
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
|
|
if (Vector && !ST->hasSSE1())
|
|
return 0;
|
|
|
|
if (ST->is64Bit())
|
|
return 16;
|
|
return 8;
|
|
}
|
|
|
|
unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasAVX()) return 256;
|
|
if (ST->hasSSE1()) return 128;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->is64Bit())
|
|
return 64;
|
|
return 32;
|
|
|
|
}
|
|
|
|
unsigned X86TTI::getMaximumUnrollFactor() const {
|
|
if (ST->isAtom())
|
|
return 1;
|
|
|
|
// Sandybridge and Haswell have multiple execution ports and pipelined
|
|
// vector units.
|
|
if (ST->hasAVX())
|
|
return 4;
|
|
|
|
return 2;
|
|
}
|
|
|
|
unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const X86CostTblEntry AVX1CostTable[] = {
|
|
// We don't have to scalarize unsupported ops. We can issue two half-sized
|
|
// operations and we only need to extract the upper YMM half.
|
|
// Two ops + 1 extract + 1 insert = 4.
|
|
{ ISD::MUL, MVT::v8i32, 4 },
|
|
{ ISD::SUB, MVT::v8i32, 4 },
|
|
{ ISD::ADD, MVT::v8i32, 4 },
|
|
{ ISD::MUL, MVT::v4i64, 4 },
|
|
{ ISD::SUB, MVT::v4i64, 4 },
|
|
{ ISD::ADD, MVT::v4i64, 4 },
|
|
};
|
|
|
|
// Look for AVX1 lowering tricks.
|
|
if (ST->hasAVX()) {
|
|
int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
|
|
LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTable[Idx].Cost;
|
|
}
|
|
// Fallback to the default implementation.
|
|
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
|
|
}
|
|
|
|
unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
// We only estimate the cost of reverse shuffles.
|
|
if (Kind != SK_Reverse)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
unsigned Cost = 1;
|
|
if (LT.second.getSizeInBits() > 128)
|
|
Cost = 3; // Extract + insert + copy.
|
|
|
|
// Multiple by the number of parts.
|
|
return Cost * LT.first;
|
|
}
|
|
|
|
unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 },
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
|
|
};
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = FindInConvertTable(AVXConversionTbl,
|
|
array_lengthof(AVXConversionTbl),
|
|
ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return AVXConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const X86CostTblEntry SSE42CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2f64, 1 },
|
|
{ ISD::SETCC, MVT::v4f32, 1 },
|
|
{ ISD::SETCC, MVT::v2i64, 1 },
|
|
{ ISD::SETCC, MVT::v4i32, 1 },
|
|
{ ISD::SETCC, MVT::v8i16, 1 },
|
|
{ ISD::SETCC, MVT::v16i8, 1 },
|
|
};
|
|
|
|
static const X86CostTblEntry AVX1CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f64, 1 },
|
|
{ ISD::SETCC, MVT::v8f32, 1 },
|
|
// AVX1 does not support 8-wide integer compare.
|
|
{ ISD::SETCC, MVT::v4i64, 4 },
|
|
{ ISD::SETCC, MVT::v8i32, 4 },
|
|
{ ISD::SETCC, MVT::v16i16, 4 },
|
|
{ ISD::SETCC, MVT::v32i8, 4 },
|
|
};
|
|
|
|
static const X86CostTblEntry AVX2CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4i64, 1 },
|
|
{ ISD::SETCC, MVT::v8i32, 1 },
|
|
{ ISD::SETCC, MVT::v16i16, 1 },
|
|
{ ISD::SETCC, MVT::v32i8, 1 },
|
|
};
|
|
|
|
if (ST->hasAVX2()) {
|
|
int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasSSE42()) {
|
|
int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * SSE42CostTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
|
|
// Floating point scalars are already located in index #0.
|
|
if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
|
|
return 0;
|
|
}
|
|
|
|
return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
// Each load/store unit costs 1.
|
|
unsigned Cost = LT.first * 1;
|
|
|
|
// On Sandybridge 256bit load/stores are double pumped
|
|
// (but not on Haswell).
|
|
if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
|
|
Cost*=2;
|
|
|
|
return Cost;
|
|
}
|