llvm/lib/TableGen/TGParser.cpp
Hal Finkel 0a3368cde5 [TableGen] Correctly generate implicit anonymous prototype defs in multiclasses
Even within a multiclass, we had been generating concrete implicit anonymous
defs when parsing values (generally in value lists). This behavior was
incorrect, and led to errors when multiclass parameters were used in the
parameter list of the implicit anonymous def.

If we had some multiclass:

multiclass mc<string n> {

 ... : SomeClass<SomeOtherClass<n> >

The capture of the multiclass parameter 'n' would not work correctly, and
depending on how the implicit SomeOtherClass was used, either TableGen would
ignore something it shouldn't, or would crash.

To fix this problem, when inside a multiclass, we generate prototype anonymous
defs for implicit anonymous defs (just as we do for explicit anonymous defs).
Within the multiclass, the current record prototype is populated with a node
that is essentially: !cast<SomeOtherClass>(!strconcat(NAME, anon_value_name)).
This is then resolved to the correct concrete anonymous def, in the usual way,
when NAME is resolved during multiclass instantiation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198348 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-02 20:47:09 +00:00

2631 lines
80 KiB
C++

//===- TGParser.cpp - Parser for TableGen Files ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the Parser for TableGen.
//
//===----------------------------------------------------------------------===//
#include "TGParser.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Support Code for the Semantic Actions.
//===----------------------------------------------------------------------===//
namespace llvm {
struct SubClassReference {
SMRange RefRange;
Record *Rec;
std::vector<Init*> TemplateArgs;
SubClassReference() : Rec(0) {}
bool isInvalid() const { return Rec == 0; }
};
struct SubMultiClassReference {
SMRange RefRange;
MultiClass *MC;
std::vector<Init*> TemplateArgs;
SubMultiClassReference() : MC(0) {}
bool isInvalid() const { return MC == 0; }
void dump() const;
};
void SubMultiClassReference::dump() const {
errs() << "Multiclass:\n";
MC->dump();
errs() << "Template args:\n";
for (std::vector<Init *>::const_iterator i = TemplateArgs.begin(),
iend = TemplateArgs.end();
i != iend;
++i) {
(*i)->dump();
}
}
} // end namespace llvm
bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) {
if (CurRec == 0)
CurRec = &CurMultiClass->Rec;
if (RecordVal *ERV = CurRec->getValue(RV.getNameInit())) {
// The value already exists in the class, treat this as a set.
if (ERV->setValue(RV.getValue()))
return Error(Loc, "New definition of '" + RV.getName() + "' of type '" +
RV.getType()->getAsString() + "' is incompatible with " +
"previous definition of type '" +
ERV->getType()->getAsString() + "'");
} else {
CurRec->addValue(RV);
}
return false;
}
/// SetValue -
/// Return true on error, false on success.
bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName,
const std::vector<unsigned> &BitList, Init *V) {
if (!V) return false;
if (CurRec == 0) CurRec = &CurMultiClass->Rec;
RecordVal *RV = CurRec->getValue(ValName);
if (RV == 0)
return Error(Loc, "Value '" + ValName->getAsUnquotedString()
+ "' unknown!");
// Do not allow assignments like 'X = X'. This will just cause infinite loops
// in the resolution machinery.
if (BitList.empty())
if (VarInit *VI = dyn_cast<VarInit>(V))
if (VI->getNameInit() == ValName)
return false;
// If we are assigning to a subset of the bits in the value... then we must be
// assigning to a field of BitsRecTy, which must have a BitsInit
// initializer.
//
if (!BitList.empty()) {
BitsInit *CurVal = dyn_cast<BitsInit>(RV->getValue());
if (CurVal == 0)
return Error(Loc, "Value '" + ValName->getAsUnquotedString()
+ "' is not a bits type");
// Convert the incoming value to a bits type of the appropriate size...
Init *BI = V->convertInitializerTo(BitsRecTy::get(BitList.size()));
if (BI == 0) {
return Error(Loc, "Initializer is not compatible with bit range");
}
// We should have a BitsInit type now.
BitsInit *BInit = dyn_cast<BitsInit>(BI);
assert(BInit != 0);
SmallVector<Init *, 16> NewBits(CurVal->getNumBits());
// Loop over bits, assigning values as appropriate.
for (unsigned i = 0, e = BitList.size(); i != e; ++i) {
unsigned Bit = BitList[i];
if (NewBits[Bit])
return Error(Loc, "Cannot set bit #" + utostr(Bit) + " of value '" +
ValName->getAsUnquotedString() + "' more than once");
NewBits[Bit] = BInit->getBit(i);
}
for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i)
if (NewBits[i] == 0)
NewBits[i] = CurVal->getBit(i);
V = BitsInit::get(NewBits);
}
if (RV->setValue(V))
return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' of type '"
+ RV->getType()->getAsString() +
"' is incompatible with initializer '" + V->getAsString()
+ "'");
return false;
}
/// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template
/// args as SubClass's template arguments.
bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) {
Record *SC = SubClass.Rec;
// Add all of the values in the subclass into the current class.
const std::vector<RecordVal> &Vals = SC->getValues();
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
if (AddValue(CurRec, SubClass.RefRange.Start, Vals[i]))
return true;
const std::vector<Init *> &TArgs = SC->getTemplateArgs();
// Ensure that an appropriate number of template arguments are specified.
if (TArgs.size() < SubClass.TemplateArgs.size())
return Error(SubClass.RefRange.Start,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < SubClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it now.
if (SetValue(CurRec, SubClass.RefRange.Start, TArgs[i],
std::vector<unsigned>(), SubClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClass.RefRange.Start,
"Value not specified for template argument #"
+ utostr(i) + " (" + TArgs[i]->getAsUnquotedString()
+ ") of subclass '" + SC->getNameInitAsString() + "'!");
}
}
// Since everything went well, we can now set the "superclass" list for the
// current record.
const std::vector<Record*> &SCs = SC->getSuperClasses();
ArrayRef<SMRange> SCRanges = SC->getSuperClassRanges();
for (unsigned i = 0, e = SCs.size(); i != e; ++i) {
if (CurRec->isSubClassOf(SCs[i]))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SCs[i]->getName() + "'!\n");
CurRec->addSuperClass(SCs[i], SCRanges[i]);
}
if (CurRec->isSubClassOf(SC))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SC->getName() + "'!\n");
CurRec->addSuperClass(SC, SubClass.RefRange);
return false;
}
/// AddSubMultiClass - Add SubMultiClass as a subclass to
/// CurMC, resolving its template args as SubMultiClass's
/// template arguments.
bool TGParser::AddSubMultiClass(MultiClass *CurMC,
SubMultiClassReference &SubMultiClass) {
MultiClass *SMC = SubMultiClass.MC;
Record *CurRec = &CurMC->Rec;
const std::vector<RecordVal> &MCVals = CurRec->getValues();
// Add all of the values in the subclass into the current class.
const std::vector<RecordVal> &SMCVals = SMC->Rec.getValues();
for (unsigned i = 0, e = SMCVals.size(); i != e; ++i)
if (AddValue(CurRec, SubMultiClass.RefRange.Start, SMCVals[i]))
return true;
int newDefStart = CurMC->DefPrototypes.size();
// Add all of the defs in the subclass into the current multiclass.
for (MultiClass::RecordVector::const_iterator i = SMC->DefPrototypes.begin(),
iend = SMC->DefPrototypes.end();
i != iend;
++i) {
// Clone the def and add it to the current multiclass
Record *NewDef = new Record(**i);
// Add all of the values in the superclass into the current def.
for (unsigned i = 0, e = MCVals.size(); i != e; ++i)
if (AddValue(NewDef, SubMultiClass.RefRange.Start, MCVals[i]))
return true;
CurMC->DefPrototypes.push_back(NewDef);
}
const std::vector<Init *> &SMCTArgs = SMC->Rec.getTemplateArgs();
// Ensure that an appropriate number of template arguments are
// specified.
if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size())
return Error(SubMultiClass.RefRange.Start,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) {
if (i < SubMultiClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it in the
// superclass now.
if (SetValue(CurRec, SubMultiClass.RefRange.Start, SMCTArgs[i],
std::vector<unsigned>(),
SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(SMCTArgs[i]));
// Now remove it.
CurRec->removeValue(SMCTArgs[i]);
// If a value is specified for this template arg, set it in the
// new defs now.
for (MultiClass::RecordVector::iterator j =
CurMC->DefPrototypes.begin() + newDefStart,
jend = CurMC->DefPrototypes.end();
j != jend;
++j) {
Record *Def = *j;
if (SetValue(Def, SubMultiClass.RefRange.Start, SMCTArgs[i],
std::vector<unsigned>(),
SubMultiClass.TemplateArgs[i]))
return true;
// Resolve it next.
