llvm/lib/Target/ARM/ARMScheduleSwift.td
Arnold Schwaighofer c6752d5565 ARM sched model: Use the right resources for DIV
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183477 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-07 01:16:15 +00:00

2068 lines
97 KiB
TableGen

//=- ARMScheduleSwift.td - Swift Scheduling Definitions -*- tablegen -*----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the Swift processor..
//
//===----------------------------------------------------------------------===//
// ===---------------------------------------------------------------------===//
// This section contains legacy support for itineraries. This is
// required until SD and PostRA schedulers are replaced by MachineScheduler.
def SW_DIS0 : FuncUnit;
def SW_DIS1 : FuncUnit;
def SW_DIS2 : FuncUnit;
def SW_ALU0 : FuncUnit;
def SW_ALU1 : FuncUnit;
def SW_LS : FuncUnit;
def SW_IDIV : FuncUnit;
def SW_FDIV : FuncUnit;
// FIXME: Need bypasses.
// FIXME: Model the multiple stages of IIC_iMOVix2, IIC_iMOVix2addpc, and
// IIC_iMOVix2ld better.
// FIXME: Model the special immediate shifts that are not microcoded.
// FIXME: Do we need to model the fact that uses of r15 in a micro-op force it
// to issue on pipe 1?
// FIXME: Model the pipelined behavior of CMP / TST instructions.
// FIXME: Better model the microcode stages of multiply instructions, especially
// conditional variants.
// FIXME: Add preload instruction when it is documented.
// FIXME: Model non-pipelined nature of FP div / sqrt unit.
def SwiftItineraries : ProcessorItineraries<
[SW_DIS0, SW_DIS1, SW_DIS2, SW_ALU0, SW_ALU1, SW_LS, SW_IDIV, SW_FDIV], [], [
//
// Move instructions, unconditional
InstrItinData<IIC_iMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVix2 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2]>,
InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3]>,
InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_LS]>],
[5]>,
//
// MVN instructions
InstrItinData<IIC_iMVNi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
//
// No operand cycles
InstrItinData<IIC_iALUx , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>]>,
//
// Binary Instructions that produce a result
InstrItinData<IIC_iALUi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iALUr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iALUsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iALUsir,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iALUsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1]>,
//
// Bitwise Instructions that produce a result
InstrItinData<IIC_iBITi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iBITr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iBITsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iBITsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1]>,
//
// Unary Instructions that produce a result
// CLZ, RBIT, etc.
InstrItinData<IIC_iUNAr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
// BFC, BFI, UBFX, SBFX
InstrItinData<IIC_iUNAsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1]>,
//
// Zero and sign extension instructions
InstrItinData<IIC_iEXTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iEXTAr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iEXTAsr,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1, 1]>,
//
// Compare instructions
InstrItinData<IIC_iCMPi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iCMPr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMPsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMPsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
//
// Test instructions
InstrItinData<IIC_iTSTi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iTSTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iTSTsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iTSTsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
//
// Move instructions, conditional
// FIXME: Correctly model the extra input dep on the destination.
InstrItinData<IIC_iCMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iCMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iCMOVix2, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2]>,
// Integer multiply pipeline
//
InstrItinData<IIC_iMUL16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[3, 1, 1]>,
InstrItinData<IIC_iMAC16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
InstrItinData<IIC_iMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
InstrItinData<IIC_iMUL64 , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0], 3>,
InstrStage<1, [SW_ALU0]>],
[5, 5, 1, 1]>,
InstrItinData<IIC_iMAC64 , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 6, 1, 1]>,
//
// Integer divide
InstrItinData<IIC_iDIV , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 0>,
InstrStage<14, [SW_IDIV]>],
[14, 1, 1]>,
// Integer load pipeline
// FIXME: The timings are some rough approximations
//
// Immediate offset
InstrItinData<IIC_iLoad_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Register offset
InstrItinData<IIC_iLoad_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3, 4, 1, 1]>,
//
// Scaled register offset
InstrItinData<IIC_iLoad_si , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[5, 1, 1]>,
InstrItinData<IIC_iLoad_bh_si,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[5, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iLoad_iu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
//
// Register offset with update
InstrItinData<IIC_iLoad_ru , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3, 4, 1, 1]>,
//
// Scaled register offset with update
InstrItinData<IIC_iLoad_siu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_siu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 3, 1, 1]>,
//
// Load multiple, def is the 5th operand.
// FIXME: This assumes 3 to 4 registers.
InstrItinData<IIC_iLoad_m , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Load multiple + update, defs are the 1st and 5th operands.
InstrItinData<IIC_iLoad_mu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Load multiple plus branch
InstrItinData<IIC_iLoad_mBr, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Pop, def is the 3rd operand.
InstrItinData<IIC_iPop , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 3], [], -1>, // dynamic uops
//
// Pop + branch, def is the 3rd operand.
InstrItinData<IIC_iPop_Br, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 3], [], -1>, // dynamic uops
//
// iLoadi + iALUr for t2LDRpci_pic.
InstrItinData<IIC_iLoadiALU, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[4, 1]>,
// Integer store pipeline
///
// Immediate offset
InstrItinData<IIC_iStore_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
InstrItinData<IIC_iStore_d_i, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// Register offset
InstrItinData<IIC_iStore_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_d_r, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Scaled register offset
InstrItinData<IIC_iStore_si , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_si,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iStore_iu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Register offset with update
InstrItinData<IIC_iStore_ru , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
//
// Scaled register offset with update
InstrItinData<IIC_iStore_siu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iStore_bh_siu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
[3, 1, 1, 1]>,
//
// Store multiple
InstrItinData<IIC_iStore_m , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[], [], -1>, // dynamic uops
//
// Store multiple + update
InstrItinData<IIC_iStore_mu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[2], [], -1>, // dynamic uops
//
// Preload
InstrItinData<IIC_Preload, [InstrStage<1, [SW_DIS0], 0>], [1, 1]>,
// Branch
//
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [SW_DIS0], 0>]>,
// FP Special Register to Integer Register File Move
InstrItinData<IIC_fpSTAT , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
//
// Single-precision FP Unary
//
// Most floating-point moves get issued on ALU0.
