llvm/lib/Transforms/Scalar/TailDuplication.cpp
Chris Lattner 15678533f3 simplify code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60190 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-27 22:56:14 +00:00

366 lines
14 KiB
C++

//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a limited form of tail duplication, intended to simplify
// CFGs by removing some unconditional branches. This pass is necessary to
// straighten out loops created by the C front-end, but also is capable of
// making other code nicer. After this pass is run, the CFG simplify pass
// should be run to clean up the mess.
//
// This pass could be enhanced in the future to use profile information to be
// more aggressive.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "tailduplicate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constant.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <map>
using namespace llvm;
STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
static cl::opt<unsigned>
TailDupThreshold("taildup-threshold",
cl::desc("Max block size to tail duplicate"),
cl::init(1), cl::Hidden);
namespace {
class VISIBILITY_HIDDEN TailDup : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
TailDup() : FunctionPass(&ID) {}
private:
inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned);
inline void eliminateUnconditionalBranch(BranchInst *BI);
SmallPtrSet<BasicBlock*, 4> CycleDetector;
};
}
char TailDup::ID = 0;
static RegisterPass<TailDup> X("tailduplicate", "Tail Duplication");
// Public interface to the Tail Duplication pass
FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
/// runOnFunction - Top level algorithm - Loop over each unconditional branch in
/// the function, eliminating it if it looks attractive enough. CycleDetector
/// prevents infinite loops by checking that we aren't redirecting a branch to
/// a place it already pointed to earlier; see PR 2323.
bool TailDup::runOnFunction(Function &F) {
bool Changed = false;
CycleDetector.clear();
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
if (shouldEliminateUnconditionalBranch(I->getTerminator(),
TailDupThreshold)) {
eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
Changed = true;
} else {
++I;
CycleDetector.clear();
}
}
return Changed;
}
/// shouldEliminateUnconditionalBranch - Return true if this branch looks
/// attractive to eliminate. We eliminate the branch if the destination basic
/// block has <= 5 instructions in it, not counting PHI nodes. In practice,
/// since one of these is a terminator instruction, this means that we will add
/// up to 4 instructions to the new block.
///
/// We don't count PHI nodes in the count since they will be removed when the
/// contents of the block are copied over.
///
bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
unsigned Threshold) {
BranchInst *BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
BasicBlock *Dest = BI->getSuccessor(0);
if (Dest == BI->getParent()) return false; // Do not loop infinitely!
// Do not inline a block if we will just get another branch to the same block!
TerminatorInst *DTI = Dest->getTerminator();
if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
return false; // Do not loop infinitely!
// FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
// because doing so would require breaking critical edges. This should be
// fixed eventually.
if (!DTI->use_empty())
return false;
// Do not bother with blocks with only a single predecessor: simplify
// CFG will fold these two blocks together!
pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
++PI;
if (PI == PE) return false; // Exactly one predecessor!
BasicBlock::iterator I = Dest->getFirstNonPHI();
for (unsigned Size = 0; I != Dest->end(); ++I) {
if (Size == Threshold) return false; // The block is too large.
// Don't tail duplicate call instructions. They are very large compared to
// other instructions.
if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
// Allso alloca and malloc.
if (isa<AllocationInst>(I)) return false;
// Some vector instructions can expand into a number of instructions.
if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) ||
isa<InsertElementInst>(I)) return false;
// Only count instructions that are not debugger intrinsics.
if (!isa<DbgInfoIntrinsic>(I)) ++Size;
}
// Do not tail duplicate a block that has thousands of successors into a block
// with a single successor if the block has many other predecessors. This can
// cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
// cases that have a large number of indirect gotos.
unsigned NumSuccs = DTI->getNumSuccessors();
if (NumSuccs > 8) {
unsigned TooMany = 128;
if (NumSuccs >= TooMany) return false;
TooMany = TooMany/NumSuccs;
for (; PI != PE; ++PI)
if (TooMany-- == 0) return false;
}
// If this unconditional branch is a fall-through, be careful about
// tail duplicating it. In particular, we don't want to taildup it if the
// original block will still be there after taildup is completed: doing so
// would eliminate the fall-through, requiring unconditional branches.
Function::iterator DestI = Dest;
if (&*--DestI == BI->getParent()) {
// The uncond branch is a fall-through. Tail duplication of the block is
// will eliminate the fall-through-ness and end up cloning the terminator
// at the end of the Dest block. Since the original Dest block will
// continue to exist, this means that one or the other will not be able to
// fall through. One typical example that this helps with is code like:
// if (a)
// foo();
// if (b)
// foo();
// Cloning the 'if b' block into the end of the first foo block is messy.
// The messy case is when the fall-through block falls through to other
// blocks. This is what we would be preventing if we cloned the block.
DestI = Dest;
if (++DestI != Dest->getParent()->end()) {
BasicBlock *DestSucc = DestI;
// If any of Dest's successors are fall-throughs, don't do this xform.
for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
SI != SE; ++SI)
if (*SI == DestSucc)
return false;
}
}
// Finally, check that we haven't redirected to this target block earlier;
// there are cases where we loop forever if we don't check this (PR 2323).
if (!CycleDetector.insert(Dest))
return false;
return true;
}
/// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
/// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
/// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
/// DstBlock, return it.
static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
BasicBlock *DstBlock) {
// SrcBlock must have a single predecessor.
pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
if (PI == PE || ++PI != PE) return 0;
BasicBlock *SrcPred = *pred_begin(SrcBlock);
// Look at the predecessors of DstBlock. One of them will be SrcBlock. If
// there is only one other pred, get it, otherwise we can't handle it.
PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
BasicBlock *DstOtherPred = 0;
if (*PI == SrcBlock) {
if (++PI == PE) return 0;
DstOtherPred = *PI;
if (++PI != PE) return 0;
} else {
DstOtherPred = *PI;
if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
}
// We can handle two situations here: "if then" and "if then else" blocks. An
// 'if then' situation is just where DstOtherPred == SrcPred.
if (DstOtherPred == SrcPred)
return SrcPred;
// Check to see if we have an "if then else" situation, which means that
// DstOtherPred will have a single predecessor and it will be SrcPred.
PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
if (PI != PE && *PI == SrcPred) {
if (++PI != PE) return 0; // Not a single pred.
return SrcPred; // Otherwise, it's an "if then" situation. Return the if.
}
// Otherwise, this is something we can't handle.
return 0;
}
/// eliminateUnconditionalBranch - Clone the instructions from the destination
/// block into the source block, eliminating the specified unconditional branch.
/// If the destination block defines values used by successors of the dest
/// block, we may need to insert PHI nodes.
///
void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
BasicBlock *SourceBlock = Branch->getParent();
BasicBlock *DestBlock = Branch->getSuccessor(0);
assert(SourceBlock != DestBlock && "Our predicate is broken!");
DOUT << "TailDuplication[" << SourceBlock->getParent()->getName()
<< "]: Eliminating branch: " << *Branch;
// See if we can avoid duplicating code by moving it up to a dominator of both
// blocks.
if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
DOUT << "Found shared dominator: " << DomBlock->getName() << "\n";
// If there are non-phi instructions in DestBlock that have no operands
// defined in DestBlock, and if the instruction has no side effects, we can
// move the instruction to DomBlock instead of duplicating it.
BasicBlock::iterator BBI = DestBlock->getFirstNonPHI();
while (!isa<TerminatorInst>(BBI)) {
Instruction *I = BBI++;
bool CanHoist = !I->isTrapping() && !I->mayWriteToMemory();
if (CanHoist) {
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
if (OpI->getParent() == DestBlock ||
(isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
CanHoist = false;
break;
}
if (CanHoist) {
// Remove from DestBlock, move right before the term in DomBlock.
DestBlock->getInstList().remove(I);
DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
DOUT << "Hoisted: " << *I;
}
}
}
}
// Tail duplication can not update SSA properties correctly if the values
// defined in the duplicated tail are used outside of the tail itself. For
// this reason, we spill all values that are used outside of the tail to the
// stack.
for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
if (I->isUsedOutsideOfBlock(DestBlock)) {
// We found a use outside of the tail. Create a new stack slot to
// break this inter-block usage pattern.
DemoteRegToStack(*I);
}
// We are going to have to map operands from the original block B to the new
// copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
// nodes also define part of this mapping. Loop over these PHI nodes, adding
// them to our mapping.
//
std::map<Value*, Value*> ValueMapping;
BasicBlock::iterator BI = DestBlock->begin();
bool HadPHINodes = isa<PHINode>(BI);
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
// Clone the non-phi instructions of the dest block into the source block,
// keeping track of the mapping...
//
for (; BI != DestBlock->end(); ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
SourceBlock->getInstList().push_back(New);
ValueMapping[BI] = New;
}
// Now that we have built the mapping information and cloned all of the
// instructions (giving us a new terminator, among other things), walk the new
// instructions, rewriting references of old instructions to use new
// instructions.
//
BI = Branch; ++BI; // Get an iterator to the first new instruction
for (; BI != SourceBlock->end(); ++BI)
for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
if (Value *Remapped = ValueMapping[BI->getOperand(i)])
BI->setOperand(i, Remapped);
// Next we check to see if any of the successors of DestBlock had PHI nodes.
// If so, we need to add entries to the PHI nodes for SourceBlock now.
for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
SI != SE; ++SI) {
BasicBlock *Succ = *SI;
for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
PHINode *PN = cast<PHINode>(PNI);
// Ok, we have a PHI node. Figure out what the incoming value was for the
// DestBlock.
Value *IV = PN->getIncomingValueForBlock(DestBlock);
// Remap the value if necessary...
if (Value *MappedIV = ValueMapping[IV])
IV = MappedIV;
PN->addIncoming(IV, SourceBlock);
}
}
// Next, remove the old branch instruction, and any PHI node entries that we
// had.
BI = Branch; ++BI; // Get an iterator to the first new instruction
DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
// Final step: now that we have finished everything up, walk the cloned
// instructions one last time, constant propagating and DCE'ing them, because
// they may not be needed anymore.
//
if (HadPHINodes) {
while (BI != SourceBlock->end()) {
Instruction *Inst = BI++;
if (isInstructionTriviallyDead(Inst))
Inst->eraseFromParent();
else if (Constant *C = ConstantFoldInstruction(Inst)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
}
}
}
++NumEliminated; // We just killed a branch!
}