Def->resolveReferencesTo(Def->getValue(SMCTArgs[i]));
// Now remove it
Def->removeValue(SMCTArgs[i]);
}
} else if (!CurRec->getValue(SMCTArgs[i])->getValue()->isComplete()) {
return Error(SubMultiClass.RefRange.Start,
"Value not specified for template argument #"
+ utostr(i) + " (" + SMCTArgs[i]->getAsUnquotedString()
+ ") of subclass '" + SMC->Rec.getNameInitAsString() + "'!");
}
}
return false;
}
/// ProcessForeachDefs - Given a record, apply all of the variable
/// values in all surrounding foreach loops, creating new records for
/// each combination of values.
bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc) {
if (Loops.empty())
return false;
// We want to instantiate a new copy of CurRec for each combination
// of nested loop iterator values. We don't want top instantiate
// any copies until we have values for each loop iterator.
IterSet IterVals;
return ProcessForeachDefs(CurRec, Loc, IterVals);
}
/// ProcessForeachDefs - Given a record, a loop and a loop iterator,
/// apply each of the variable values in this loop and then process
/// subloops.
bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc, IterSet &IterVals){
// Recursively build a tuple of iterator values.
if (IterVals.size() != Loops.size()) {
assert(IterVals.size() < Loops.size());
ForeachLoop &CurLoop = Loops[IterVals.size()];
ListInit *List = dyn_cast<ListInit>(CurLoop.ListValue);
if (List == 0) {
Error(Loc, "Loop list is not a list");
return true;
}
// Process each value.
for (int64_t i = 0; i < List->getSize(); ++i) {
Init *ItemVal = List->resolveListElementReference(*CurRec, 0, i);
IterVals.push_back(IterRecord(CurLoop.IterVar, ItemVal));
if (ProcessForeachDefs(CurRec, Loc, IterVals))
return true;
IterVals.pop_back();
}
return false;
}
// This is the bottom of the recursion. We have all of the iterator values
// for this point in the iteration space. Instantiate a new record to
// reflect this combination of values.
Record *IterRec = new Record(*CurRec);
// Set the iterator values now.
for (unsigned i = 0, e = IterVals.size(); i != e; ++i) {
VarInit *IterVar = IterVals[i].IterVar;
TypedInit *IVal = dyn_cast<TypedInit>(IterVals[i].IterValue);
if (IVal == 0) {
Error(Loc, "foreach iterator value is untyped");
return true;
}
IterRec->addValue(RecordVal(IterVar->getName(), IVal->getType(), false));
if (SetValue(IterRec, Loc, IterVar->getName(),
std::vector<unsigned>(), IVal)) {
Error(Loc, "when instantiating this def");
return true;
}
// Resolve it next.
IterRec->resolveReferencesTo(IterRec->getValue(IterVar->getName()));
// Remove it.
IterRec->removeValue(IterVar->getName());
}
if (Records.getDef(IterRec->getNameInitAsString())) {
Error(Loc, "def already exists: " + IterRec->getNameInitAsString());
return true;
}
Records.addDef(IterRec);
IterRec->resolveReferences();
return false;
}
//===----------------------------------------------------------------------===//
// Parser Code
//===----------------------------------------------------------------------===//
/// isObjectStart - Return true if this is a valid first token for an Object.
static bool isObjectStart(tgtok::TokKind K) {
return K == tgtok::Class || K == tgtok::Def ||
K == tgtok::Defm || K == tgtok::Let ||
K == tgtok::MultiClass || K == tgtok::Foreach;
}
/// GetNewAnonymousName - Generate a unique anonymous name that can be used as
/// an identifier.
std::string TGParser::GetNewAnonymousName() {
unsigned Tmp = AnonCounter++; // MSVC2012 ICEs without this.
return "anonymous_" + utostr(Tmp);
}
/// ParseObjectName - If an object name is specified, return it. Otherwise,
/// return 0.
/// ObjectName ::= Value [ '#' Value ]*
/// ObjectName ::= /*empty*/
///
Init *TGParser::ParseObjectName(MultiClass *CurMultiClass) {
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
return 0;
default:
break;
}
Record *CurRec = 0;
if (CurMultiClass)
CurRec = &CurMultiClass->Rec;
RecTy *Type = 0;
if (CurRec) {
const TypedInit *CurRecName = dyn_cast<TypedInit>(CurRec->getNameInit());
if (!CurRecName) {
TokError("Record name is not typed!");
return 0;
}
Type = CurRecName->getType();
}
return ParseValue(CurRec, Type, ParseNameMode);
}
/// ParseClassID - Parse and resolve a reference to a class name. This returns
/// null on error.
///
/// ClassID ::= ID
///
Record *TGParser::ParseClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for ClassID");
return 0;
}
Record *Result = Records.getClass(Lex.getCurStrVal());
if (Result == 0)
TokError("Couldn't find class '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseMultiClassID - Parse and resolve a reference to a multiclass name.
/// This returns null on error.
///
/// MultiClassID ::= ID
///
MultiClass *TGParser::ParseMultiClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for MultiClassID");
return 0;
}
MultiClass *Result = MultiClasses[Lex.getCurStrVal()];
if (Result == 0)
TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseSubClassReference - Parse a reference to a subclass or to a templated
/// subclass. This returns a SubClassRefTy with a null Record* on error.
///
/// SubClassRef ::= ClassID
/// SubClassRef ::= ClassID '<' ValueList '>'
///
SubClassReference TGParser::
ParseSubClassReference(Record *CurRec, bool isDefm) {
SubClassReference Result;
Result.RefRange.Start = Lex.getLoc();
if (isDefm) {
if (MultiClass *MC = ParseMultiClassID())
Result.Rec = &MC->Rec;
} else {
Result.Rec = ParseClassID();
}
if (Result.Rec == 0) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.Rec = 0;
return Result;
}
Result.TemplateArgs = ParseValueList(CurRec, Result.Rec);
if (Result.TemplateArgs.empty()) {
Result.Rec = 0; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.Rec = 0;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseSubMultiClassReference - Parse a reference to a subclass or to a
/// templated submulticlass. This returns a SubMultiClassRefTy with a null
/// Record* on error.
///
/// SubMultiClassRef ::= MultiClassID
/// SubMultiClassRef ::= MultiClassID '<' ValueList '>'
///
SubMultiClassReference TGParser::
ParseSubMultiClassReference(MultiClass *CurMC) {
SubMultiClassReference Result;
Result.RefRange.Start = Lex.getLoc();
Result.MC = ParseMultiClassID();
if (Result.MC == 0) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.MC = 0;
return Result;
}
Result.TemplateArgs = ParseValueList(&CurMC->Rec, &Result.MC->Rec);
if (Result.TemplateArgs.empty()) {
Result.MC = 0; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.MC = 0;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseRangePiece - Parse a bit/value range.
/// RangePiece ::= INTVAL
/// RangePiece ::= INTVAL '-' INTVAL
/// RangePiece ::= INTVAL INTVAL
bool TGParser::ParseRangePiece(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::IntVal) {
TokError("expected integer or bitrange");
return true;
}
int64_t Start = Lex.getCurIntVal();
int64_t End;
if (Start < 0)
return TokError("invalid range, cannot be negative");
switch (Lex.Lex()) { // eat first character.
default:
Ranges.push_back(Start);
return false;
case tgtok::minus:
if (Lex.Lex() != tgtok::IntVal) {
TokError("expected integer value as end of range");
return true;
}
End = Lex.getCurIntVal();
break;
case tgtok::IntVal:
End = -Lex.getCurIntVal();
break;
}
if (End < 0)
return TokError("invalid range, cannot be negative");
Lex.Lex();
// Add to the range.
if (Start < End) {
for (; Start <= End; ++Start)
Ranges.push_back(Start);
} else {
for (; Start >= End; --Start)
Ranges.push_back(Start);
}
return false;
}
/// ParseRangeList - Parse a list of scalars and ranges into scalar values.
///
/// RangeList ::= RangePiece (',' RangePiece)*
///
std::vector<unsigned> TGParser::ParseRangeList() {
std::vector<unsigned> Result;
// Parse the first piece.
if (ParseRangePiece(Result))
return std::vector<unsigned>();
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma.
// Parse the next range piece.
if (ParseRangePiece(Result))
return std::vector<unsigned>();
}
return Result;
}
/// ParseOptionalRangeList - Parse either a range list in <>'s or nothing.
/// OptionalRangeList ::= '<' RangeList '>'
/// OptionalRangeList ::= /*empty*/
bool TGParser::ParseOptionalRangeList(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::less)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '<'
// Parse the range list.
Ranges = ParseRangeList();
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of range list");
return Error(StartLoc, "to match this '<'");
}
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseOptionalBitList - Parse either a bit list in {}'s or nothing.