InstrItinData<IIC_fpUNA32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Double-precision FP Unary
InstrItinData<IIC_fpUNA64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Single-precision FP Compare
InstrItinData<IIC_fpCMP32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[1, 1]>,
//
// Double-precision FP Compare
InstrItinData<IIC_fpCMP64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[1, 1]>,
//
// Single to Double FP Convert
InstrItinData<IIC_fpCVTSD , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Double to Single FP Convert
InstrItinData<IIC_fpCVTDS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single to Half FP Convert
InstrItinData<IIC_fpCVTSH , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 4>,
InstrStage<1, [SW_ALU1]>],
[6, 1]>,
//
// Half to Single FP Convert
InstrItinData<IIC_fpCVTHS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Double-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTDI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Integer to Single-Precision FP Convert
InstrItinData<IIC_fpCVTIS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Integer to Double-Precision FP Convert
InstrItinData<IIC_fpCVTID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single-precision FP ALU
InstrItinData<IIC_fpALU32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-precision FP ALU
InstrItinData<IIC_fpALU64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Single-precision FP Multiply
InstrItinData<IIC_fpMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-precision FP Multiply
InstrItinData<IIC_fpMUL64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 1]>,
//
// Single-precision FP MAC
InstrItinData<IIC_fpMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-precision FP MAC
InstrItinData<IIC_fpMAC64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[12, 1, 1]>,
//
// Single-precision Fused FP MAC
InstrItinData<IIC_fpFMAC32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-precision Fused FP MAC
InstrItinData<IIC_fpFMAC64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[12, 1, 1]>,
//
// Single-precision FP DIV
InstrItinData<IIC_fpDIV32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<15, [SW_FDIV]>],
[17, 1, 1]>,
//
// Double-precision FP DIV
InstrItinData<IIC_fpDIV64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<30, [SW_FDIV]>],
[32, 1, 1]>,
//
// Single-precision FP SQRT
InstrItinData<IIC_fpSQRT32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<15, [SW_FDIV]>],
[17, 1]>,
//
// Double-precision FP SQRT
InstrItinData<IIC_fpSQRT64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<30, [SW_FDIV]>],
[32, 1, 1]>,
//
// Integer to Single-precision Move
InstrItinData<IIC_fpMOVIS, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Integer to Double-precision Move
InstrItinData<IIC_fpMOVID, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// Single-precision to Integer Move
InstrItinData<IIC_fpMOVSI, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
//
// Double-precision to Integer Move
InstrItinData<IIC_fpMOVDI, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Single-precision FP Load
InstrItinData<IIC_fpLoad32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// Double-precision FP Load
InstrItinData<IIC_fpLoad64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// FP Load Multiple
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpLoad_m, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 4], [], -1>, // dynamic uops
//
// FP Load Multiple + update
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1, 4], [], -1>, // dynamic uops
//
// Single-precision FP Store
InstrItinData<IIC_fpStore32,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// Double-precision FP Store
InstrItinData<IIC_fpStore64,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// FP Store Multiple
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpStore_m,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1], [], -1>, // dynamic uops
//
// FP Store Multiple + update
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpStore_mu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1], [], -1>, // dynamic uops
// NEON
//
// Double-register Integer Unary
InstrItinData<IIC_VUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Quad-register Integer Unary
InstrItinData<IIC_VUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Double-register Integer Q-Unary
InstrItinData<IIC_VQUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Quad-register Integer CountQ-Unary
InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Double-register Integer Binary
InstrItinData<IIC_VBINiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Binary
InstrItinData<IIC_VBINiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Subtract
InstrItinData<IIC_VSUBiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Subtract
InstrItinData<IIC_VSUBiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Shift
InstrItinData<IIC_VSHLiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Shift
InstrItinData<IIC_VSHLiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Subtract (4 cycle)
InstrItinData<IIC_VSUBi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Subtract (4 cycle)
InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Count
InstrItinData<IIC_VCNTiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Count
InstrItinData<IIC_VCNTiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
//
// Quad-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
//
// Double-register Integer Pair Add Long
InstrItinData<IIC_VPALiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Pair Add Long
InstrItinData<IIC_VPALiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Double-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Quad-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Quad-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Move
InstrItinData<IIC_VMOV, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Move Immediate
InstrItinData<IIC_VMOVImm, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2]>,
//
// Double-register Permute Move
InstrItinData<IIC_VMOVD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Quad-register Permute Move
InstrItinData<IIC_VMOVQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Integer to Single-precision Move
InstrItinData<IIC_VMOVIS , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Integer to Double-precision Move
InstrItinData<IIC_VMOVID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1, 1]>,
//
// Single-precision to Integer Move
InstrItinData<IIC_VMOVSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
//
// Double-precision to Integer Move
InstrItinData<IIC_VMOVDI , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Integer to Lane Move
// FIXME: I think this is correct, but it is not clear from the tuning guide.
InstrItinData<IIC_VMOVISL , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Vector narrow move
InstrItinData<IIC_VMOVN, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Double-register FP Unary
// FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
// and they issue on a different pipeline.
InstrItinData<IIC_VUNAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Quad-register FP Unary
// FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
// and they issue on a different pipeline.
InstrItinData<IIC_VUNAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Double-register FP Binary
// FIXME: We're using this itin for many instructions.
InstrItinData<IIC_VBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// VPADD, etc.
InstrItinData<IIC_VPBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register FP VMUL
InstrItinData<IIC_VFMULD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register FP Binary
InstrItinData<IIC_VBINQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register FP VMUL
InstrItinData<IIC_VFMULQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register FP Multiple-Accumulate
InstrItinData<IIC_VMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register FP Multiple-Accumulate
InstrItinData<IIC_VMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Fused FP Multiple-Accumulate
InstrItinData<IIC_VFMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register FusedF P Multiple-Accumulate
InstrItinData<IIC_VFMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Reciprical Step
InstrItinData<IIC_VRECSD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register Reciprical Step
InstrItinData<IIC_VRECSQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Permute
// FIXME: The latencies are unclear from the documentation.
InstrItinData<IIC_VPERMD, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Quad-register Permute
// FIXME: The latencies are unclear from the documentation.
InstrItinData<IIC_VPERMQ, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Quad-register Permute (3 cycle issue on A9)
InstrItinData<IIC_VPERMQ3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Double-register VEXT
InstrItinData<IIC_VEXTD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
//
// Quad-register VEXT
InstrItinData<IIC_VEXTQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
//
// VTB
InstrItinData<IIC_VTB1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_VTB2, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 3, 3]>,
InstrItinData<IIC_VTB3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 3, 5, 5]>,
InstrItinData<IIC_VTB4, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 3, 5, 7, 7]>,
//
// VTBX
InstrItinData<IIC_VTBX1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_VTBX2, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 3, 3]>,
InstrItinData<IIC_VTBX3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 3, 5, 5]>,
InstrItinData<IIC_VTBX4, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 3, 5, 7, 7]>
]>;
// ===---------------------------------------------------------------------===//
// This following definitions describe the simple machine model which
// will replace itineraries.
// Swift machine model for scheduling and other instruction cost heuristics.
def SwiftModel : SchedMachineModel {
let IssueWidth = 3; // 3 micro-ops are dispatched per cycle.
let MinLatency = 0; // Data dependencies are allowed within dispatch groups.
let LoadLatency = 3;
let MispredictPenalty = 14; // A branch direction mispredict.
let Itineraries = SwiftItineraries;
}
// Swift predicates.
def IsFastImmShiftSwiftPred : SchedPredicate<[{TII->isSwiftFastImmShift(MI)}]>;
// Swift resource mapping.
let SchedModel = SwiftModel in {
// Processor resources.
def SwiftUnitP01 : ProcResource<2>; // ALU unit.
def SwiftUnitP0 : ProcResource<1> { let Super = SwiftUnitP01; } // Mul unit.
def SwiftUnitP1 : ProcResource<1> { let Super = SwiftUnitP01; } // Br unit.
def SwiftUnitP2 : ProcResource<1>; // LS unit.
def SwiftUnitDiv : ProcResource<1>;
// Generic resource requirements.
def SwiftWriteP0OneCycle : SchedWriteRes<[SwiftUnitP0]>;
def SwiftWriteP0TwoCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 2; }
def SwiftWriteP0FourCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 4; }
def SwiftWriteP0SixCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 6; }
def SwiftWriteP0P1FourCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP1]> {
let Latency = 4;
}
def SwiftWriteP0P1SixCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP1]> {
let Latency = 6;
}
def SwiftWriteP01OneCycle : SchedWriteRes<[SwiftUnitP01]>;
def SwiftWriteP1TwoCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 2; }
def SwiftWriteP1FourCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 4; }
def SwiftWriteP1SixCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 6; }
def SwiftWriteP1EightCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 8; }
def SwiftWriteP1TwelveCyc : SchedWriteRes<[SwiftUnitP1]> { let Latency = 12; }
def SwiftWriteP01OneCycle2x : WriteSequence<[SwiftWriteP01OneCycle], 2>;
def SwiftWriteP01OneCycle3x : WriteSequence<[SwiftWriteP01OneCycle], 3>;
def SwiftWriteP01TwoCycle : SchedWriteRes<[SwiftUnitP01]> { let Latency = 2; }
def SwiftWriteP01ThreeCycleTwoUops : SchedWriteRes<[SwiftUnitP01,
SwiftUnitP01]> {
let Latency = 3;
let NumMicroOps = 2;
}
def SwiftWriteP0ThreeCycleThreeUops : SchedWriteRes<[SwiftUnitP0]> {
let Latency = 3;
let NumMicroOps = 3;
let ResourceCycles = [3];
}
// Plain load without writeback.
def SwiftWriteP2ThreeCycle : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 3;
}
def SwiftWriteP2FourCycle : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 4;
}
// A store does not write to a register.
def SwiftWriteP2 : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 0;
}
foreach Num = 1-4 in {
def SwiftWrite#Num#xP2 : WriteSequence<[SwiftWriteP2], Num>;
}
def SwiftWriteP01OneCycle2x_load : WriteSequence<[SwiftWriteP01OneCycle,
SwiftWriteP01OneCycle,
SwiftWriteP2ThreeCycle]>;
// 4.2.4 Arithmetic and Logical.
