llvm/lib/DebugInfo/MSF/MSFBuilder.cpp
Zachary Turner 289a2f5b39 [MSF] Default to FPM2, and always mark FPM pages allocated.
There are two FPMs in an MSF file, the idea being that for
incremental updates you can write to the alternate one and then
atomically swap them on commit.  LLVM defaulted to using FPM1
on the first commit, but this differs from Microsoft's behavior
which is to default to using FPM2 on the first commit.  To
eliminate some byte-level file differences, this patch changes
LLVM's default to also be FPM2.

Additionally, LLVM was trying to be "smart" about marking FPM
pages allocated.  In addition to marking every page belonging
to the alternate FPM as unallocated, LLVM also marked pages at
the end of the main FPM which were not needed as unallocated.

In order to match the behavior of Microsoft-generated PDBs, we
now always mark every FPM block as allocated, regardless of
whether it is in the main FPM or the alt FPM, and regardless of
whether or not it describes blocks which are actually in the file.

This has the side benefit of simplifying our code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328812 91177308-0d34-0410-b5e6-96231b3b80d8
2018-03-29 18:34:15 +00:00

309 lines
11 KiB
C++

//===- MSFBuilder.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/DebugInfo/MSF/MSFBuilder.h"
#include "llvm/DebugInfo/MSF/MSFError.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::msf;
using namespace llvm::support;
static const uint32_t kSuperBlockBlock = 0;
static const uint32_t kFreePageMap0Block = 1;
static const uint32_t kFreePageMap1Block = 2;
static const uint32_t kNumReservedPages = 3;
static const uint32_t kDefaultFreePageMap = kFreePageMap1Block;
static const uint32_t kDefaultBlockMapAddr = kNumReservedPages;
MSFBuilder::MSFBuilder(uint32_t BlockSize, uint32_t MinBlockCount, bool CanGrow,
BumpPtrAllocator &Allocator)
: Allocator(Allocator), IsGrowable(CanGrow),
FreePageMap(kDefaultFreePageMap), BlockSize(BlockSize),
BlockMapAddr(kDefaultBlockMapAddr), FreeBlocks(MinBlockCount, true) {
FreeBlocks[kSuperBlockBlock] = false;
FreeBlocks[kFreePageMap0Block] = false;
FreeBlocks[kFreePageMap1Block] = false;
FreeBlocks[BlockMapAddr] = false;
}
Expected<MSFBuilder> MSFBuilder::create(BumpPtrAllocator &Allocator,
uint32_t BlockSize,
uint32_t MinBlockCount, bool CanGrow) {
if (!isValidBlockSize(BlockSize))
return make_error<MSFError>(msf_error_code::invalid_format,
"The requested block size is unsupported");
return MSFBuilder(BlockSize,
std::max(MinBlockCount, msf::getMinimumBlockCount()),
CanGrow, Allocator);
}
Error MSFBuilder::setBlockMapAddr(uint32_t Addr) {
if (Addr == BlockMapAddr)
return Error::success();
if (Addr >= FreeBlocks.size()) {
if (!IsGrowable)
return make_error<MSFError>(msf_error_code::insufficient_buffer,
"Cannot grow the number of blocks");
FreeBlocks.resize(Addr + 1, true);
}
if (!isBlockFree(Addr))
return make_error<MSFError>(
msf_error_code::block_in_use,
"Requested block map address is already in use");
FreeBlocks[BlockMapAddr] = true;
FreeBlocks[Addr] = false;
BlockMapAddr = Addr;
return Error::success();
}
void MSFBuilder::setFreePageMap(uint32_t Fpm) { FreePageMap = Fpm; }
void MSFBuilder::setUnknown1(uint32_t Unk1) { Unknown1 = Unk1; }
Error MSFBuilder::setDirectoryBlocksHint(ArrayRef<uint32_t> DirBlocks) {
for (auto B : DirectoryBlocks)
FreeBlocks[B] = true;
for (auto B : DirBlocks) {
if (!isBlockFree(B)) {
return make_error<MSFError>(msf_error_code::unspecified,
"Attempt to reuse an allocated block");
}
FreeBlocks[B] = false;
}
DirectoryBlocks = DirBlocks;
return Error::success();
}
Error MSFBuilder::allocateBlocks(uint32_t NumBlocks,
MutableArrayRef<uint32_t> Blocks) {
