llvm/tools/llvm-rtdyld/llvm-rtdyld.cpp
Lang Hames 5ade584a96 [MCJIT] Add command-line argument to llvm-rtdyld to specify target addresses for
sections.

This allows fine-grained control of the memory layout of hypothetical target
processes for testing purposes.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217122 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-04 04:19:54 +00:00

568 lines
20 KiB
C++

//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include <list>
#include <system_error>
using namespace llvm;
using namespace llvm::object;
static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
cl::desc("<input file>"));
enum ActionType {
AC_Execute,
AC_PrintLineInfo,
AC_Verify
};
static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
cl::init(AC_Execute),
cl::values(clEnumValN(AC_Execute, "execute",
"Load, link, and execute the inputs."),
clEnumValN(AC_PrintLineInfo, "printline",
"Load, link, and print line information for each function."),
clEnumValN(AC_Verify, "verify",
"Load, link and verify the resulting memory image."),
clEnumValEnd));
static cl::opt<std::string>
EntryPoint("entry",
cl::desc("Function to call as entry point."),
cl::init("_main"));
static cl::list<std::string>
Dylibs("dylib",
cl::desc("Add library."),
cl::ZeroOrMore);
static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));
static cl::list<std::string>
CheckFiles("check",
cl::desc("File containing RuntimeDyld verifier checks."),
cl::ZeroOrMore);
static cl::opt<uint64_t>
TargetAddrStart("target-addr-start",
cl::desc("For -verify only: start of phony target address "
"range."),
cl::init(4096), // Start at "page 1" - no allocating at "null".
cl::Hidden);
static cl::opt<uint64_t>
TargetAddrEnd("target-addr-end",
cl::desc("For -verify only: end of phony target address range."),
cl::init(~0ULL),
cl::Hidden);
static cl::opt<uint64_t>
TargetSectionSep("target-section-sep",
cl::desc("For -verify only: Separation between sections in "
"phony target address space."),
cl::init(0),
cl::Hidden);
static cl::list<std::string>
SpecificSectionMappings("map-section",
cl::desc("Map a section to a specific address."),
cl::ZeroOrMore);
/* *** */
// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> FunctionMemory;
SmallVector<sys::MemoryBlock, 16> DataMemory;
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override;
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override;
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return nullptr;
}
bool finalizeMemory(std::string *ErrMsg) override { return false; }
// Invalidate instruction cache for sections with execute permissions.
// Some platforms with separate data cache and instruction cache require
// explicit cache flush, otherwise JIT code manipulations (like resolved
// relocations) will get to the data cache but not to the instruction cache.
virtual void invalidateInstructionCache();
};
uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr);
FunctionMemory.push_back(MB);
return (uint8_t*)MB.base();
}
uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) {
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr);
DataMemory.push_back(MB);
return (uint8_t*)MB.base();
}
void TrivialMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = FunctionMemory.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(FunctionMemory[i].base(),
FunctionMemory[i].size());
for (int i = 0, e = DataMemory.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(DataMemory[i].base(),
DataMemory[i].size());
}
static const char *ProgramName;
static void Message(const char *Type, const Twine &Msg) {
errs() << ProgramName << ": " << Type << ": " << Msg << "\n";
}
static int Error(const Twine &Msg) {
Message("error", Msg);
return 1;
}
static void loadDylibs() {
for (const std::string &Dylib : Dylibs) {
if (sys::fs::is_regular_file(Dylib)) {
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
llvm::errs() << "Error loading '" << Dylib << "': "
<< ErrMsg << "\n";
} else
llvm::errs() << "Dylib not found: '" << Dylib << "'.\n";
}
}
/* *** */
static int printLineInfoForInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(&MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
return Error(Dyld.getErrorString());
}
// Resolve all the relocations we can.
Dyld.resolveRelocations();
std::unique_ptr<DIContext> Context(
DIContext::getDWARFContext(*LoadedObject->getObjectFile()));
// Use symbol info to iterate functions in the object.
for (object::symbol_iterator I = LoadedObject->begin_symbols(),
E = LoadedObject->end_symbols();
I != E; ++I) {
object::SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
if (SymType == object::SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
uint64_t Size;
if (I->getName(Name)) continue;
if (I->getAddress(Addr)) continue;
if (I->getSize(Size)) continue;
outs() << "Function: " << Name << ", Size = " << Size << "\n";
DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
DILineInfoTable::iterator Begin = Lines.begin();
DILineInfoTable::iterator End = Lines.end();
for (DILineInfoTable::iterator It = Begin; It != End; ++It) {
outs() << " Line info @ " << It->first - Addr << ": "
<< It->second.FileName << ", line:" << It->second.Line << "\n";
}
}
}
}
return 0;
}
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(&MemMgr);
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
return Error(Dyld.getErrorString());
}
}
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Clear instruction cache before code will be executed.
MemMgr.invalidateInstructionCache();
// FIXME: Error out if there are unresolved relocations.
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolAddress(EntryPoint);
if (!MainAddress)
return Error("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (unsigned i = 0, e = MemMgr.FunctionMemory.size(); i != e; ++i) {
sys::MemoryBlock &Data = MemMgr.FunctionMemory[i];
// Make sure the memory is executable.
std::string ErrorStr;
sys::Memory::InvalidateInstructionCache(Data.base(), Data.size());
if (!sys::Memory::setExecutable(Data, &ErrorStr))
return Error("unable to mark function executable: '" + ErrorStr + "'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