// ALU operation register shifted by immediate variant.
def SwiftWriteALUsi : SchedWriteVariant<[
// lsl #2, lsl #1, or lsr #1.
SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01TwoCycle]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def SwiftWriteALUsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [SwiftWriteP01ThreeCycleTwoUops]>,
SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
]>;
def SwiftWriteALUSsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [SwiftWriteP0ThreeCycleThreeUops]>,
SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
]>;
def SwiftReadAdvanceALUsr : SchedReadVariant<[
SchedVar<IsPredicatedPred, [SchedReadAdvance<2>]>,
SchedVar<NoSchedPred, [NoReadAdvance]>
]>;
// ADC,ADD,NEG,RSB,RSC,SBC,SUB,ADR
// AND,BIC,EOR,ORN,ORR
// CLZ,RBIT,REV,REV16,REVSH,PKH
def : WriteRes<WriteALU, [SwiftUnitP01]>;
def : SchedAlias<WriteALUsi, SwiftWriteALUsi>;
def : SchedAlias<WriteALUsr, SwiftWriteALUsr>;
def : SchedAlias<WriteALUSsr, SwiftWriteALUSsr>;
def : ReadAdvance<ReadALU, 0>;
def : SchedAlias<ReadALUsr, SwiftReadAdvanceALUsr>;
def SwiftChooseShiftKindP01OneOrTwoCycle : SchedWriteVariant<[
SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01OneCycle]>,
SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
]>;
// 4.2.5 Integer comparison
def : WriteRes<WriteCMP, [SwiftUnitP01]>;
def : SchedAlias<WriteCMPsi, SwiftChooseShiftKindP01OneOrTwoCycle>;
def : SchedAlias<WriteCMPsr, SwiftWriteP01TwoCycle>;
// 4.2.6 Shift, Move
// Shift
// ASR,LSL,ROR,RRX
// MOV(register-shiftedregister) MVN(register-shiftedregister)
// Move
// MOV,MVN
// MOVT
// Sign/Zero extension
def : InstRW<[SwiftWriteP01OneCycle],
(instregex "SXTB", "SXTH", "SXTB16", "UXTB", "UXTH", "UXTB16",
"t2SXTB", "t2SXTH", "t2SXTB16", "t2UXTB", "t2UXTH",
"t2UXTB16")>;
// Pseudo instructions.
def : InstRW<[SwiftWriteP01OneCycle2x],
(instregex "MOVCCi32imm", "MOVi32imm", "MOV_ga_dyn", "t2MOVCCi32imm",
"t2MOVi32imm", "t2MOV_ga_dyn")>;
def : InstRW<[SwiftWriteP01OneCycle3x],
(instregex "MOV_ga_pcrel", "t2MOV_ga_pcrel", "t2MOVi16_ga_pcrel")>;
def : InstRW<[SwiftWriteP01OneCycle2x_load],
(instregex "MOV_ga_pcrel_ldr", "t2MOV_ga_pcrel_ldr")>;
def SwiftWriteP0TwoCyleTwoUops : WriteSequence<[SwiftWriteP0OneCycle], 2>;
def SwiftPredP0OneOrTwoCycle : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [ SwiftWriteP0TwoCyleTwoUops ]>,
SchedVar<NoSchedPred, [ SwiftWriteP0OneCycle ]>
]>;
// 4.2.7 Select
// SEL
def : InstRW<[SwiftPredP0OneOrTwoCycle], (instregex "SEL", "t2SEL")>;
// 4.2.8 Bitfield
// BFI,BFC, SBFX,UBFX
def : InstRW< [SwiftWriteP01TwoCycle],
(instregex "BFC", "BFI", "UBFX", "SBFX", "(t|t2)BFC", "(t|t2)BFI",
"(t|t2)UBFX", "(t|t2)SBFX")>;
// 4.2.9 Saturating arithmetic
def : InstRW< [SwiftWriteP01TwoCycle],
(instregex "QADD", "QSUB", "QDADD", "QDSUB", "SSAT", "SSAT16", "USAT",
"USAT16", "QADD8", "QADD16", "QSUB8", "QSUB16", "QASX", "QSAX",
"UQADD8", "UQADD16","UQSUB8","UQSUB16","UQASX","UQSAX", "t2QADD",
"t2QSUB", "t2QDADD", "t2QDSUB", "t2SSAT", "t2SSAT16", "t2USAT",
"t2QADD8", "t2QADD16", "t2QSUB8", "t2QSUB16", "t2QASX", "t2QSAX",
"t2UQADD8", "t2UQADD16","t2UQSUB8","t2UQSUB16","t2UQASX","t2UQSAX")>;
// 4.2.10 Parallel Arithmetic
// Not flag setting.
def : InstRW< [SwiftWriteALUsr],
(instregex "SADD8", "SADD16", "SSUB8", "SSUB16", "SASX", "SSAX",
"UADD8", "UADD16", "USUB8", "USUB16", "UASX", "USAX", "t2SADD8",
"t2SADD16", "t2SSUB8", "t2SSUB16", "t2SASX", "t2SSAX", "t2UADD8",
"t2UADD16", "t2USUB8", "t2USUB16", "t2UASX", "t2USAX")>;
// Flag setting.
def : InstRW< [SwiftWriteP01TwoCycle],
(instregex "SHADD8", "SHADD16", "SHSUB8", "SHSUB16", "SHASX", "SHSAX",
"SXTAB", "SXTAB16", "SXTAH", "UHADD8", "UHADD16", "UHSUB8", "UHSUB16",
"UHASX", "UHSAX", "UXTAB", "UXTAB16", "UXTAH", "t2SHADD8", "t2SHADD16",
"t2SHSUB8", "t2SHSUB16", "t2SHASX", "t2SHSAX", "t2SXTAB", "t2SXTAB16",
"t2SXTAH", "t2UHADD8", "t2UHADD16", "t2UHSUB8", "t2UHSUB16", "t2UHASX",
"t2UHSAX", "t2UXTAB", "t2UXTAB16", "t2UXTAH")>;
// 4.2.11 Sum of Absolute Difference
def : InstRW< [SwiftWriteP0P1FourCycle], (instregex "USAD8") >;
def : InstRW<[SwiftWriteP0P1FourCycle, ReadALU, ReadALU, SchedReadAdvance<2>],
(instregex "USADA8")>;
// 4.2.12 Integer Multiply (32-bit result)
// Two sources.