if (NumBlocks == 0)
return Error::success();
uint32_t NumFreeBlocks = FreeBlocks.count();
if (NumFreeBlocks < NumBlocks) {
if (!IsGrowable)
return make_error<MSFError>(msf_error_code::insufficient_buffer,
"There are no free Blocks in the file");
uint32_t AllocBlocks = NumBlocks - NumFreeBlocks;
uint32_t OldBlockCount = FreeBlocks.size();
uint32_t NewBlockCount = AllocBlocks + OldBlockCount;
uint32_t NextFpmBlock = alignTo(OldBlockCount, BlockSize) + 1;
FreeBlocks.resize(NewBlockCount, true);
// If we crossed over an fpm page, we actually need to allocate 2 extra
// blocks for each FPM group crossed and mark both blocks from the group as
// used. FPM blocks are marked as allocated regardless of whether or not
// they ultimately describe the status of blocks in the file. This means
// that not only are extraneous blocks at the end of the main FPM marked as
// allocated, but also blocks from the alternate FPM are always marked as
// allocated.
while (NextFpmBlock < NewBlockCount) {
NewBlockCount += 2;
FreeBlocks.resize(NewBlockCount, true);
FreeBlocks.reset(NextFpmBlock, NextFpmBlock + 2);
NextFpmBlock += BlockSize;
}
}
int I = 0;
int Block = FreeBlocks.find_first();
do {
assert(Block != -1 && "We ran out of Blocks!");
uint32_t NextBlock = static_cast<uint32_t>(Block);
Blocks[I++] = NextBlock;
FreeBlocks.reset(NextBlock);
Block = FreeBlocks.find_next(Block);
} while (--NumBlocks > 0);
return Error::success();
}
uint32_t MSFBuilder::getNumUsedBlocks() const {
return getTotalBlockCount() - getNumFreeBlocks();
}
uint32_t MSFBuilder::getNumFreeBlocks() const { return FreeBlocks.count(); }
uint32_t MSFBuilder::getTotalBlockCount() const { return FreeBlocks.size(); }
bool MSFBuilder::isBlockFree(uint32_t Idx) const { return FreeBlocks[Idx]; }
Expected<uint32_t> MSFBuilder::addStream(uint32_t Size,
ArrayRef<uint32_t> Blocks) {
// Add a new stream mapped to the specified blocks. Verify that the specified
// blocks are both necessary and sufficient for holding the requested number
// of bytes, and verify that all requested blocks are free.
uint32_t ReqBlocks = bytesToBlocks(Size, BlockSize);
if (ReqBlocks != Blocks.size())
return make_error<MSFError>(
msf_error_code::invalid_format,
"Incorrect number of blocks for requested stream size");
for (auto Block : Blocks) {
if (Block >= FreeBlocks.size())
FreeBlocks.resize(Block + 1, true);
if (!FreeBlocks.test(Block))
return make_error<MSFError>(
msf_error_code::unspecified,
"Attempt to re-use an already allocated block");
}
// Mark all the blocks occupied by the new stream as not free.
for (auto Block : Blocks) {
FreeBlocks.reset(Block);
}
StreamData.push_back(std::make_pair(Size, Blocks));
return StreamData.size() - 1;
}
Expected<uint32_t> MSFBuilder::addStream(uint32_t Size) {
uint32_t ReqBlocks = bytesToBlocks(Size, BlockSize);
std::vector<uint32_t> NewBlocks;
NewBlocks.resize(ReqBlocks);
if (auto EC = allocateBlocks(ReqBlocks, NewBlocks))
return std::move(EC);
StreamData.push_back(std::make_pair(Size, NewBlocks));
return StreamData.size() - 1;
}
Error MSFBuilder::setStreamSize(uint32_t Idx, uint32_t Size) {
uint32_t OldSize = getStreamSize(Idx);
if (OldSize == Size)
return Error::success();
uint32_t NewBlocks = bytesToBlocks(Size, BlockSize);
uint32_t OldBlocks = bytesToBlocks(OldSize, BlockSize);
if (NewBlocks > OldBlocks) {
uint32_t AddedBlocks = NewBlocks - OldBlocks;
// If we're growing, we have to allocate new Blocks.
std::vector<uint32_t> AddedBlockList;
AddedBlockList.resize(AddedBlocks);
if (auto EC = allocateBlocks(AddedBlocks, AddedBlockList))
return EC;
auto &CurrentBlocks = StreamData[Idx].second;
CurrentBlocks.insert(CurrentBlocks.end(), AddedBlockList.begin(),
AddedBlockList.end());
