llvm/lib/CodeGen/RegAllocGreedy.cpp

2170 lines
80 KiB
C++

//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/Passes.h"
#include "AllocationOrder.h"
#include "InterferenceCache.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "SpillPlacement.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <queue>
using namespace llvm;
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits, "Number of split local live ranges");
STATISTIC(NumEvicted, "Number of interferences evicted");
static cl::opt<SplitEditor::ComplementSpillMode>
SplitSpillMode("split-spill-mode", cl::Hidden,
cl::desc("Spill mode for splitting live ranges"),
cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
clEnumValEnd),
cl::init(SplitEditor::SM_Partition));
static cl::opt<unsigned>
LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
cl::desc("Last chance recoloring max depth"),
cl::init(5));
static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
"lcr-max-interf", cl::Hidden,
cl::desc("Last chance recoloring maximum number of considered"
" interference at a time"),
cl::init(8));
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass,
public RegAllocBase,
private LiveRangeEdit::Delegate {
// Convenient shortcuts.
typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
typedef SmallSet<unsigned, 16> SmallVirtRegSet;
// context
MachineFunction *MF;
// Shortcuts to some useful interface.
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
RegisterClassInfo RCI;
// analyses
SlotIndexes *Indexes;
MachineBlockFrequencyInfo *MBFI;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
EdgeBundles *Bundles;
SpillPlacement *SpillPlacer;
LiveDebugVariables *DebugVars;
// state
std::unique_ptr<Spiller> SpillerInstance;
PQueue Queue;
unsigned NextCascade;
// Live ranges pass through a number of stages as we try to allocate them.
// Some of the stages may also create new live ranges:
//
// - Region splitting.
// - Per-block splitting.
// - Local splitting.
// - Spilling.
//
// Ranges produced by one of the stages skip the previous stages when they are
// dequeued. This improves performance because we can skip interference checks
// that are unlikely to give any results. It also guarantees that the live
// range splitting algorithm terminates, something that is otherwise hard to
// ensure.
enum LiveRangeStage {
/// Newly created live range that has never been queued.
RS_New,
/// Only attempt assignment and eviction. Then requeue as RS_Split.
RS_Assign,
/// Attempt live range splitting if assignment is impossible.
RS_Split,
/// Attempt more aggressive live range splitting that is guaranteed to make
/// progress. This is used for split products that may not be making
/// progress.
RS_Split2,
/// Live range will be spilled. No more splitting will be attempted.
RS_Spill,
/// There is nothing more we can do to this live range. Abort compilation
/// if it can't be assigned.
RS_Done
};
#ifndef NDEBUG
static const char *const StageName[];
#endif
// RegInfo - Keep additional information about each live range.
struct RegInfo {
LiveRangeStage Stage;
// Cascade - Eviction loop prevention. See canEvictInterference().
unsigned Cascade;
RegInfo() : Stage(RS_New), Cascade(0) {}
};
IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
LiveRangeStage getStage(const LiveInterval &VirtReg) const {
return ExtraRegInfo[VirtReg.reg].Stage;
}
void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
ExtraRegInfo[VirtReg.reg].Stage = Stage;
}
template<typename Iterator>
void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
for (;Begin != End; ++Begin) {
unsigned Reg = *Begin;
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = NewStage;
}
}
/// Cost of evicting interference.
struct EvictionCost {
unsigned BrokenHints; ///< Total number of broken hints.
float MaxWeight; ///< Maximum spill weight evicted.
EvictionCost(): BrokenHints(0), MaxWeight(0) {}
bool isMax() const { return BrokenHints == ~0u; }
void setMax() { BrokenHints = ~0u; }
void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
bool operator<(const EvictionCost &O) const {
return std::tie(BrokenHints, MaxWeight) <
std::tie(O.BrokenHints, O.MaxWeight);
}
};
// splitting state.
std::unique_ptr<SplitAnalysis> SA;
std::unique_ptr<SplitEditor> SE;
/// Cached per-block interference maps
InterferenceCache IntfCache;
/// All basic blocks where the current register has uses.
SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
/// Global live range splitting candidate info.
struct GlobalSplitCandidate {
// Register intended for assignment, or 0.
unsigned PhysReg;
// SplitKit interval index for this candidate.
unsigned IntvIdx;
// Interference for PhysReg.
InterferenceCache::Cursor Intf;
// Bundles where this candidate should be live.
BitVector LiveBundles;
SmallVector<unsigned, 8> ActiveBlocks;
void reset(InterferenceCache &Cache, unsigned Reg) {
PhysReg = Reg;
IntvIdx = 0;
Intf.setPhysReg(Cache, Reg);
LiveBundles.clear();
ActiveBlocks.clear();
}
// Set B[i] = C for every live bundle where B[i] was NoCand.
unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
unsigned Count = 0;
for (int i = LiveBundles.find_first(); i >= 0;
i = LiveBundles.find_next(i))
if (B[i] == NoCand) {
B[i] = C;
Count++;
}
return Count;
}
};
/// Candidate info for each PhysReg in AllocationOrder.
/// This vector never shrinks, but grows to the size of the largest register
/// class.
SmallVector<GlobalSplitCandidate, 32> GlobalCand;
enum : unsigned { NoCand = ~0u };
/// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
/// NoCand which indicates the stack interval.