/// OptionalBitList ::= '{' RangeList '}'
/// OptionalBitList ::= /*empty*/
bool TGParser::ParseOptionalBitList(std::vector<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::l_brace)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
// Parse the range list.
Ranges = ParseRangeList();
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list");
return Error(StartLoc, "to match this '{'");
}
Lex.Lex(); // eat the '}'.
return false;
}
/// ParseType - Parse and return a tblgen type. This returns null on error.
///
/// Type ::= STRING // string type
/// Type ::= CODE // code type
/// Type ::= BIT // bit type
/// Type ::= BITS '<' INTVAL '>' // bits<x> type
/// Type ::= INT // int type
/// Type ::= LIST '<' Type '>' // list<x> type
/// Type ::= DAG // dag type
/// Type ::= ClassID // Record Type
///
RecTy *TGParser::ParseType() {
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a type"); return 0;
case tgtok::String: Lex.Lex(); return StringRecTy::get();
case tgtok::Code: Lex.Lex(); return StringRecTy::get();
case tgtok::Bit: Lex.Lex(); return BitRecTy::get();
case tgtok::Int: Lex.Lex(); return IntRecTy::get();
case tgtok::Dag: Lex.Lex(); return DagRecTy::get();
case tgtok::Id:
if (Record *R = ParseClassID()) return RecordRecTy::get(R);
return 0;
case tgtok::Bits: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after bits type");
return 0;
}
if (Lex.Lex() != tgtok::IntVal) { // Eat '<'
TokError("expected integer in bits<n> type");
return 0;
}
uint64_t Val = Lex.getCurIntVal();
if (Lex.Lex() != tgtok::greater) { // Eat count.
TokError("expected '>' at end of bits<n> type");
return 0;
}
Lex.Lex(); // Eat '>'
return BitsRecTy::get(Val);
}
case tgtok::List: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after list type");
return 0;
}
Lex.Lex(); // Eat '<'
RecTy *SubType = ParseType();
if (SubType == 0) return 0;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list<ty> type");
return 0;
}
Lex.Lex(); // Eat '>'
return ListRecTy::get(SubType);
}
}
}
/// ParseIDValue - Parse an ID as a value and decode what it means.
///
/// IDValue ::= ID [def local value]
/// IDValue ::= ID [def template arg]
/// IDValue ::= ID [multiclass local value]
/// IDValue ::= ID [multiclass template argument]
/// IDValue ::= ID [def name]
///
Init *TGParser::ParseIDValue(Record *CurRec, IDParseMode Mode) {
assert(Lex.getCode() == tgtok::Id && "Expected ID in ParseIDValue");
std::string Name = Lex.getCurStrVal();
SMLoc Loc = Lex.getLoc();
Lex.Lex();
return ParseIDValue(CurRec, Name, Loc);
}
/// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID
/// has already been read.
Init *TGParser::ParseIDValue(Record *CurRec,
const std::string &Name, SMLoc NameLoc,
IDParseMode Mode) {
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name))
return VarInit::get(Name, RV->getType());
Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":");
if (CurMultiClass)
TemplateArgName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name,
"::");
if (CurRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = CurRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(TemplateArgName, RV->getType());
}
}
if (CurMultiClass) {
Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name,
"::");
if (CurMultiClass->Rec.isTemplateArg(MCName)) {
const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(MCName, RV->getType());
}
}
// If this is in a foreach loop, make sure it's not a loop iterator
for (LoopVector::iterator i = Loops.begin(), iend = Loops.end();
i != iend;
++i) {
VarInit *IterVar = dyn_cast<VarInit>(i->IterVar);
if (IterVar && IterVar->getName() == Name)
return IterVar;
}
if (Mode == ParseNameMode)
return StringInit::get(Name);
if (Record *D = Records.getDef(Name))
return DefInit::get(D);
if (Mode == ParseValueMode) {
Error(NameLoc, "Variable not defined: '" + Name + "'");
return 0;
}
return StringInit::get(Name);
}
/// ParseOperation - Parse an operator. This returns null on error.
///
/// Operation ::= XOperator ['<' Type '>'] '(' Args ')'
///
Init *TGParser::ParseOperation(Record *CurRec) {
switch (Lex.getCode()) {
default:
TokError("unknown operation");
return 0;
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: { // Value ::= !unop '(' Value ')'
UnOpInit::UnaryOp Code;
RecTy *Type = 0;
switch (Lex.getCode()) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XCast:
Lex.Lex(); // eat the operation
Code = UnOpInit::CAST;
Type = ParseOperatorType();
if (Type == 0) {
TokError("did not get type for unary operator");
return 0;
}
break;
case tgtok::XHead:
Lex.Lex(); // eat the operation
Code = UnOpInit::HEAD;
break;
case tgtok::XTail:
Lex.Lex(); // eat the operation
Code = UnOpInit::TAIL;
break;
case tgtok::XEmpty:
Lex.Lex(); // eat the operation
Code = UnOpInit::EMPTY;
Type = IntRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after unary operator");
return 0;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (LHS == 0) return 0;
if (Code == UnOpInit::HEAD
|| Code == UnOpInit::TAIL
|| Code == UnOpInit::EMPTY) {
ListInit *LHSl = dyn_cast<ListInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
TypedInit *LHSt = dyn_cast<TypedInit>(LHS);
if (LHSl == 0 && LHSs == 0 && LHSt == 0) {
TokError("expected list or string type argument in unary operator");
return 0;
}
if (LHSt) {
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
StringRecTy *SType = dyn_cast<StringRecTy>(LHSt->getType());
if (LType == 0 && SType == 0) {
TokError("expected list or string type argumnet in unary operator");
return 0;
}
}
if (Code == UnOpInit::HEAD
|| Code == UnOpInit::TAIL) {
if (LHSl == 0 && LHSt == 0) {
TokError("expected list type argumnet in unary operator");
return 0;
}
if (LHSl && LHSl->getSize() == 0) {
TokError("empty list argument in unary operator");
return 0;
}
if (LHSl) {
Init *Item = LHSl->getElement(0);
TypedInit *Itemt = dyn_cast<TypedInit>(Item);
if (Itemt == 0) {
TokError("untyped list element in unary operator");
return 0;
}
if (Code == UnOpInit::HEAD) {
Type = Itemt->getType();
} else {
Type = ListRecTy::get(Itemt->getType());
}
} else {
assert(LHSt && "expected list type argument in unary operator");
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
if (LType == 0) {
TokError("expected list type argumnet in unary operator");
return 0;
}
if (Code == UnOpInit::HEAD) {
Type = LType->getElementType();
} else {
Type = LType;
}
}
}
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in unary operator");
return 0;
}
Lex.Lex(); // eat the ')'
return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec, CurMultiClass);
}
case tgtok::XConcat:
case tgtok::XADD:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XStrConcat: { // Value ::= !binop '(' Value ',' Value ')'
tgtok::TokKind OpTok = Lex.getCode();
SMLoc OpLoc = Lex.getLoc();
Lex.Lex(); // eat the operation
BinOpInit::BinaryOp Code;
RecTy *Type = 0;
switch (OpTok) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break;
case tgtok::XADD: Code = BinOpInit::ADD; Type = IntRecTy::get(); break;
case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break;
case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break;
case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break;
case tgtok::XEq: Code = BinOpInit::EQ; Type = BitRecTy::get(); break;
case tgtok::XStrConcat:
Code = BinOpInit::STRCONCAT;
Type = StringRecTy::get();
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after binary operator");
return 0;
}
Lex.Lex(); // eat the '('
SmallVector<Init*, 2> InitList;
InitList.push_back(ParseValue(CurRec));
if (InitList.back() == 0) return 0;
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
InitList.push_back(ParseValue(CurRec));
if (InitList.back() == 0) return 0;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in operator");
return 0;
}
Lex.Lex(); // eat the ')'
// We allow multiple operands to associative operators like !strconcat as
// shorthand for nesting them.