} else if (OldBlocks > NewBlocks) {
// For shrinking, free all the Blocks in the Block map, update the stream
// data, then shrink the directory.
uint32_t RemovedBlocks = OldBlocks - NewBlocks;
auto CurrentBlocks = ArrayRef<uint32_t>(StreamData[Idx].second);
auto RemovedBlockList = CurrentBlocks.drop_front(NewBlocks);
for (auto P : RemovedBlockList)
FreeBlocks[P] = true;
StreamData[Idx].second = CurrentBlocks.drop_back(RemovedBlocks);
}
StreamData[Idx].first = Size;
return Error::success();
}
uint32_t MSFBuilder::getNumStreams() const { return StreamData.size(); }
uint32_t MSFBuilder::getStreamSize(uint32_t StreamIdx) const {
return StreamData[StreamIdx].first;
}
ArrayRef<uint32_t> MSFBuilder::getStreamBlocks(uint32_t StreamIdx) const {
return StreamData[StreamIdx].second;
}
uint32_t MSFBuilder::computeDirectoryByteSize() const {
// The directory has the following layout, where each item is a ulittle32_t:
// NumStreams
// StreamSizes[NumStreams]
// StreamBlocks[NumStreams][]
uint32_t Size = sizeof(ulittle32_t); // NumStreams
Size += StreamData.size() * sizeof(ulittle32_t); // StreamSizes
for (const auto &D : StreamData) {
uint32_t ExpectedNumBlocks = bytesToBlocks(D.first, BlockSize);
assert(ExpectedNumBlocks == D.second.size() &&
"Unexpected number of blocks");
Size += ExpectedNumBlocks * sizeof(ulittle32_t);
}
return Size;
}
Expected<MSFLayout> MSFBuilder::build() {
SuperBlock *SB = Allocator.Allocate<SuperBlock>();
MSFLayout L;
L.SB = SB;
std::memcpy(SB->MagicBytes, Magic, sizeof(Magic));
SB->BlockMapAddr = BlockMapAddr;
SB->BlockSize = BlockSize;
SB->NumDirectoryBytes = computeDirectoryByteSize();
SB->FreeBlockMapBlock = FreePageMap;
SB->Unknown1 = Unknown1;
uint32_t NumDirectoryBlocks = bytesToBlocks(SB->NumDirectoryBytes, BlockSize);
if (NumDirectoryBlocks > DirectoryBlocks.size()) {
// Our hint wasn't enough to satisfy the entire directory. Allocate
// remaining pages.
std::vector<uint32_t> ExtraBlocks;
uint32_t NumExtraBlocks = NumDirectoryBlocks - DirectoryBlocks.size();
ExtraBlocks.resize(NumExtraBlocks);
if (auto EC = allocateBlocks(NumExtraBlocks, ExtraBlocks))
return std::move(EC);
DirectoryBlocks.insert(DirectoryBlocks.end(), ExtraBlocks.begin(),
ExtraBlocks.end());
} else if (NumDirectoryBlocks < DirectoryBlocks.size()) {
uint32_t NumUnnecessaryBlocks = DirectoryBlocks.size() - NumDirectoryBlocks;
for (auto B :
ArrayRef<uint32_t>(DirectoryBlocks).drop_back(NumUnnecessaryBlocks))
FreeBlocks[B] = true;
DirectoryBlocks.resize(NumDirectoryBlocks);
}
// Don't set the number of blocks in the file until after allocating Blocks
// for the directory, since the allocation might cause the file to need to
// grow.
SB->NumBlocks = FreeBlocks.size();
ulittle32_t *DirBlocks = Allocator.Allocate<ulittle32_t>(NumDirectoryBlocks);
std::uninitialized_copy_n(DirectoryBlocks.begin(), NumDirectoryBlocks,
DirBlocks);
L.DirectoryBlocks = ArrayRef<ulittle32_t>(DirBlocks, NumDirectoryBlocks);
// The stream sizes should be re-allocated as a stable pointer and the stream
// map should have each of its entries allocated as a separate stable pointer.
if (!StreamData.empty()) {
ulittle32_t *Sizes = Allocator.Allocate<ulittle32_t>(StreamData.size());
L.StreamSizes = ArrayRef<ulittle32_t>(Sizes, StreamData.size());
L.StreamMap.resize(StreamData.size());
for (uint32_t I = 0; I < StreamData.size(); ++I) {
Sizes[I] = StreamData[I].first;
ulittle32_t *BlockList =
Allocator.Allocate<ulittle32_t>(StreamData[I].second.size());
std::uninitialized_copy_n(StreamData[I].second.begin(),
StreamData[I].second.size(), BlockList);
L.StreamMap[I] =
ArrayRef<ulittle32_t>(BlockList, StreamData[I].second.size());
}
}
L.FreePageMap = FreeBlocks;
return L;
}