def : InstRW< [SwiftWriteP0FourCycle],
(instregex "MULS", "MUL", "SMMUL", "SMMULR", "SMULBB", "SMULBT",
"SMULTB", "SMULTT", "SMULWB", "SMULWT", "SMUSD", "SMUSDXi", "t2MUL",
"t2SMMUL", "t2SMMULR", "t2SMULBB", "t2SMULBT", "t2SMULTB", "t2SMULTT",
"t2SMULWB", "t2SMULWT", "t2SMUSD")>;
def SwiftWriteP0P01FiveCycleTwoUops :
SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
let Latency = 5;
}
def SwiftPredP0P01FourFiveCycle : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [ SwiftWriteP0P01FiveCycleTwoUops ]>,
SchedVar<NoSchedPred, [ SwiftWriteP0FourCycle ]>
]>;
def SwiftReadAdvanceFourCyclesPred : SchedReadVariant<[
SchedVar<IsPredicatedPred, [SchedReadAdvance<4>]>,
SchedVar<NoSchedPred, [ReadALU]>
]>;
// Multiply accumulate, three sources
def : InstRW< [SwiftPredP0P01FourFiveCycle, ReadALU, ReadALU,
SwiftReadAdvanceFourCyclesPred],
(instregex "MLAS", "MLA", "MLS", "SMMLA", "SMMLAR", "SMMLS", "SMMLSR",
"t2MLA", "t2MLS", "t2MLAS", "t2SMMLA", "t2SMMLAR", "t2SMMLS",
"t2SMMLSR")>;
// 4.2.13 Integer Multiply (32-bit result, Q flag)
def : InstRW< [SwiftWriteP0FourCycle],
(instregex "SMUAD", "SMUADX", "t2SMUAD", "t2SMUADX")>;
def : InstRW< [SwiftPredP0P01FourFiveCycle, ReadALU, ReadALU,
SwiftReadAdvanceFourCyclesPred],
(instregex "SMLABB", "SMLABT", "SMLATB", "SMLATT", "SMLSD", "SMLSDX",
"SMLAWB", "SMLAWT", "t2SMLABB", "t2SMLABT", "t2SMLATB", "t2SMLATT",
"t2SMLSD", "t2SMLSDX", "t2SMLAWB", "t2SMLAWT")>;
def : InstRW< [SwiftPredP0P01FourFiveCycle],
(instregex "SMLAD", "SMLADX", "t2SMLAD", "t2SMLADX")>;
def SwiftP0P0P01FiveCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
let Latency = 5;
let NumMicroOps = 3;
let ResourceCycles = [2, 1];
}
def SwiftWrite1Cycle : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def SwiftWrite5Cycle : SchedWriteRes<[]> {
let Latency = 5;
let NumMicroOps = 0;
}
def SwiftWrite6Cycle : SchedWriteRes<[]> {
let Latency = 6;
let NumMicroOps = 0;
}
// 4.2.14 Integer Multiply, Long
def : InstRW< [SwiftP0P0P01FiveCycle, SwiftWrite5Cycle],
(instregex "SMULL$", "UMULL$", "t2SMULL$", "t2UMULL$")>;
def Swift2P03P01FiveCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
let Latency = 7;
let NumMicroOps = 5;
let ResourceCycles = [2, 3];
}
// 4.2.15 Integer Multiply Accumulate, Long
// 4.2.16 Integer Multiply Accumulate, Dual
// 4.2.17 Integer Multiply Accumulate Accumulate, Long
// We are being a bit inaccurate here.
def : InstRW< [SwiftWrite5Cycle, Swift2P03P01FiveCycle, ReadALU, ReadALU,
SchedReadAdvance<4>, SchedReadAdvance<3>],
(instregex "SMLALS", "UMLALS", "SMLAL", "UMLAL", "MLALBB", "SMLALBT",
"SMLALTB", "SMLALTT", "SMLALD", "SMLALDX", "SMLSLD", "SMLSLDX",
"UMAAL", "t2SMLALS", "t2UMLALS", "t2SMLAL", "t2UMLAL", "t2MLALBB", "t2SMLALBT",
"t2SMLALTB", "t2SMLALTT", "t2SMLALD", "t2SMLALDX", "t2SMLSLD", "t2SMLSLDX",
"t2UMAAL")>;
def SwiftDiv : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
let NumMicroOps = 1;
let Latency = 14;
let ResourceCycles = [1, 14];
}
// 4.2.18 Integer Divide
def : WriteRes<WriteDiv, [SwiftUnitDiv]>; // Workaround.
def : InstRW <[SwiftDiv],
(instregex "SDIV", "UDIV", "t2SDIV", "t2UDIV")>;
// 4.2.19 Integer Load Single Element
// 4.2.20 Integer Load Signextended
def SwiftWriteP2P01ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
let Latency = 3;
}
def SwiftWriteP2P01FourCyle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
let Latency = 4;
}
def SwiftWriteP2P01P01FourCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01,
SwiftUnitP01]> {
let Latency = 4;
}
def SwiftWriteP2P2ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP2]> {
let Latency = 3;
}
def SwiftWriteP2P2P01ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP2,
SwiftUnitP01]> {
let Latency = 3;
}
def SwiftWrBackOne : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def SwiftWriteLdFour : SchedWriteRes<[]> {
let Latency = 4;
let NumMicroOps = 0;
}
// Not accurate.
def : InstRW<[SwiftWriteP2ThreeCycle],
(instregex "LDR(i12|rs)$", "LDRB(i12|rs)$", "t2LDR(i8|i12|s|pci)",
"t2LDR(H|B)(i8|i12|s|pci)", "LDREX", "tLDR[BH](r|i|spi|pci|pciASM)",
"tLDR(r|i|spi|pci|pciASM)")>;
def : InstRW<[SwiftWriteP2ThreeCycle],
(instregex "LDRH$", "PICLDR$", "PICLDR(H|B)$", "LDRcp$")>;
def : InstRW<[SwiftWriteP2P01FourCyle],
(instregex "PICLDRS(H|B)$", "t2LDRS(H|B)(i|r|p|s)", "LDRS(H|B)$",
"t2LDRpci_pic", "tLDRS(B|H)")>;
def : InstRW<[SwiftWriteP2P01ThreeCycle, SwiftWrBackOne],
(instregex "LD(RB|R)(_|T_)(POST|PRE)_(IMM|REG)", "LDRH(_PRE|_POST)",
"LDR(T|BT)_POST_(REG|IMM)", "LDRHT(i|r)",
"t2LD(R|RB|RH)_(PRE|POST)", "t2LD(R|RB|RH)T")>;
def : InstRW<[SwiftWriteP2P01P01FourCycle, SwiftWrBackOne],
(instregex "LDR(SH|SB)(_POST|_PRE)", "t2LDR(SH|SB)(_POST|_PRE)",
"LDRS(B|H)T(i|r)", "t2LDRS(B|H)T(i|r)", "t2LDRS(B|H)T")>;
// 4.2.21 Integer Dual Load
// Not accurate.
def : InstRW<[SwiftWriteP2P2ThreeCycle, SwiftWriteLdFour],
(instregex "t2LDRDi8", "LDRD$")>;
def : InstRW<[SwiftWriteP2P2P01ThreeCycle, SwiftWriteLdFour, SwiftWrBackOne],
(instregex "LDRD_(POST|PRE)", "t2LDRD_(POST|PRE)")>;
// 4.2.22 Integer Load, Multiple
// NumReg = 1 .. 16
foreach Lat = 3-25 in {
def SwiftWriteLM#Lat#Cy : SchedWriteRes<[SwiftUnitP2]> {
let Latency = Lat;
}
def SwiftWriteLM#Lat#CyNo : SchedWriteRes<[]> { let Latency = Lat; }
}
// Predicate.