if (Code == BinOpInit::STRCONCAT) {
while (InitList.size() > 2) {
Init *RHS = InitList.pop_back_val();
RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type))
->Fold(CurRec, CurMultiClass);
InitList.back() = RHS;
}
}
if (InitList.size() == 2)
return (BinOpInit::get(Code, InitList[0], InitList[1], Type))
->Fold(CurRec, CurMultiClass);
Error(OpLoc, "expected two operands to operator");
return 0;
}
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
TernOpInit::TernaryOp Code;
RecTy *Type = 0;
tgtok::TokKind LexCode = Lex.getCode();
Lex.Lex(); // eat the operation
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XIf:
Code = TernOpInit::IF;
break;
case tgtok::XForEach:
Code = TernOpInit::FOREACH;
break;
case tgtok::XSubst:
Code = TernOpInit::SUBST;
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after ternary operator");
return 0;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (LHS == 0) return 0;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return 0;
}
Lex.Lex(); // eat the ','
Init *MHS = ParseValue(CurRec);
if (MHS == 0) return 0;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return 0;
}
Lex.Lex(); // eat the ','
Init *RHS = ParseValue(CurRec);
if (RHS == 0) return 0;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in binary operator");
return 0;
}
Lex.Lex(); // eat the ')'
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XIf: {
RecTy *MHSTy = 0;
RecTy *RHSTy = 0;
if (TypedInit *MHSt = dyn_cast<TypedInit>(MHS))
MHSTy = MHSt->getType();
if (BitsInit *MHSbits = dyn_cast<BitsInit>(MHS))
MHSTy = BitsRecTy::get(MHSbits->getNumBits());
if (isa<BitInit>(MHS))
MHSTy = BitRecTy::get();
if (TypedInit *RHSt = dyn_cast<TypedInit>(RHS))
RHSTy = RHSt->getType();
if (BitsInit *RHSbits = dyn_cast<BitsInit>(RHS))
RHSTy = BitsRecTy::get(RHSbits->getNumBits());
if (isa<BitInit>(RHS))
RHSTy = BitRecTy::get();
// For UnsetInit, it's typed from the other hand.
if (isa<UnsetInit>(MHS))
MHSTy = RHSTy;
if (isa<UnsetInit>(RHS))
RHSTy = MHSTy;
if (!MHSTy || !RHSTy) {
TokError("could not get type for !if");
return 0;
}
if (MHSTy->typeIsConvertibleTo(RHSTy)) {
Type = RHSTy;
} else if (RHSTy->typeIsConvertibleTo(MHSTy)) {
Type = MHSTy;
} else {
TokError("inconsistent types for !if");
return 0;
}
break;
}
case tgtok::XForEach: {
TypedInit *MHSt = dyn_cast<TypedInit>(MHS);
if (MHSt == 0) {
TokError("could not get type for !foreach");
return 0;
}
Type = MHSt->getType();
break;
}
case tgtok::XSubst: {
TypedInit *RHSt = dyn_cast<TypedInit>(RHS);
if (RHSt == 0) {
TokError("could not get type for !subst");
return 0;
}
Type = RHSt->getType();
break;
}
}
return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec,
CurMultiClass);
}
}
}
/// ParseOperatorType - Parse a type for an operator. This returns
/// null on error.
///
/// OperatorType ::= '<' Type '>'
///
RecTy *TGParser::ParseOperatorType() {
RecTy *Type = 0;
if (Lex.getCode() != tgtok::less) {
TokError("expected type name for operator");
return 0;
}
Lex.Lex(); // eat the <
Type = ParseType();
if (Type == 0) {
TokError("expected type name for operator");
return 0;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected type name for operator");
return 0;
}
Lex.Lex(); // eat the >
return Type;
}
/// ParseSimpleValue - Parse a tblgen value. This returns null on error.
///
/// SimpleValue ::= IDValue
/// SimpleValue ::= INTVAL
/// SimpleValue ::= STRVAL+
/// SimpleValue ::= CODEFRAGMENT
/// SimpleValue ::= '?'
/// SimpleValue ::= '{' ValueList '}'
/// SimpleValue ::= ID '<' ValueListNE '>'
/// SimpleValue ::= '[' ValueList ']'
/// SimpleValue ::= '(' IDValue DagArgList ')'
/// SimpleValue ::= CONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= ADDTOK '(' Value ',' Value ')'
/// SimpleValue ::= SHLTOK '(' Value ',' Value ')'
/// SimpleValue ::= SRATOK '(' Value ',' Value ')'
/// SimpleValue ::= SRLTOK '(' Value ',' Value ')'
/// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')'
///
Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
IDParseMode Mode) {
Init *R = 0;
switch (Lex.getCode()) {
default: TokError("Unknown token when parsing a value"); break;
case tgtok::paste:
// This is a leading paste operation. This is deprecated but
// still exists in some .td files. Ignore it.
Lex.Lex(); // Skip '#'.
return ParseSimpleValue(CurRec, ItemType, Mode);
case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break;
case tgtok::StrVal: {
std::string Val = Lex.getCurStrVal();
Lex.Lex();
// Handle multiple consecutive concatenated strings.
while (Lex.getCode() == tgtok::StrVal) {
Val += Lex.getCurStrVal();
Lex.Lex();
}
R = StringInit::get(Val);
break;
}
case tgtok::CodeFragment:
R = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
break;
case tgtok::question:
R = UnsetInit::get();
Lex.Lex();
break;
case tgtok::Id: {
SMLoc NameLoc = Lex.getLoc();
std::string Name = Lex.getCurStrVal();
if (Lex.Lex() != tgtok::less) // consume the Id.
return ParseIDValue(CurRec, Name, NameLoc, Mode); // Value ::= IDValue
// Value ::= ID '<' ValueListNE '>'
if (Lex.Lex() == tgtok::greater) {
TokError("expected non-empty value list");
return 0;
}
// This is a CLASS<initvalslist> expression. This is supposed to synthesize
// a new anonymous definition, deriving from CLASS<initvalslist> with no
// body.
Record *Class = Records.getClass(Name);
if (!Class) {
Error(NameLoc, "Expected a class name, got '" + Name + "'");
return 0;
}
std::vector<Init*> ValueList = ParseValueList(CurRec, Class);
if (ValueList.empty()) return 0;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of value list");
return 0;
}
Lex.Lex(); // eat the '>'
SMLoc EndLoc = Lex.getLoc();
// Create the new record, set it as CurRec temporarily.
Record *NewRec = new Record(GetNewAnonymousName(), NameLoc, Records,
/*IsAnonymous=*/true);
SubClassReference SCRef;
SCRef.RefRange = SMRange(NameLoc, EndLoc);
SCRef.Rec = Class;
SCRef.TemplateArgs = ValueList;
// Add info about the subclass to NewRec.
if (AddSubClass(NewRec, SCRef))
return 0;
if (!CurMultiClass) {
NewRec->resolveReferences();
Records.addDef(NewRec);
} else {
// Otherwise, we're inside a multiclass, add it to the multiclass.
CurMultiClass->DefPrototypes.push_back(NewRec);
// Copy the template arguments for the multiclass into the def.
const std::vector<Init *> &TArgs =
CurMultiClass->Rec.getTemplateArgs();
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TArgs[i]);
assert(RV && "Template arg doesn't exist?");
NewRec->addValue(*RV);
}
// We can't return the prototype def here, instead return:
// !cast<ItemType>(!strconcat(NAME, AnonName)).
const RecordVal *MCNameRV = CurMultiClass->Rec.getValue("NAME");
assert(MCNameRV && "multiclass record must have a NAME");
return UnOpInit::get(UnOpInit::CAST,
BinOpInit::get(BinOpInit::STRCONCAT,
VarInit::get(MCNameRV->getName(),
MCNameRV->getType()),
NewRec->getNameInit(),
StringRecTy::get()),
Class->getDefInit()->getType());
}
// The result of the expression is a reference to the new record.
return DefInit::get(NewRec);
}
case tgtok::l_brace: { // Value ::= '{' ValueList '}'
SMLoc BraceLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
std::vector<Init*> Vals;
if (Lex.getCode() != tgtok::r_brace) {
Vals = ParseValueList(CurRec);
if (Vals.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list value");
return 0;
}
Lex.Lex(); // eat the '}'
SmallVector<Init *, 16> NewBits(Vals.size());
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get());
if (Bit == 0) {
Error(BraceLoc, "Element #" + utostr(i) + " (" + Vals[i]->getAsString()+
") is not convertable to a bit");
return 0;
}
NewBits[Vals.size()-i-1] = Bit;
}
return BitsInit::get(NewBits);
}
case tgtok::l_square: { // Value ::= '[' ValueList ']'
Lex.Lex(); // eat the '['
std::vector<Init*> Vals;
RecTy *DeducedEltTy = 0;
ListRecTy *GivenListTy = 0;
if (ItemType != 0) {
ListRecTy *ListType = dyn_cast<ListRecTy>(ItemType);
if (ListType == 0) {
std::string s;
raw_string_ostream ss(s);
ss << "Type mismatch for list, expected list type, got "
<< ItemType->getAsString();
TokError(ss.str());
return 0;
}
GivenListTy = ListType;
}
if (Lex.getCode() != tgtok::r_square) {
Vals = ParseValueList(CurRec, 0,
GivenListTy ? GivenListTy->getElementType() : 0);
if (Vals.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list value");
return 0;
}
Lex.Lex(); // eat the ']'
RecTy *GivenEltTy = 0;
if (Lex.getCode() == tgtok::less) {
// Optional list element type
Lex.Lex(); // eat the '<'
GivenEltTy = ParseType();
if (GivenEltTy == 0) {
// Couldn't parse element type
return 0;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list element type");
return 0;
}
Lex.Lex(); // eat the '>'
}
// Check elements
RecTy *EltTy = 0;
for (std::vector<Init *>::iterator i = Vals.begin(), ie = Vals.end();
i != ie;
++i) {
TypedInit *TArg = dyn_cast<TypedInit>(*i);
if (TArg == 0) {
TokError("Untyped list element");
return 0;
}
if (EltTy != 0) {
EltTy = resolveTypes(EltTy, TArg->getType());
if (EltTy == 0) {
TokError("Incompatible types in list elements");
return 0;
}
} else {
EltTy = TArg->getType();
}
}
if (GivenEltTy != 0) {
if (EltTy != 0) {
// Verify consistency
if (!EltTy->typeIsConvertibleTo(GivenEltTy)) {
TokError("Incompatible types in list elements");
return 0;
}
}
EltTy = GivenEltTy;
}
if (EltTy == 0) {
if (ItemType == 0) {
TokError("No type for list");
return 0;
}
DeducedEltTy = GivenListTy->getElementType();
} else {
// Make sure the deduced type is compatible with the given type
if (GivenListTy) {
if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) {
TokError("Element type mismatch for list");
return 0;
}
}
DeducedEltTy = EltTy;
}
return ListInit::get(Vals, DeducedEltTy);
}
case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')'
Lex.Lex(); // eat the '('
if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast) {
TokError("expected identifier in dag init");
return 0;
}
Init *Operator = ParseValue(CurRec);
if (Operator == 0) return 0;
// If the operator name is present, parse it.