static int checkAllExpressions(RuntimeDyldChecker &Checker) {
for (const auto& CheckerFileName : CheckFiles) {
ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
MemoryBuffer::getFileOrSTDIN(CheckerFileName);
if (std::error_code EC = CheckerFileBuf.getError())
return Error("unable to read input '" + CheckerFileName + "': " +
EC.message());
if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
CheckerFileBuf.get().get()))
return Error("some checks in '" + CheckerFileName + "' failed");
}
return 0;
}
std::map<void*, uint64_t>
applySpecificSectionMappings(RuntimeDyldChecker &Checker) {
std::map<void*, uint64_t> SpecificMappings;
for (StringRef Mapping : SpecificSectionMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
StringRef SectionIDStr = Mapping.substr(0, EqualsIdx);
size_t ComaIdx = Mapping.find_first_of(",");
if (ComaIdx == StringRef::npos) {
errs() << "Invalid section specification '" << Mapping
<< "'. Should be '<file name>,<section name>=<addr>'\n";
exit(1);
}
StringRef FileName = SectionIDStr.substr(0, ComaIdx);
StringRef SectionName = SectionIDStr.substr(ComaIdx + 1);
uint64_t OldAddrInt;
std::string ErrorMsg;
std::tie(OldAddrInt, ErrorMsg) =
Checker.getSectionAddr(FileName, SectionName, true);
if (ErrorMsg != "") {
errs() << ErrorMsg;
exit(1);
}
void* OldAddr = reinterpret_cast<void*>(static_cast<uintptr_t>(OldAddrInt));
StringRef NewAddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t NewAddr;
if (NewAddrStr.getAsInteger(0, NewAddr)) {
errs() << "Invalid section address in mapping: " << Mapping << "\n";
exit(1);
}
Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr);
SpecificMappings[OldAddr] = NewAddr;
}
return SpecificMappings;
}
// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target addres range starts.
// -target-addr-end <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
// end of one section and the start of the next.
// Defaults to zero. Set to something big
// (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
void remapSections(const llvm::Triple &TargetTriple,
const TrivialMemoryManager &MemMgr,
RuntimeDyldChecker &Checker) {
// Set up a work list (section addr/size pairs).
typedef std::list<std::pair<void*, uint64_t>> WorklistT;
WorklistT Worklist;
for (const auto& CodeSection : MemMgr.FunctionMemory)
Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size()));
for (const auto& DataSection : MemMgr.DataMemory)
Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size()));
// Apply any section-specific mappings that were requested on the command
// line.
typedef std::map<void*, uint64_t> AppliedMappingsT;
AppliedMappingsT AppliedMappings = applySpecificSectionMappings(Checker);
// Keep an "already allocated" mapping of section target addresses to sizes.
// Sections whose address mappings aren't specified on the command line will
// allocated around the explicitly mapped sections while maintaining the
// minimum separation.
std::map<uint64_t, uint64_t> AlreadyAllocated;
// Move the previously applied mappings into the already-allocated map.
for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
I != E;) {
WorklistT::iterator Tmp = I;
++I;
AppliedMappingsT::iterator AI = AppliedMappings.find(Tmp->first);
if (AI != AppliedMappings.end()) {
AlreadyAllocated[AI->second] = Tmp->second;
Worklist.erase(Tmp);
}
}
// If the -target-addr-end option wasn't explicitly passed, then set it to a
// sensible default based on the target triple.
if (TargetAddrEnd.getNumOccurrences() == 0) {
if (TargetTriple.isArch16Bit())
TargetAddrEnd = (1ULL << 16) - 1;
else if (TargetTriple.isArch32Bit())
TargetAddrEnd = (1ULL << 32) - 1;
// TargetAddrEnd already has a sensible default for 64-bit systems, so
// there's nothing to do in the 64-bit case.
}
// Process any elements remaining in the worklist.
while (!Worklist.empty()) {
std::pair<void*, uint64_t> CurEntry = Worklist.front();
Worklist.pop_front();
uint64_t NextSectionAddr = TargetAddrStart;
for (const auto &Alloc : AlreadyAllocated)
if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first)
break;
else
NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;
AlreadyAllocated[NextSectionAddr] = CurEntry.second;
Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr);
}
}
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "") {
llvm::errs() << "Error: -triple required when running in -verify mode.\n";
return 1;
}
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget) {
llvm::errs() << "Error accessing target '" << TripleName << "': "
<< ErrorStr << "\n";
return 1;
}
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
assert(STI && "Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
assert(MRI && "Unable to create target register info!");
std::unique_ptr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
assert(MAI && "Unable to create target asm info!");
MCContext Ctx(MAI.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
assert(Disassembler && "Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(0, *MAI, *MII, *MRI, *STI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(&MemMgr);
Dyld.setProcessAllSections(true);
RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(),
llvm::dbgs());
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
std::unique_ptr<ObjectImage> LoadedObject;
// Load the object file
LoadedObject = Dyld.loadObject(
llvm::make_unique<ObjectBuffer>(std::move(*InputBuffer)));
if (!LoadedObject) {
return Error(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space.
remapSections(TheTriple, MemMgr, Checker);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(Checker);
if (Dyld.hasError()) {
errs() << "RTDyld reported an error applying relocations:\n "
<< Dyld.getErrorString() << "\n";
ErrorCode = 1;
}
return ErrorCode;
}
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
ProgramName = argv[0];
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");
switch (Action) {
case AC_Execute:
return executeInput();
case AC_PrintLineInfo:
return printLineInfoForInput();
case AC_Verify:
return linkAndVerify();
}
}