foreach NumAddr = 1-16 in {
def SwiftLMAddr#NumAddr#Pred : SchedPredicate<"TII->getNumLDMAddresses(MI) == "#NumAddr>;
}
def SwiftWriteLDMAddrNoWB : SchedWriteRes<[SwiftUnitP01]> { let Latency = 0; }
def SwiftWriteLDMAddrWB : SchedWriteRes<[SwiftUnitP01, SwiftUnitP01]>;
def SwiftWriteLM : SchedWriteVariant<[
SchedVar<SwiftLMAddr2Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy]>,
SchedVar<SwiftLMAddr3Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy]>,
SchedVar<SwiftLMAddr4Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy]>,
SchedVar<SwiftLMAddr5Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy]>,
SchedVar<SwiftLMAddr6Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy]>,
SchedVar<SwiftLMAddr7Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy]>,
SchedVar<SwiftLMAddr8Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy]>,
SchedVar<SwiftLMAddr9Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy]>,
SchedVar<SwiftLMAddr10Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy]>,
SchedVar<SwiftLMAddr11Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy]>,
SchedVar<SwiftLMAddr12Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy]>,
SchedVar<SwiftLMAddr13Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy,
SwiftWriteLM15Cy]>,
SchedVar<SwiftLMAddr14Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy,
SwiftWriteLM15Cy, SwiftWriteLM16Cy]>,
SchedVar<SwiftLMAddr15Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy,
SwiftWriteLM15Cy, SwiftWriteLM16Cy,
SwiftWriteLM17Cy]>,
SchedVar<SwiftLMAddr16Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5Cy, SwiftWriteLM6Cy,
SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM12Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy,
SwiftWriteLM15Cy, SwiftWriteLM16Cy,
SwiftWriteLM17Cy, SwiftWriteLM18Cy]>,
// Unknow number of registers, just use resources for two registers.
SchedVar<NoSchedPred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
SwiftWriteLM5CyNo, SwiftWriteLM6CyNo,
SwiftWriteLM7CyNo, SwiftWriteLM8CyNo,
SwiftWriteLM9CyNo, SwiftWriteLM10CyNo,
SwiftWriteLM11CyNo, SwiftWriteLM12CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM15CyNo, SwiftWriteLM16CyNo,
SwiftWriteLM17CyNo, SwiftWriteLM18CyNo]>
]> { let Variadic=1; }
def : InstRW<[SwiftWriteLM, SwiftWriteLDMAddrNoWB],
(instregex "LDM(IA|DA|DB|IB)$", "t2LDM(IA|DA|DB|IB)$",
"(t|sys)LDM(IA|DA|DB|IB)$")>;
def : InstRW<[SwiftWriteLDMAddrWB, SwiftWriteLM],
(instregex /*"t2LDMIA_RET", "tLDMIA_RET", "LDMIA_RET",*/
"LDM(IA|DA|DB|IB)_UPD", "(t2|sys|t)LDM(IA|DA|DB|IB)_UPD")>;
def : InstRW<[SwiftWriteLDMAddrWB, SwiftWriteLM, SwiftWriteP1TwoCycle],
(instregex "LDMIA_RET", "(t|t2)LDMIA_RET", "POP", "tPOP")>;
// 4.2.23 Integer Store, Single Element
def : InstRW<[SwiftWriteP2],
(instregex "PICSTR", "STR(i12|rs)", "STRB(i12|rs)", "STRH$", "STREX",
"t2STR(i12|i8|s)$", "t2STR[BH](i12|i8|s)$", "tSTR[BH](i|r)", "tSTR(i|r)", "tSTRspi")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteP2],
(instregex "STR(B_|_|BT_|T_)(PRE_IMM|PRE_REG|POST_REG|POST_IMM)",
"STR(i|r)_preidx", "STRB(i|r)_preidx", "STRH_preidx", "STR(H_|HT_)(PRE|POST)",
"STR(BT|HT|T)", "t2STR_(PRE|POST)", "t2STR[BH]_(PRE|POST)",
"t2STR_preidx", "t2STR[BH]_preidx", "t2ST(RB|RH|R)T")>;
// 4.2.24 Integer Store, Dual
def : InstRW<[SwiftWriteP2, SwiftWriteP2, SwiftWriteP01OneCycle],
(instregex "STRD$", "t2STRDi8")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteP2, SwiftWriteP2,
SwiftWriteP01OneCycle],
(instregex "(t2|t)STRD_(POST|PRE)", "STRD_(POST|PRE)")>;
// 4.2.25 Integer Store, Multiple
def SwiftWriteStIncAddr : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
let Latency = 0;
}
foreach NumAddr = 1-16 in {
def SwiftWriteSTM#NumAddr : WriteSequence<[SwiftWriteStIncAddr], NumAddr>;
}
def SwiftWriteSTM : SchedWriteVariant<[
SchedVar<SwiftLMAddr2Pred, [SwiftWriteSTM2]>,
SchedVar<SwiftLMAddr3Pred, [SwiftWriteSTM3]>,
SchedVar<SwiftLMAddr4Pred, [SwiftWriteSTM4]>,
SchedVar<SwiftLMAddr5Pred, [SwiftWriteSTM5]>,
SchedVar<SwiftLMAddr6Pred, [SwiftWriteSTM6]>,
SchedVar<SwiftLMAddr7Pred, [SwiftWriteSTM7]>,
SchedVar<SwiftLMAddr8Pred, [SwiftWriteSTM8]>,
SchedVar<SwiftLMAddr9Pred, [SwiftWriteSTM9]>,
SchedVar<SwiftLMAddr10Pred,[SwiftWriteSTM10]>,
SchedVar<SwiftLMAddr11Pred,[SwiftWriteSTM11]>,
SchedVar<SwiftLMAddr12Pred,[SwiftWriteSTM12]>,
SchedVar<SwiftLMAddr13Pred,[SwiftWriteSTM13]>,
SchedVar<SwiftLMAddr14Pred,[SwiftWriteSTM14]>,
SchedVar<SwiftLMAddr15Pred,[SwiftWriteSTM15]>,
SchedVar<SwiftLMAddr16Pred,[SwiftWriteSTM16]>,
// Unknow number of registers, just use resources for two registers.