std::string OperatorName;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag operator");
return 0;
}
OperatorName = Lex.getCurStrVal();
Lex.Lex(); // eat the VarName.
}
std::vector<std::pair<llvm::Init*, std::string> > DagArgs;
if (Lex.getCode() != tgtok::r_paren) {
DagArgs = ParseDagArgList(CurRec);
if (DagArgs.empty()) return 0;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in dag init");
return 0;
}
Lex.Lex(); // eat the ')'
return DagInit::get(Operator, OperatorName, DagArgs);
}
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XEmpty:
case tgtok::XCast: // Value ::= !unop '(' Value ')'
case tgtok::XConcat:
case tgtok::XADD:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XStrConcat: // Value ::= !binop '(' Value ',' Value ')'
case tgtok::XIf:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
return ParseOperation(CurRec);
}
}
return R;
}
/// ParseValue - Parse a tblgen value. This returns null on error.
///
/// Value ::= SimpleValue ValueSuffix*
/// ValueSuffix ::= '{' BitList '}'
/// ValueSuffix ::= '[' BitList ']'
/// ValueSuffix ::= '.' ID
///
Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) {
Init *Result = ParseSimpleValue(CurRec, ItemType, Mode);
if (Result == 0) return 0;
// Parse the suffixes now if present.
while (1) {
switch (Lex.getCode()) {
default: return Result;
case tgtok::l_brace: {
if (Mode == ParseNameMode || Mode == ParseForeachMode)
// This is the beginning of the object body.
return Result;
SMLoc CurlyLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
std::vector<unsigned> Ranges = ParseRangeList();
if (Ranges.empty()) return 0;
// Reverse the bitlist.
std::reverse(Ranges.begin(), Ranges.end());
Result = Result->convertInitializerBitRange(Ranges);
if (Result == 0) {
Error(CurlyLoc, "Invalid bit range for value");
return 0;
}
// Eat the '}'.
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return 0;
}
Lex.Lex();
break;
}
case tgtok::l_square: {
SMLoc SquareLoc = Lex.getLoc();
Lex.Lex(); // eat the '['
std::vector<unsigned> Ranges = ParseRangeList();
if (Ranges.empty()) return 0;
Result = Result->convertInitListSlice(Ranges);
if (Result == 0) {
Error(SquareLoc, "Invalid range for list slice");
return 0;
}
// Eat the ']'.
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list slice");
return 0;
}
Lex.Lex();
break;
}
case tgtok::period:
if (Lex.Lex() != tgtok::Id) { // eat the .
TokError("expected field identifier after '.'");
return 0;
}
if (!Result->getFieldType(Lex.getCurStrVal())) {
TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" +
Result->getAsString() + "'");
return 0;
}
Result = FieldInit::get(Result, Lex.getCurStrVal());
Lex.Lex(); // eat field name
break;
case tgtok::paste:
SMLoc PasteLoc = Lex.getLoc();
// Create a !strconcat() operation, first casting each operand to
// a string if necessary.
TypedInit *LHS = dyn_cast<TypedInit>(Result);
if (!LHS) {
Error(PasteLoc, "LHS of paste is not typed!");
return 0;
}
if (LHS->getType() != StringRecTy::get()) {
LHS = UnOpInit::get(UnOpInit::CAST, LHS, StringRecTy::get());
}
TypedInit *RHS = 0;
Lex.Lex(); // Eat the '#'.
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
// Trailing paste, concat with an empty string.
RHS = StringInit::get("");
break;
default:
Init *RHSResult = ParseValue(CurRec, ItemType, ParseNameMode);
RHS = dyn_cast<TypedInit>(RHSResult);
if (!RHS) {
Error(PasteLoc, "RHS of paste is not typed!");
return 0;
}
if (RHS->getType() != StringRecTy::get()) {
RHS = UnOpInit::get(UnOpInit::CAST, RHS, StringRecTy::get());
}
break;
}
Result = BinOpInit::get(BinOpInit::STRCONCAT, LHS, RHS,
StringRecTy::get())->Fold(CurRec, CurMultiClass);
break;
}
}
}
/// ParseDagArgList - Parse the argument list for a dag literal expression.
///
/// DagArg ::= Value (':' VARNAME)?
/// DagArg ::= VARNAME
/// DagArgList ::= DagArg
/// DagArgList ::= DagArgList ',' DagArg
std::vector<std::pair<llvm::Init*, std::string> >
TGParser::ParseDagArgList(Record *CurRec) {
std::vector<std::pair<llvm::Init*, std::string> > Result;
while (1) {
// DagArg ::= VARNAME
if (Lex.getCode() == tgtok::VarName) {
// A missing value is treated like '?'.
Result.push_back(std::make_pair(UnsetInit::get(), Lex.getCurStrVal()));
Lex.Lex();
} else {
// DagArg ::= Value (':' VARNAME)?
Init *Val = ParseValue(CurRec);
if (Val == 0)
return std::vector<std::pair<llvm::Init*, std::string> >();
// If the variable name is present, add it.
std::string VarName;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag literal");
return std::vector<std::pair<llvm::Init*, std::string> >();
}
VarName = Lex.getCurStrVal();
Lex.Lex(); // eat the VarName.
}
Result.push_back(std::make_pair(Val, VarName));
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat the ','
}
return Result;
}
/// ParseValueList - Parse a comma separated list of values, returning them as a
/// vector. Note that this always expects to be able to parse at least one
/// value. It returns an empty list if this is not possible.
///
/// ValueList ::= Value (',' Value)
///
std::vector<Init*> TGParser::ParseValueList(Record *CurRec, Record *ArgsRec,
RecTy *EltTy) {
std::vector<Init*> Result;
RecTy *ItemType = EltTy;
unsigned int ArgN = 0;
if (ArgsRec != 0 && EltTy == 0) {
const std::vector<Init *> &TArgs = ArgsRec->getTemplateArgs();
if (!TArgs.size()) {
TokError("template argument provided to non-template class");
return std::vector<Init*>();
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
if (!RV) {
errs() << "Cannot find template arg " << ArgN << " (" << TArgs[ArgN]
<< ")\n";
}
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (Result.back() == 0) return std::vector<Init*>();
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma
if (ArgsRec != 0 && EltTy == 0) {
const std::vector<Init *> &TArgs = ArgsRec->getTemplateArgs();
if (ArgN >= TArgs.size()) {
TokError("too many template arguments");
return std::vector<Init*>();
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (Result.back() == 0) return std::vector<Init*>();
}
return Result;
}
/// ParseDeclaration - Read a declaration, returning the name of field ID, or an
/// empty string on error. This can happen in a number of different context's,
/// including within a def or in the template args for a def (which which case
/// CurRec will be non-null) and within the template args for a multiclass (in
/// which case CurRec will be null, but CurMultiClass will be set). This can
/// also happen within a def that is within a multiclass, which will set both
/// CurRec and CurMultiClass.
///
/// Declaration ::= FIELD? Type ID ('=' Value)?
