llvm/lib/Target/R600/SIShrinkInstructions.cpp
Tom Stellard 9787e8c76b R600/SI: Add instruction shrinking pass
This pass converts 64-bit instructions to 32-bit when possible.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213561 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-21 16:55:33 +00:00

190 lines
5.9 KiB
C++

//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-shrink-instructions"
STATISTIC(NumInstructionsShrunk,
"Number of 64-bit instruction reduced to 32-bit.");
namespace llvm {
void initializeSIShrinkInstructionsPass(PassRegistry&);
}
using namespace llvm;
namespace {
class SIShrinkInstructions : public MachineFunctionPass {
public:
static char ID;
public:
SIShrinkInstructions() : MachineFunctionPass(ID) {
}
virtual bool runOnMachineFunction(MachineFunction &MF) override;
virtual const char *getPassName() const override {
return "SI Shrink Instructions";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE,
"SI Lower il Copies", false, false)
INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE,
"SI Lower il Copies", false, false)
char SIShrinkInstructions::ID = 0;
FunctionPass *llvm::createSIShrinkInstructionsPass() {
return new SIShrinkInstructions();
}
static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
if (!MO->isReg())
return false;
if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
}
static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
// Can't shrink instruction with three operands.
if (Src2)
return false;
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
const MachineOperand *Src1Mod =
TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
if (Src1 && (!isVGPR(Src1, TRI, MRI) || Src1Mod->getImm() != 0))
return false;
// We don't need to check src0, all input types are legal, so just make
// sure src0 isn't using any modifiers.
const MachineOperand *Src0Mod =
TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
if (Src0Mod && Src0Mod->getImm() != 0)
return false;
// Check output modifiers
const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
if (Omod && Omod->getImm() != 0)
return false;
const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
return !Clamp || Clamp->getImm() == 0;
}
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
MF.getTarget().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
std::vector<unsigned> I1Defs;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
if (Op32 == -1)
continue;
if (!canShrink(MI, TII, TRI, MRI)) {
// Try commtuing the instruction and see if that enables us to shrink
// it.
if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
!canShrink(MI, TII, TRI, MRI))
continue;
}
if (TII->isVOPC(Op32)) {
unsigned DstReg = MI.getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
// VOPC instructions can only write to the VCC register. We can't
// force them to use VCC here, because the register allocator
// has trouble with sequences like this, which cause the allocator
// to run out of registes if vreg0 and vreg1 belong to the VCCReg
// register class:
// vreg0 = VOPC;
// vreg1 = VOPC;
// S_AND_B64 vreg0, vreg1
//
// So, instead of forcing the instruction to write to VCC, we provide a
// hint to the register allocator to use VCC and then we
// we will run this pass again after RA and shrink it if it outpus to
// VCC.
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
continue;
}
if (DstReg != AMDGPU::VCC)
continue;
}
// We can shrink this instruction
DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << "\n";);
MachineInstrBuilder MIB =
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
// dst
MIB.addOperand(MI.getOperand(0));
MIB.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
const MachineOperand *Src1 =
TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1)
MIB.addOperand(*Src1);
for (const MachineOperand &MO : MI.implicit_operands())
MIB.addOperand(MO);
DEBUG(dbgs() << "e32 MI = "; MI.dump(); dbgs() << "\n";);
++NumInstructionsShrunk;
MI.eraseFromParent();
}
}
return false;
}