SchedVar<NoSchedPred, [SwiftWriteSTM2]>
]>;
def : InstRW<[SwiftWriteSTM],
(instregex "STM(IB|IA|DB|DA)$", "(t2|sys|t)STM(IB|IA|DB|DA)$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteSTM],
(instregex "STM(IB|IA|DB|DA)_UPD", "(t2|sys|t)STM(IB|IA|DB|DA)_UPD",
"PUSH", "tPUSH")>;
// 4.2.26 Branch
def : WriteRes<WriteBr, [SwiftUnitP1]> { let Latency = 0; }
def : WriteRes<WriteBrL, [SwiftUnitP1]> { let Latency = 2; }
def : WriteRes<WriteBrTbl, [SwiftUnitP1, SwiftUnitP2]> { let Latency = 0; }
// 4.2.27 Not issued
def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
def : InstRW<[WriteNoop], (instregex "t2IT", "IT", "NOP")>;
// 4.2.28 Advanced SIMD, Integer, 2 cycle
def : InstRW<[SwiftWriteP0TwoCycle],
(instregex "VADDv", "VSUBv", "VNEG(s|f|v)", "VADDL", "VSUBL",
"VADDW", "VSUBW", "VHADD", "VHSUB", "VRHADD", "VPADDi",
"VPADDL", "VAND", "VBIC", "VEOR", "VORN", "VORR", "VTST",
"VSHL", "VSHR(s|u)", "VSHLL", "VQSHL", "VQSHLU", "VBIF",
"VBIT", "VBSL", "VSLI", "VSRI", "VCLS", "VCLZ", "VCNT")>;
def : InstRW<[SwiftWriteP1TwoCycle],
(instregex "VEXT", "VREV16", "VREV32", "VREV64")>;
// 4.2.29 Advanced SIMD, Integer, 4 cycle
// 4.2.30 Advanced SIMD, Integer with Accumulate
def : InstRW<[SwiftWriteP0FourCycle],
(instregex "VABA", "VABAL", "VPADAL", "VRSRA", "VSRA", "VACGE", "VACGT",
"VACLE", "VACLT", "VCEQ", "VCGE", "VCGT", "VCLE", "VCLT", "VRSHL",
"VQRSHL", "VRSHR(u|s)", "VABS(f|v)", "VQABS", "VQNEG", "VQADD",
"VQSUB")>;
def : InstRW<[SwiftWriteP1FourCycle],
(instregex "VRECPE", "VRSQRTE")>;
// 4.2.31 Advanced SIMD, Add and Shift with Narrow
def : InstRW<[SwiftWriteP0P1FourCycle],
(instregex "VADDHN", "VSUBHN", "VSHRN")>;
def : InstRW<[SwiftWriteP0P1SixCycle],
(instregex "VRADDHN", "VRSUBHN", "VRSHRN", "VQSHRN", "VQSHRUN",
"VQRSHRN", "VQRSHRUN")>;
// 4.2.32 Advanced SIMD, Vector Table Lookup
foreach Num = 1-4 in {
def SwiftWrite#Num#xP1TwoCycle : WriteSequence<[SwiftWriteP1TwoCycle], Num>;
}
def : InstRW<[SwiftWrite1xP1TwoCycle],
(instregex "VTB(L|X)1")>;
def : InstRW<[SwiftWrite2xP1TwoCycle],
(instregex "VTB(L|X)2")>;
def : InstRW<[SwiftWrite3xP1TwoCycle],
(instregex "VTB(L|X)3")>;
def : InstRW<[SwiftWrite4xP1TwoCycle],
(instregex "VTB(L|X)4")>;
// 4.2.33 Advanced SIMD, Transpose
def : InstRW<[SwiftWriteP1FourCycle, SwiftWriteP1FourCycle,
SwiftWriteP1TwoCycle/*RsrcOnly*/, SchedReadAdvance<2>],
(instregex "VSWP", "VTRN", "VUZP", "VZIP")>;
// 4.2.34 Advanced SIMD and VFP, Floating Point
def : InstRW<[SwiftWriteP0TwoCycle], (instregex "VABS(S|D)$", "VNEG(S|D)$")>;
def : InstRW<[SwiftWriteP0FourCycle],
(instregex "VCMP(D|S|ZD|ZS)$", "VCMPE(D|S|ZD|ZS)")>;
def : InstRW<[SwiftWriteP0FourCycle],
(instregex "VADD(S|f)", "VSUB(S|f)", "VABD", "VPADDf", "VMAX", "VMIN", "VPMAX",
"VPMIN")>;
def : InstRW<[SwiftWriteP0SixCycle], (instregex "VADDD$", "VSUBD$")>;
def : InstRW<[SwiftWriteP1EightCycle], (instregex "VRECPS", "VRSQRTS")>;
// 4.2.35 Advanced SIMD and VFP, Multiply
def : InstRW<[SwiftWriteP1FourCycle],
(instregex "VMUL(S|v|p|f|s)", "VNMULS", "VQDMULH", "VQRDMULH",
"VMULL", "VQDMULL")>;
def : InstRW<[SwiftWriteP1SixCycle],
(instregex "VMULD", "VNMULD")>;
def : InstRW<[SwiftWriteP1FourCycle],
(instregex "VMLA", "VMLS", "VNMLA", "VNMLS", "VFMA(S|D)", "VFMS(S|D)",
"VFNMA", "VFNMS", "VMLAL", "VMLSL","VQDMLAL", "VQDMLSL")>;
def : InstRW<[SwiftWriteP1EightCycle], (instregex "VFMAfd", "VFMSfd")>;
def : InstRW<[SwiftWriteP1TwelveCyc], (instregex "VFMAfq", "VFMSfq")>;
// 4.2.36 Advanced SIMD and VFP, Convert
def : InstRW<[SwiftWriteP1FourCycle], (instregex "VCVT", "V(S|U)IT", "VTO(S|U)")>;
// Fixpoint conversions.
def : WriteRes<WriteCvtFP, [SwiftUnitP1]> { let Latency = 4; }
// 4.2.37 Advanced SIMD and VFP, Move
def : InstRW<[SwiftWriteP0TwoCycle],
(instregex "VMOVv", "VMOV(S|D)$", "VMOV(S|D)cc",
"VMVNv", "VMVN(d|q)", "VMVN(S|D)cc",
"FCONST(D|S)")>;
def : InstRW<[SwiftWriteP1TwoCycle], (instregex "VMOVN", "VMOVL")>;
def : InstRW<[WriteSequence<[SwiftWriteP0FourCycle, SwiftWriteP1TwoCycle]>],
(instregex "VQMOVN")>;
def : InstRW<[SwiftWriteP1TwoCycle], (instregex "VDUPLN", "VDUPf")>;
def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP1TwoCycle]>],
(instregex "VDUP(8|16|32)")>;
def : InstRW<[SwiftWriteP2ThreeCycle], (instregex "VMOVRS$")>;
def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP0TwoCycle]>],
(instregex "VMOVSR$", "VSETLN")>;
def : InstRW<[SwiftWriteP2ThreeCycle, SwiftWriteP2FourCycle],
(instregex "VMOVRR(D|S)$")>;
def : InstRW<[SwiftWriteP2FourCycle], (instregex "VMOVDRR$")>;
def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP1TwoCycle]>,
WriteSequence<[SwiftWrite1Cycle, SwiftWriteP2FourCycle,
SwiftWriteP1TwoCycle]>],
(instregex "VMOVSRR$")>;
def : InstRW<[WriteSequence<[SwiftWriteP1TwoCycle, SwiftWriteP2ThreeCycle]>],
(instregex "VGETLN(u|i)")>;
def : InstRW<[WriteSequence<[SwiftWriteP1TwoCycle, SwiftWriteP2ThreeCycle,
SwiftWriteP01OneCycle]>],
(instregex "VGETLNs")>;
// 4.2.38 Advanced SIMD and VFP, Move FPSCR
// Serializing instructions.
def SwiftWaitP0For15Cy : SchedWriteRes<[SwiftUnitP0]> {
let Latency = 15;
let ResourceCycles = [15];
}
def SwiftWaitP1For15Cy : SchedWriteRes<[SwiftUnitP1]> {
let Latency = 15;
let ResourceCycles = [15];
}
def SwiftWaitP2For15Cy : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 15;
let ResourceCycles = [15];
}
def : InstRW<[SwiftWaitP0For15Cy, SwiftWaitP1For15Cy, SwiftWaitP2For15Cy],
(instregex "VMRS")>;
def : InstRW<[SwiftWaitP0For15Cy, SwiftWaitP1For15Cy, SwiftWaitP2For15Cy],
(instregex "VMSR")>;
// Not serializing.
def : InstRW<[SwiftWriteP0TwoCycle], (instregex "FMSTAT")>;
// 4.2.39 Advanced SIMD and VFP, Load Single Element
def : InstRW<[SwiftWriteLM4Cy], (instregex "VLDRD$", "VLDRS$")>;
// 4.2.40 Advanced SIMD and VFP, Store Single Element
def : InstRW<[SwiftWriteLM4Cy], (instregex "VSTRD$", "VSTRS$")>;
// 4.2.41 Advanced SIMD and VFP, Load Multiple
// 4.2.42 Advanced SIMD and VFP, Store Multiple
// Resource requirement for permuting, just reserves the resources.
foreach Num = 1-28 in {
def SwiftVLDMPerm#Num : SchedWriteRes<[SwiftUnitP1]> {
let Latency = 0;
let NumMicroOps = Num;
let ResourceCycles = [Num];
}
}
// Pre RA pseudos - load/store to a Q register as a D register pair.
def : InstRW<[SwiftWriteLM4Cy], (instregex "VLDMQIA$", "VSTMQIA$")>;
// Post RA not modelled accurately. We assume that register use of width 64
// bit maps to a D register, 128 maps to a Q register. Not all different kinds
// are accurately represented.
def SwiftWriteVLDM : SchedWriteVariant<[
// Load of one S register.