///
Init *TGParser::ParseDeclaration(Record *CurRec,
bool ParsingTemplateArgs) {
// Read the field prefix if present.
bool HasField = Lex.getCode() == tgtok::Field;
if (HasField) Lex.Lex();
RecTy *Type = ParseType();
if (Type == 0) return 0;
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in declaration");
return 0;
}
SMLoc IdLoc = Lex.getLoc();
Init *DeclName = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
if (ParsingTemplateArgs) {
if (CurRec) {
DeclName = QualifyName(*CurRec, CurMultiClass, DeclName, ":");
} else {
assert(CurMultiClass);
}
if (CurMultiClass)
DeclName = QualifyName(CurMultiClass->Rec, CurMultiClass, DeclName,
"::");
}
// Add the value.
if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField)))
return 0;
// If a value is present, parse it.
if (Lex.getCode() == tgtok::equal) {
Lex.Lex();
SMLoc ValLoc = Lex.getLoc();
Init *Val = ParseValue(CurRec, Type);
if (Val == 0 ||
SetValue(CurRec, ValLoc, DeclName, std::vector<unsigned>(), Val))
return 0;
}
return DeclName;
}
/// ParseForeachDeclaration - Read a foreach declaration, returning
/// the name of the declared object or a NULL Init on error. Return
/// the name of the parsed initializer list through ForeachListName.
///
/// ForeachDeclaration ::= ID '=' '[' ValueList ']'
/// ForeachDeclaration ::= ID '=' '{' RangeList '}'
/// ForeachDeclaration ::= ID '=' RangePiece
///
VarInit *TGParser::ParseForeachDeclaration(ListInit *&ForeachListValue) {
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in foreach declaration");
return 0;
}
Init *DeclName = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
// If a value is present, parse it.
if (Lex.getCode() != tgtok::equal) {
TokError("Expected '=' in foreach declaration");
return 0;
}
Lex.Lex(); // Eat the '='
RecTy *IterType = 0;
std::vector<unsigned> Ranges;
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a range list"); return 0;
case tgtok::l_square: { // '[' ValueList ']'
Init *List = ParseSimpleValue(0, 0, ParseForeachMode);
ForeachListValue = dyn_cast<ListInit>(List);
if (ForeachListValue == 0) {
TokError("Expected a Value list");
return 0;
}
RecTy *ValueType = ForeachListValue->getType();
ListRecTy *ListType = dyn_cast<ListRecTy>(ValueType);
if (ListType == 0) {
TokError("Value list is not of list type");
return 0;
}
IterType = ListType->getElementType();
break;
}
case tgtok::IntVal: { // RangePiece.
if (ParseRangePiece(Ranges))
return 0;
break;
}
case tgtok::l_brace: { // '{' RangeList '}'
Lex.Lex(); // eat the '{'
Ranges = ParseRangeList();
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return 0;
}
Lex.Lex();
break;
}
}
if (!Ranges.empty()) {
assert(!IterType && "Type already initialized?");
IterType = IntRecTy::get();
std::vector<Init*> Values;
for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
Values.push_back(IntInit::get(Ranges[i]));
ForeachListValue = ListInit::get(Values, IterType);
}
if (!IterType)
return 0;
return VarInit::get(DeclName, IterType);
}
/// ParseTemplateArgList - Read a template argument list, which is a non-empty
/// sequence of template-declarations in <>'s. If CurRec is non-null, these are
/// template args for a def, which may or may not be in a multiclass. If null,
/// these are the template args for a multiclass.
///
/// TemplateArgList ::= '<' Declaration (',' Declaration)* '>'
///
bool TGParser::ParseTemplateArgList(Record *CurRec) {
assert(Lex.getCode() == tgtok::less && "Not a template arg list!");
Lex.Lex(); // eat the '<'
Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec;
// Read the first declaration.
Init *TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (TemplArg == 0)
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
// Read the following declarations.
TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (TemplArg == 0)
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
}
if (Lex.getCode() != tgtok::greater)
return TokError("expected '>' at end of template argument list");
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseBodyItem - Parse a single item at within the body of a def or class.
///
/// BodyItem ::= Declaration ';'
/// BodyItem ::= LET ID OptionalBitList '=' Value ';'
bool TGParser::ParseBodyItem(Record *CurRec) {
if (Lex.getCode() != tgtok::Let) {
if (ParseDeclaration(CurRec, false) == 0)
return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after declaration");
Lex.Lex();
return false;
}
// LET ID OptionalRangeList '=' Value ';'
if (Lex.Lex() != tgtok::Id)
return TokError("expected field identifier after let");
SMLoc IdLoc = Lex.getLoc();
std::string FieldName = Lex.getCurStrVal();
Lex.Lex(); // eat the field name.
std::vector<unsigned> BitList;
if (ParseOptionalBitList(BitList))
return true;
std::reverse(BitList.begin(), BitList.end());
if (Lex.getCode() != tgtok::equal)
return TokError("expected '=' in let expression");
Lex.Lex(); // eat the '='.
RecordVal *Field = CurRec->getValue(FieldName);
if (Field == 0)
return TokError("Value '" + FieldName + "' unknown!");
RecTy *Type = Field->getType();
Init *Val = ParseValue(CurRec, Type);
if (Val == 0) return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after let expression");
Lex.Lex();
return SetValue(CurRec, IdLoc, FieldName, BitList, Val);
}
/// ParseBody - Read the body of a class or def. Return true on error, false on
/// success.
///
/// Body ::= ';'
/// Body ::= '{' BodyList '}'
/// BodyList BodyItem*
///
bool TGParser::ParseBody(Record *CurRec) {
// If this is a null definition, just eat the semi and return.
if (Lex.getCode() == tgtok::semi) {
Lex.Lex();
return false;
}
if (Lex.getCode() != tgtok::l_brace)
return TokError("Expected ';' or '{' to start body");
// Eat the '{'.
Lex.Lex();
while (Lex.getCode() != tgtok::r_brace)
if (ParseBodyItem(CurRec))
return true;
// Eat the '}'.
Lex.Lex();
return false;
}
/// \brief Apply the current let bindings to \a CurRec.
/// \returns true on error, false otherwise.
bool TGParser::ApplyLetStack(Record *CurRec) {
for (unsigned i = 0, e = LetStack.size(); i != e; ++i)
for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j)
if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name,
LetStack[i][j].Bits, LetStack[i][j].Value))
return true;
return false;
}
/// ParseObjectBody - Parse the body of a def or class. This consists of an
/// optional ClassList followed by a Body. CurRec is the current def or class
/// that is being parsed.
///
/// ObjectBody ::= BaseClassList Body
/// BaseClassList ::= /*empty*/
/// BaseClassList ::= ':' BaseClassListNE
/// BaseClassListNE ::= SubClassRef (',' SubClassRef)*
///
bool TGParser::ParseObjectBody(Record *CurRec) {
// If there is a baseclass list, read it.
if (Lex.getCode() == tgtok::colon) {
Lex.Lex();
// Read all of the subclasses.
SubClassReference SubClass = ParseSubClassReference(CurRec, false);
while (1) {
// Check for error.
if (SubClass.Rec == 0) return true;
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(CurRec, false);
}
}
if (ApplyLetStack(CurRec))
return true;
return ParseBody(CurRec);
}
/// ParseDef - Parse and return a top level or multiclass def, return the record
/// corresponding to it. This returns null on error.
///
/// DefInst ::= DEF ObjectName ObjectBody
///
bool TGParser::ParseDef(MultiClass *CurMultiClass) {
SMLoc DefLoc = Lex.getLoc();
assert(Lex.getCode() == tgtok::Def && "Unknown tok");
Lex.Lex(); // Eat the 'def' token.
// Parse ObjectName and make a record for it.
Record *CurRec;
Init *Name = ParseObjectName(CurMultiClass);
if (Name)
CurRec = new Record(Name, DefLoc, Records);
else
CurRec = new Record(GetNewAnonymousName(), DefLoc, Records,
/*IsAnonymous=*/true);
if (!CurMultiClass && Loops.empty()) {
// Top-level def definition.
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getNameInitAsString())) {
Error(DefLoc, "def '" + CurRec->getNameInitAsString()
+ "' already defined");
return true;
}
Records.addDef(CurRec);
if (ParseObjectBody(CurRec))
return true;
} else if (CurMultiClass) {
// Parse the body before adding this prototype to the DefPrototypes vector.
// That way implicit definitions will be added to the DefPrototypes vector
// before this object, instantiated prior to defs derived from this object,
// and this available for indirect name resolution when defs derived from
// this object are instantiated.
if (ParseObjectBody(CurRec))
return true;
// Otherwise, a def inside a multiclass, add it to the multiclass.
for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size(); i != e; ++i)
if (CurMultiClass->DefPrototypes[i]->getNameInit()
== CurRec->getNameInit()) {
Error(DefLoc, "def '" + CurRec->getNameInitAsString() +
"' already defined in this multiclass!");
return true;
}
CurMultiClass->DefPrototypes.push_back(CurRec);
} else if (ParseObjectBody(CurRec))
return true;
if (CurMultiClass == 0) // Def's in multiclasses aren't really defs.
// See Record::setName(). This resolve step will see any new name
// for the def that might have been created when resolving
// inheritance, values and arguments above.
CurRec->resolveReferences();
// If ObjectBody has template arguments, it's an error.
assert(CurRec->getTemplateArgs().empty() && "How'd this get template args?");
if (CurMultiClass) {
// Copy the template arguments for the multiclass into the def.
const std::vector<Init *> &TArgs =
CurMultiClass->Rec.getTemplateArgs();
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TArgs[i]);
assert(RV && "Template arg doesn't exist?");
CurRec->addValue(*RV);
}
}
if (ProcessForeachDefs(CurRec, DefLoc)) {
Error(DefLoc,
"Could not process loops for def" + CurRec->getNameInitAsString());
return true;
}
return false;
}
/// ParseForeach - Parse a for statement. Return the record corresponding
/// to it. This returns true on error.
///
/// Foreach ::= FOREACH Declaration IN '{ ObjectList '}'
/// Foreach ::= FOREACH Declaration IN Object
///
bool TGParser::ParseForeach(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Foreach && "Unknown tok");
Lex.Lex(); // Eat the 'for' token.
// Make a temporary object to record items associated with the for
// loop.
ListInit *ListValue = 0;
VarInit *IterName = ParseForeachDeclaration(ListValue);
if (IterName == 0)
return TokError("expected declaration in for");
if (Lex.getCode() != tgtok::In)
return TokError("Unknown tok");
Lex.Lex(); // Eat the in
// Create a loop object and remember it.
Loops.push_back(ForeachLoop(IterName, ListValue));
if (Lex.getCode() != tgtok::l_brace) {
// FOREACH Declaration IN Object
if (ParseObject(CurMultiClass))
return true;
}
else {
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group foreach.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of foreach command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex(); // Eat the }
}
// We've processed everything in this loop.
Loops.pop_back();
return false;
}
/// ParseClass - Parse a tblgen class definition.
///
/// ClassInst ::= CLASS ID TemplateArgList? ObjectBody
///
bool TGParser::ParseClass() {
assert(Lex.getCode() == tgtok::Class && "Unexpected token!");
Lex.Lex();
if (Lex.getCode() != tgtok::Id)
return TokError("expected class name after 'class' keyword");
Record *CurRec = Records.getClass(Lex.getCurStrVal());
if (CurRec) {
// If the body was previously defined, this is an error.
if (CurRec->getValues().size() > 1 || // Account for NAME.
!CurRec->getSuperClasses().empty() ||
!CurRec->getTemplateArgs().empty())
return TokError("Class '" + CurRec->getNameInitAsString()
+ "' already defined");
} else {
// If this is the first reference to this class, create and add it.
CurRec = new Record(Lex.getCurStrVal(), Lex.getLoc(), Records);
Records.addClass(CurRec);
}
Lex.Lex(); // eat the name.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(CurRec))
return true;
// Finally, parse the object body.
return ParseObjectBody(CurRec);
}
/// ParseLetList - Parse a non-empty list of assignment expressions into a list
/// of LetRecords.
///
/// LetList ::= LetItem (',' LetItem)*
/// LetItem ::= ID OptionalRangeList '=' Value
///
std::vector<LetRecord> TGParser::ParseLetList() {
std::vector<LetRecord> Result;
while (1) {
if (Lex.getCode() != tgtok::Id) {
TokError("expected identifier in let definition");
return std::vector<LetRecord>();
}
std::string Name = Lex.getCurStrVal();
SMLoc NameLoc = Lex.getLoc();
Lex.Lex(); // Eat the identifier.
// Check for an optional RangeList.
std::vector<unsigned> Bits;
if (ParseOptionalRangeList(Bits))
return std::vector<LetRecord>();
std::reverse(Bits.begin(), Bits.end());
if (Lex.getCode() != tgtok::equal) {
TokError("expected '=' in let expression");
return std::vector<LetRecord>();
}
Lex.Lex(); // eat the '='.
Init *Val = ParseValue(0);
if (Val == 0) return std::vector<LetRecord>();
// Now that we have everything, add the record.
Result.push_back(LetRecord(Name, Bits, Val, NameLoc));
if (Lex.getCode() != tgtok::comma)
return Result;
Lex.Lex(); // eat the comma.
}
}
/// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of
/// different related productions. This works inside multiclasses too.
///
/// Object ::= LET LetList IN '{' ObjectList '}'
/// Object ::= LET LetList IN Object
///
bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Let && "Unexpected token");
Lex.Lex();
// Add this entry to the let stack.
std::vector<LetRecord> LetInfo = ParseLetList();
if (LetInfo.empty()) return true;
LetStack.push_back(LetInfo);
if (Lex.getCode() != tgtok::In)
return TokError("expected 'in' at end of top-level 'let'");
Lex.Lex();
// If this is a scalar let, just handle it now
if (Lex.getCode() != tgtok::l_brace) {
// LET LetList IN Object
if (ParseObject(CurMultiClass))
return true;
} else { // Object ::= LETCommand '{' ObjectList '}'
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group let.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of top level let command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex();
}
// Outside this let scope, this let block is not active.
LetStack.pop_back();
return false;
}
/// ParseMultiClass - Parse a multiclass definition.
///
/// MultiClassInst ::= MULTICLASS ID TemplateArgList?
/// ':' BaseMultiClassList '{' MultiClassObject+ '}'
/// MultiClassObject ::= DefInst
/// MultiClassObject ::= MultiClassInst
/// MultiClassObject ::= DefMInst
/// MultiClassObject ::= LETCommand '{' ObjectList '}'
/// MultiClassObject ::= LETCommand Object
///
bool TGParser::ParseMultiClass() {
assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token");
Lex.Lex(); // Eat the multiclass token.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier after multiclass for name");
std::string Name = Lex.getCurStrVal();
if (MultiClasses.count(Name))
return TokError("multiclass '" + Name + "' already defined");
CurMultiClass = MultiClasses[Name] = new MultiClass(Name,
Lex.getLoc(), Records);
Lex.Lex(); // Eat the identifier.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(0))
return true;
bool inherits = false;
// If there are submulticlasses, parse them.
if (Lex.getCode() == tgtok::colon) {
inherits = true;
Lex.Lex();
// Read all of the submulticlasses.
SubMultiClassReference SubMultiClass =
ParseSubMultiClassReference(CurMultiClass);
while (1) {
// Check for error.
if (SubMultiClass.MC == 0) return true;
// Add it.
if (AddSubMultiClass(CurMultiClass, SubMultiClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubMultiClass = ParseSubMultiClassReference(CurMultiClass);
}
}
if (Lex.getCode() != tgtok::l_brace) {
if (!inherits)
return TokError("expected '{' in multiclass definition");
else if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' in multiclass definition");
else
Lex.Lex(); // eat the ';'.
} else {
if (Lex.Lex() == tgtok::r_brace) // eat the '{'.
return TokError("multiclass must contain at least one def");
while (Lex.getCode() != tgtok::r_brace) {
switch (Lex.getCode()) {
default:
return TokError("expected 'let', 'def' or 'defm' in multiclass body");
case tgtok::Let:
case tgtok::Def:
case tgtok::Defm:
case tgtok::Foreach:
if (ParseObject(CurMultiClass))
return true;
break;
}
}
Lex.Lex(); // eat the '}'.
}
CurMultiClass = 0;
return false;
}
Record *TGParser::
InstantiateMulticlassDef(MultiClass &MC,
Record *DefProto,
Init *&DefmPrefix,
SMRange DefmPrefixRange) {
// We need to preserve DefProto so it can be reused for later
// instantiations, so create a new Record to inherit from it.
// Add in the defm name. If the defm prefix is empty, give each
// instantiated def a unique name. Otherwise, if "#NAME#" exists in the
// name, substitute the prefix for #NAME#. Otherwise, use the defm name
// as a prefix.
bool IsAnonymous = false;
if (DefmPrefix == 0) {
DefmPrefix = StringInit::get(GetNewAnonymousName());
IsAnonymous = true;
}
Init *DefName = DefProto->getNameInit();
StringInit *DefNameString = dyn_cast<StringInit>(DefName);
if (DefNameString != 0) {
// We have a fully expanded string so there are no operators to
// resolve. We should concatenate the given prefix and name.
DefName =
BinOpInit::get(BinOpInit::STRCONCAT,
UnOpInit::get(UnOpInit::CAST, DefmPrefix,
StringRecTy::get())->Fold(DefProto, &MC),
DefName, StringRecTy::get())->Fold(DefProto, &MC);
}
// Make a trail of SMLocs from the multiclass instantiations.