SchedVar<SwiftLMAddr1Pred, [SwiftWriteLM4Cy]>,
// Load of one D register.
SchedVar<SwiftLMAddr2Pred, [SwiftWriteLM4Cy, SwiftWriteLM4CyNo]>,
// Load of 3 S register.
SchedVar<SwiftLMAddr3Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm3]>,
// Load of a Q register (not neccessarily true). We should not be mapping to
// 4 S registers, either.
SchedVar<SwiftLMAddr4Pred, [SwiftWriteLM4Cy, SwiftWriteLM4CyNo,
SwiftWriteLM4CyNo, SwiftWriteLM4CyNo]>,
// Load of 5 S registers.
SchedVar<SwiftLMAddr5Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM17CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm5]>,
// Load of 3 D registers. (Must also be able to handle s register list -
// though, not accurate)
SchedVar<SwiftLMAddr6Pred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM10Cy, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm5]>,
// Load of 7 S registers.
SchedVar<SwiftLMAddr7Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
SwiftWriteLM21CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm7]>,
// Load of two Q registers.
SchedVar<SwiftLMAddr8Pred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM13Cy, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm2]>,
// Load of 9 S registers.
SchedVar<SwiftLMAddr9Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm9]>,
// Load of 5 D registers.
SchedVar<SwiftLMAddr10Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM10Cy, SwiftWriteLM14Cy,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm5]>,
// Inaccurate: reuse describtion from 9 S registers.
SchedVar<SwiftLMAddr11Pred,[SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm9]>,
// Load of three Q registers.
SchedVar<SwiftLMAddr12Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM11Cy, SwiftWriteLM11Cy,
SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm3]>,
// Inaccurate: reuse describtion from 9 S registers.
SchedVar<SwiftLMAddr13Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm9]>,
// Load of 7 D registers inaccurate.
SchedVar<SwiftLMAddr14Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM10Cy, SwiftWriteLM14Cy,
SwiftWriteLM14Cy, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm7]>,
SchedVar<SwiftLMAddr15Pred,[SwiftWriteLM9Cy, SwiftWriteLM10Cy,
SwiftWriteLM13Cy, SwiftWriteLM14Cy,
SwiftWriteLM17Cy, SwiftWriteLM18CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
SwiftVLDMPerm9]>,
// Load of 4 Q registers.
SchedVar<SwiftLMAddr16Pred,[SwiftWriteLM7Cy, SwiftWriteLM10Cy,
SwiftWriteLM11Cy, SwiftWriteLM14Cy,
SwiftWriteLM15Cy, SwiftWriteLM18CyNo,
SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm4]>,
// Unknow number of registers, just use resources for two registers.
SchedVar<NoSchedPred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
SwiftWriteLM13Cy, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm2]>
]> { let Variadic = 1; }
def : InstRW<[SwiftWriteVLDM], (instregex "VLDM[SD](IA|DB)$")>;
def : InstRW<[SwiftWriteP01OneCycle2x, SwiftWriteVLDM],
(instregex "VLDM[SD](IA|DB)_UPD$")>;
def SwiftWriteVSTM : SchedWriteVariant<[
// One S register.
SchedVar<SwiftLMAddr1Pred, [SwiftWriteSTM1]>,
// One D register.
SchedVar<SwiftLMAddr2Pred, [SwiftWriteSTM1]>,
// Three S registers.
SchedVar<SwiftLMAddr3Pred, [SwiftWriteSTM4]>,
// Assume one Q register.
SchedVar<SwiftLMAddr4Pred, [SwiftWriteSTM1]>,
SchedVar<SwiftLMAddr5Pred, [SwiftWriteSTM6]>,
// Assume three D registers.
SchedVar<SwiftLMAddr6Pred, [SwiftWriteSTM4]>,
SchedVar<SwiftLMAddr7Pred, [SwiftWriteSTM8]>,
// Assume two Q registers.
SchedVar<SwiftLMAddr8Pred, [SwiftWriteSTM3]>,
SchedVar<SwiftLMAddr9Pred, [SwiftWriteSTM10]>,
// Assume 5 D registers.
SchedVar<SwiftLMAddr10Pred, [SwiftWriteSTM6]>,
SchedVar<SwiftLMAddr11Pred, [SwiftWriteSTM12]>,
// Asume three Q registers.
SchedVar<SwiftLMAddr12Pred, [SwiftWriteSTM4]>,
SchedVar<SwiftLMAddr13Pred, [SwiftWriteSTM14]>,
// Assume 7 D registers.
SchedVar<SwiftLMAddr14Pred, [SwiftWriteSTM8]>,
SchedVar<SwiftLMAddr15Pred, [SwiftWriteSTM16]>,
// Assume four Q registers.
SchedVar<SwiftLMAddr16Pred, [SwiftWriteSTM5]>,
// Asumme two Q registers.
SchedVar<NoSchedPred, [SwiftWriteSTM3]>
]> { let Variadic = 1; }
def : InstRW<[SwiftWriteVSTM], (instregex "VSTM[SD](IA|DB)$")>;
def : InstRW<[SwiftWriteP01OneCycle2x, SwiftWriteVSTM],
(instregex "VSTM[SD](IA|DB)_UPD")>;
// 4.2.43 Advanced SIMD, Element or Structure Load and Store
def SwiftWrite2xP2FourCy : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 4;
let ResourceCycles = [2];
}
def SwiftWrite3xP2FourCy : SchedWriteRes<[SwiftUnitP2]> {
let Latency = 4;
let ResourceCycles = [3];
}
foreach Num = 1-2 in {
def SwiftExt#Num#xP0 : SchedWriteRes<[SwiftUnitP0]> {
let Latency = 0;
let NumMicroOps = Num;
let ResourceCycles = [Num];
}
}
// VLDx
// Multiple structures.
// Single element structure loads.
// We assume aligned.
// Single/two register.
def : InstRW<[SwiftWriteLM4Cy], (instregex "VLD1(d|q)(8|16|32|64)$")>;
def : InstRW<[SwiftWriteLM4Cy, SwiftWriteP01OneCycle],
(instregex "VLD1(d|q)(8|16|32|64)wb")>;
// Three register.
def : InstRW<[SwiftWrite3xP2FourCy],
(instregex "VLD1(d|q)(8|16|32|64)T$", "VLD1d64TPseudo")>;
def : InstRW<[SwiftWrite3xP2FourCy, SwiftWriteP01OneCycle],
(instregex "VLD1(d|q)(8|16|32|64)Twb")>;
/// Four Register.
def : InstRW<[SwiftWrite2xP2FourCy],
(instregex "VLD1(d|q)(8|16|32|64)Q$", "VLD1d64QPseudo")>;
def : InstRW<[SwiftWrite2xP2FourCy, SwiftWriteP01OneCycle],
(instregex "VLD1(d|q)(8|16|32|64)Qwb")>;
// Two element structure loads.
// Two/four register.
def : InstRW<[SwiftWriteLM9Cy, SwiftExt2xP0, SwiftVLDMPerm2],
(instregex "VLD2(d|q|b)(8|16|32)$", "VLD2q(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteLM9Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
SwiftVLDMPerm2],
(instregex "VLD2(d|q|b)(8|16|32)wb", "VLD2q(8|16|32)PseudoWB")>;
// Three element structure.
def : InstRW<[SwiftWriteLM9Cy, SwiftWriteLM9CyNo, SwiftWriteLM9CyNo,
SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
(instregex "VLD3(d|q)(8|16|32)$")>;
def : InstRW<[SwiftWriteLM9Cy, SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
(instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[SwiftWriteLM9Cy, SwiftWriteLM9CyNo, SwiftWriteLM9CyNo,
SwiftWriteP01OneCycle, SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
(instregex "VLD3(d|q)(8|16|32)_UPD$")>;
def : InstRW<[SwiftWriteLM9Cy, SwiftWriteP01OneCycle, SwiftVLDMPerm3,
SwiftWrite3xP2FourCy],
(instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
// Four element structure loads.
def : InstRW<[SwiftWriteLM11Cy, SwiftWriteLM11Cy, SwiftWriteLM11Cy,
SwiftWriteLM11Cy, SwiftExt2xP0, SwiftVLDMPerm4,
SwiftWrite3xP2FourCy],
(instregex "VLD4(d|q)(8|16|32)$")>;
def : InstRW<[SwiftWriteLM11Cy, SwiftExt2xP0, SwiftVLDMPerm4,
SwiftWrite3xP2FourCy],
(instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[SwiftWriteLM11Cy, SwiftWriteLM11Cy, SwiftWriteLM11Cy,
SwiftWriteLM11Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
SwiftVLDMPerm4, SwiftWrite3xP2FourCy],
(instregex "VLD4(d|q)(8|16|32)_UPD")>;
def : InstRW<[SwiftWriteLM11Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
SwiftVLDMPerm4, SwiftWrite3xP2FourCy],
(instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
// Single all/lane loads.
// One element structure.
def : InstRW<[SwiftWriteLM6Cy, SwiftVLDMPerm2],
(instregex "VLD1(LN|DUP)(d|q)(8|16|32)$", "VLD1(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftVLDMPerm2],
(instregex "VLD1(LN|DUP)(d|q)(8|16|32)(wb|_UPD)",
"VLD1LNq(8|16|32)Pseudo_UPD")>;
// Two element structure.
def : InstRW<[SwiftWriteLM6Cy, SwiftWriteLM6Cy, SwiftExt1xP0, SwiftVLDMPerm2],
(instregex "VLD2(DUP|LN)(d|q)(8|16|32|8x2|16x2|32x2)$",
"VLD2LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteLM6Cy, SwiftWriteLM6Cy, SwiftWriteP01OneCycle,
SwiftExt1xP0, SwiftVLDMPerm2],
(instregex "VLD2LN(d|q)(8|16|32)_UPD$")>;
def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftWriteLM6Cy,
SwiftExt1xP0, SwiftVLDMPerm2],
(instregex "VLD2DUPd(8|16|32|8x2|16x2|32x2)wb")>;
def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftWriteLM6Cy,
SwiftExt1xP0, SwiftVLDMPerm2],
(instregex "VLD2LN(d|q)(8|16|32)Pseudo_UPD")>;
// Three element structure.
def : InstRW<[SwiftWriteLM7Cy, SwiftWriteLM8Cy, SwiftWriteLM8Cy, SwiftExt1xP0,
SwiftVLDMPerm3],
(instregex "VLD3(DUP|LN)(d|q)(8|16|32)$",
"VLD3(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteLM7Cy, SwiftWriteLM8Cy, SwiftWriteLM8Cy,
SwiftWriteP01OneCycle, SwiftExt1xP0, SwiftVLDMPerm3],
(instregex "VLD3(LN|DUP)(d|q)(8|16|32)_UPD")>;
def : InstRW<[SwiftWriteLM7Cy, SwiftWriteP01OneCycle, SwiftWriteLM8Cy,
SwiftWriteLM8Cy, SwiftExt1xP0, SwiftVLDMPerm3],
(instregex "VLD3(LN|DUP)(d|q)(8|16|32)Pseudo_UPD")>;
// Four element struture.
def : InstRW<[SwiftWriteLM8Cy, SwiftWriteLM9Cy, SwiftWriteLM10CyNo,
SwiftWriteLM10CyNo, SwiftExt1xP0, SwiftVLDMPerm5],
(instregex "VLD4(LN|DUP)(d|q)(8|16|32)$",
"VLD4(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteLM8Cy, SwiftWriteLM9Cy, SwiftWriteLM10CyNo,
SwiftWriteLM10CyNo, SwiftWriteP01OneCycle, SwiftExt1xP0,
SwiftVLDMPerm5],
(instregex "VLD4(DUP|LN)(d|q)(8|16|32)_UPD")>;
def : InstRW<[SwiftWriteLM8Cy, SwiftWriteP01OneCycle, SwiftWriteLM9Cy,
SwiftWriteLM10CyNo, SwiftWriteLM10CyNo, SwiftExt1xP0,
SwiftVLDMPerm5],
(instregex "VLD4(DUP|LN)(d|q)(8|16|32)Pseudo_UPD")>;
// VSTx
// Multiple structures.
// Single element structure store.
def : InstRW<[SwiftWrite1xP2], (instregex "VST1d(8|16|32|64)$")>;
def : InstRW<[SwiftWrite2xP2], (instregex "VST1q(8|16|32|64)$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2],
(instregex "VST1d(8|16|32|64)wb")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite2xP2],
(instregex "VST1q(8|16|32|64)wb")>;
def : InstRW<[SwiftWrite3xP2],
(instregex "VST1d(8|16|32|64)T$", "VST1d64TPseudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite3xP2],
(instregex "VST1d(8|16|32|64)Twb", "VST1d64TPseudoWB")>;
def : InstRW<[SwiftWrite4xP2],
(instregex "VST1d(8|16|32|64)(Q|QPseudo)$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2],
(instregex "VST1d(8|16|32|64)(Qwb|QPseudoWB)")>;
// Two element structure store.
def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm1],
(instregex "VST2(d|b)(8|16|32)$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm1],
(instregex "VST2(b|d)(8|16|32)wb")>;
def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
(instregex "VST2q(8|16|32)$", "VST2q(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
(instregex "VST2q(8|16|32)wb", "VST2q(8|16|32)PseudoWB")>;
// Three element structure store.
def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
(instregex "VST3(d|q)(8|16|32)$", "VST3(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm2],
(instregex "VST3(d|q)(8|16|32)_UPD",
"VST3(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
// Four element structure store.
def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
(instregex "VST4(d|q)(8|16|32)$", "VST4(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm4],
(instregex "VST4(d|q)(8|16|32)_UPD",
"VST4(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
// Single/all lane store.
// One element structure.
def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm1],
(instregex "VST1LNd(8|16|32)$", "VST1LNq(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm1],
(instregex "VST1LNd(8|16|32)_UPD", "VST1LNq(8|16|32)Pseudo_UPD")>;
// Two element structure.
def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm2],
(instregex "VST2LN(d|q)(8|16|32)$", "VST2LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm2],
(instregex "VST2LN(d|q)(8|16|32)_UPD",
"VST2LN(d|q)(8|16|32)Pseudo_UPD")>;
// Three element structure.
def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
(instregex "VST3LN(d|q)(8|16|32)$", "VST3LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm2],
(instregex "VST3LN(d|q)(8|16|32)_UPD",
"VST3LN(d|q)(8|16|32)Pseudo_UPD")>;
// Four element structure.
def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
(instregex "VST4LN(d|q)(8|16|32)$", "VST4LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite2xP2, SwiftVLDMPerm2],
(instregex "VST4LN(d|q)(8|16|32)_UPD",
"VST4LN(d|q)(8|16|32)Pseudo_UPD")>;
// 4.2.44 VFP, Divide and Square Root
def SwiftDiv17 : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
let NumMicroOps = 1;
let Latency = 17;
let ResourceCycles = [1, 15];
}
def SwiftDiv32 : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
let NumMicroOps = 1;
let Latency = 32;
let ResourceCycles = [1, 30];
}
def : InstRW<[SwiftDiv17], (instregex "VDIVS", "VSQRTS")>;
def : InstRW<[SwiftDiv32], (instregex "VDIVD", "VSQRTD")>;
// Not specified.
def : InstRW<[SwiftWriteP01OneCycle2x], (instregex "ABS")>;
// Preload.
def : WriteRes<WritePreLd, [SwiftUnitP2]> { let Latency = 0;
let ResourceCycles = [0];
}
}