SmallVector<SMLoc, 4> Locs(1, DefmPrefixRange.Start);
Locs.append(DefProto->getLoc().begin(), DefProto->getLoc().end());
Record *CurRec = new Record(DefName, Locs, Records, IsAnonymous);
SubClassReference Ref;
Ref.RefRange = DefmPrefixRange;
Ref.Rec = DefProto;
AddSubClass(CurRec, Ref);
// Set the value for NAME. We don't resolve references to it 'til later,
// though, so that uses in nested multiclass names don't get
// confused.
if (SetValue(CurRec, Ref.RefRange.Start, "NAME", std::vector<unsigned>(),
DefmPrefix)) {
Error(DefmPrefixRange.Start, "Could not resolve "
+ CurRec->getNameInitAsString() + ":NAME to '"
+ DefmPrefix->getAsUnquotedString() + "'");
return 0;
}
// If the DefNameString didn't resolve, we probably have a reference to
// NAME and need to replace it. We need to do at least this much greedily,
// otherwise nested multiclasses will end up with incorrect NAME expansions.
if (DefNameString == 0) {
RecordVal *DefNameRV = CurRec->getValue("NAME");
CurRec->resolveReferencesTo(DefNameRV);
}
if (!CurMultiClass) {
// Now that we're at the top level, resolve all NAME references
// in the resultant defs that weren't in the def names themselves.
RecordVal *DefNameRV = CurRec->getValue("NAME");
CurRec->resolveReferencesTo(DefNameRV);
// Now that NAME references are resolved and we're at the top level of
// any multiclass expansions, add the record to the RecordKeeper. If we are
// currently in a multiclass, it means this defm appears inside a
// multiclass and its name won't be fully resolvable until we see
// the top-level defm. Therefore, we don't add this to the
// RecordKeeper at this point. If we did we could get duplicate
// defs as more than one probably refers to NAME or some other
// common internal placeholder.
// Ensure redefinition doesn't happen.
if (Records.getDef(CurRec->getNameInitAsString())) {
Error(DefmPrefixRange.Start, "def '" + CurRec->getNameInitAsString() +
"' already defined, instantiating defm with subdef '" +
DefProto->getNameInitAsString() + "'");
return 0;
}
Records.addDef(CurRec);
}
return CurRec;
}
bool TGParser::ResolveMulticlassDefArgs(MultiClass &MC,
Record *CurRec,
SMLoc DefmPrefixLoc,
SMLoc SubClassLoc,
const std::vector<Init *> &TArgs,
std::vector<Init *> &TemplateVals,
bool DeleteArgs) {
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
// Check if a value is specified for this temp-arg.
if (i < TemplateVals.size()) {
// Set it now.
if (SetValue(CurRec, DefmPrefixLoc, TArgs[i], std::vector<unsigned>(),
TemplateVals[i]))
return true;
// Resolve it next.
CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i]));
if (DeleteArgs)
// Now remove it.
CurRec->removeValue(TArgs[i]);
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClassLoc, "value not specified for template argument #"+
utostr(i) + " (" + TArgs[i]->getAsUnquotedString()
+ ") of multiclassclass '" + MC.Rec.getNameInitAsString()
+ "'");
}
}
return false;
}
bool TGParser::ResolveMulticlassDef(MultiClass &MC,
Record *CurRec,
Record *DefProto,
SMLoc DefmPrefixLoc) {
// If the mdef is inside a 'let' expression, add to each def.
if (ApplyLetStack(CurRec))
return Error(DefmPrefixLoc, "when instantiating this defm");
// Don't create a top level definition for defm inside multiclasses,
// instead, only update the prototypes and bind the template args
// with the new created definition.
if (!CurMultiClass)
return false;
for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size();
i != e; ++i)
if (CurMultiClass->DefPrototypes[i]->getNameInit()
== CurRec->getNameInit())
return Error(DefmPrefixLoc, "defm '" + CurRec->getNameInitAsString() +
"' already defined in this multiclass!");
CurMultiClass->DefPrototypes.push_back(CurRec);
// Copy the template arguments for the multiclass into the new def.
const std::vector<Init *> &TA =
CurMultiClass->Rec.getTemplateArgs();
for (unsigned i = 0, e = TA.size(); i != e; ++i) {
const RecordVal *RV = CurMultiClass->Rec.getValue(TA[i]);
assert(RV && "Template arg doesn't exist?");
CurRec->addValue(*RV);
}
return false;
}
/// ParseDefm - Parse the instantiation of a multiclass.
///
/// DefMInst ::= DEFM ID ':' DefmSubClassRef ';'
///
bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Defm && "Unexpected token!");
SMLoc DefmLoc = Lex.getLoc();
Init *DefmPrefix = 0;
if (Lex.Lex() == tgtok::Id) { // eat the defm.
DefmPrefix = ParseObjectName(CurMultiClass);
}
SMLoc DefmPrefixEndLoc = Lex.getLoc();
if (Lex.getCode() != tgtok::colon)
return TokError("expected ':' after defm identifier");
// Keep track of the new generated record definitions.
std::vector<Record*> NewRecDefs;
// This record also inherits from a regular class (non-multiclass)?
bool InheritFromClass = false;
// eat the colon.
Lex.Lex();
SMLoc SubClassLoc = Lex.getLoc();
SubClassReference Ref = ParseSubClassReference(0, true);
while (1) {
if (Ref.Rec == 0) return true;
// To instantiate a multiclass, we need to first get the multiclass, then
// instantiate each def contained in the multiclass with the SubClassRef
// template parameters.
MultiClass *MC = MultiClasses[Ref.Rec->getName()];
assert(MC && "Didn't lookup multiclass correctly?");
std::vector<Init*> &TemplateVals = Ref.TemplateArgs;
// Verify that the correct number of template arguments were specified.
const std::vector<Init *> &TArgs = MC->Rec.getTemplateArgs();
if (TArgs.size() < TemplateVals.size())
return Error(SubClassLoc,
"more template args specified than multiclass expects");
// Loop over all the def's in the multiclass, instantiating each one.
for (unsigned i = 0, e = MC->DefPrototypes.size(); i != e; ++i) {
Record *DefProto = MC->DefPrototypes[i];
Record *CurRec = InstantiateMulticlassDef(*MC, DefProto, DefmPrefix,
SMRange(DefmLoc,
DefmPrefixEndLoc));
if (!CurRec)
return true;
if (ResolveMulticlassDefArgs(*MC, CurRec, DefmLoc, SubClassLoc,
TArgs, TemplateVals, true/*Delete args*/))
return Error(SubClassLoc, "could not instantiate def");
if (ResolveMulticlassDef(*MC, CurRec, DefProto, DefmLoc))
return Error(SubClassLoc, "could not instantiate def");
NewRecDefs.push_back(CurRec);
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier");
SubClassLoc = Lex.getLoc();
// A defm can inherit from regular classes (non-multiclass) as
// long as they come in the end of the inheritance list.
InheritFromClass = (Records.getClass(Lex.getCurStrVal()) != 0);
if (InheritFromClass)
break;
Ref = ParseSubClassReference(0, true);
}
if (InheritFromClass) {
// Process all the classes to inherit as if they were part of a
// regular 'def' and inherit all record values.
SubClassReference SubClass = ParseSubClassReference(0, false);
while (1) {
// Check for error.
if (SubClass.Rec == 0) return true;
// Get the expanded definition prototypes and teach them about
// the record values the current class to inherit has
for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i) {
Record *CurRec = NewRecDefs[i];
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
if (ApplyLetStack(CurRec))
return true;
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(0, false);
}
}
if (!CurMultiClass)
for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i)
// See Record::setName(). This resolve step will see any new
// name for the def that might have been created when resolving
// inheritance, values and arguments above.
NewRecDefs[i]->resolveReferences();
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' at end of defm");
Lex.Lex();
return false;
}
/// ParseObject
/// Object ::= ClassInst
/// Object ::= DefInst
/// Object ::= MultiClassInst
/// Object ::= DefMInst
/// Object ::= LETCommand '{' ObjectList '}'
/// Object ::= LETCommand Object
bool TGParser::ParseObject(MultiClass *MC) {
switch (Lex.getCode()) {
default:
return TokError("Expected class, def, defm, multiclass or let definition");
case tgtok::Let: return ParseTopLevelLet(MC);
case tgtok::Def: return ParseDef(MC);
case tgtok::Foreach: return ParseForeach(MC);
case tgtok::Defm: return ParseDefm(MC);
case tgtok::Class: return ParseClass();
case tgtok::MultiClass: return ParseMultiClass();
}
}
/// ParseObjectList
/// ObjectList :== Object*
bool TGParser::ParseObjectList(MultiClass *MC) {
while (isObjectStart(Lex.getCode())) {
if (ParseObject(MC))
return true;
}
return false;
}
bool TGParser::ParseFile() {
Lex.Lex(); // Prime the lexer.
if (ParseObjectList()) return true;
// If we have unread input at the end of the file, report it.
if (Lex.getCode() == tgtok::Eof)
return false;
return TokError("Unexpected input at top level");
}