SmallVector<unsigned, 32> BundleCand;
public:
RAGreedy();
/// Return the pass name.
const char* getPassName() const override {
return "Greedy Register Allocator";
}
/// RAGreedy analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
Spiller &spiller() override { return *SpillerInstance; }
void enqueue(LiveInterval *LI) override;
LiveInterval *dequeue() override;
unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
static char ID;
private:
unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned = 0);
bool LRE_CanEraseVirtReg(unsigned) override;
void LRE_WillShrinkVirtReg(unsigned) override;
void LRE_DidCloneVirtReg(unsigned, unsigned) override;
void enqueue(PQueue &CurQueue, LiveInterval *LI);
LiveInterval *dequeue(PQueue &CurQueue);
BlockFrequency calcSpillCost();
bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
void growRegion(GlobalSplitCandidate &Cand);
BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
bool calcCompactRegion(GlobalSplitCandidate&);
void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
void calcGapWeights(unsigned, SmallVectorImpl<float>&);
unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
void evictInterference(LiveInterval&, unsigned,
SmallVectorImpl<unsigned>&);
bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
SmallLISet &RecoloringCandidates,
const SmallVirtRegSet &FixedRegisters);
unsigned tryAssign(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryEvict(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&, unsigned = ~0u);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned);
bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
"RS_New",
"RS_Assign",
"RS_Split",
"RS_Split2",
"RS_Spill",
"RS_Done"
};
#endif
// Hysteresis to use when comparing floats.
// This helps stabilize decisions based on float comparisons.
const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<LiveRegMatrix>();
AU.addPreserved<LiveRegMatrix>();
AU.addRequired<EdgeBundles>();
AU.addRequired<SpillPlacement>();
MachineFunctionPass::getAnalysisUsage(AU);
}
//===----------------------------------------------------------------------===//
// LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//
bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
if (VRM->hasPhys(VirtReg)) {
Matrix->unassign(LIS->getInterval(VirtReg));
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
return false;
}
void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
// Cloning a register we haven't even heard about yet? Just ignore it.
if (!ExtraRegInfo.inBounds(Old))
return;
// LRE may clone a virtual register because dead code elimination causes it to
// be split into connected components. The new components are much smaller
// than the original, so they should get a new chance at being assigned.
// same stage as the parent.
ExtraRegInfo[Old].Stage = RS_Assign;
ExtraRegInfo.grow(New);
ExtraRegInfo[New] = ExtraRegInfo[Old];
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
ExtraRegInfo.clear();
GlobalCand.clear();
}
void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
// Prioritize live ranges by size, assigning larger ranges first.
// The queue holds (size, reg) pairs.
const unsigned Size = LI->getSize();
const unsigned Reg = LI->reg;
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Can only enqueue virtual registers");
unsigned Prio;
ExtraRegInfo.grow(Reg);
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = RS_Assign;
if (ExtraRegInfo[Reg].Stage == RS_Split) {
// Unsplit ranges that couldn't be allocated immediately are deferred until
// everything else has been allocated.
Prio = Size;
} else {
// Giant live ranges fall back to the global assignment heuristic, which
// prevents excessive spilling in pathological cases.
bool ReverseLocal = TRI->reverseLocalAssignment();
bool ForceGlobal = !ReverseLocal && TRI->mayOverrideLocalAssignment() &&
(Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
LIS->intervalIsInOneMBB(*LI)) {
// Allocate original local ranges in linear instruction order. Since they
// are singly defined, this produces optimal coloring in the absence of
// global interference and other constraints.
if (!ReverseLocal)
Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
else {
// Allocating bottom up may allow many short LRGs to be assigned first
// to one of the cheap registers. This could be much faster for very
// large blocks on targets with many physical registers.
Prio = Indexes->getZeroIndex().getInstrDistance(LI->beginIndex());
}
}
else {
// Allocate global and split ranges in long->short order. Long ranges that
// don't fit should be spilled (or split) ASAP so they don't create
// interference. Mark a bit to prioritize global above local ranges.
Prio = (1u << 29) + Size;
}
// Mark a higher bit to prioritize global and local above RS_Split.
Prio |= (1u << 31);
// Boost ranges that have a physical register hint.
if (VRM->hasKnownPreference(Reg))
Prio |= (1u << 30);
}
// The virtual register number is a tie breaker for same-sized ranges.
// Give lower vreg numbers higher priority to assign them first.
CurQueue.push(std::make_pair(Prio, ~Reg));
}
LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
if (CurQueue.empty())
return 0;
LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
CurQueue.pop();
return LI;
}
//===----------------------------------------------------------------------===//
// Direct Assignment
//===----------------------------------------------------------------------===//
/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
Order.rewind();
unsigned PhysReg;
while ((PhysReg = Order.next()))
if (!Matrix->checkInterference(VirtReg, PhysReg))
break;
if (!PhysReg || Order.isHint())
return PhysReg;
// PhysReg is available, but there may be a better choice.
// If we missed a simple hint, try to cheaply evict interference from the
// preferred register.
if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
if (Order.isHint(Hint)) {
DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
EvictionCost MaxCost;
MaxCost.setBrokenHints(1);
if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
evictInterference(VirtReg, Hint, NewVRegs);
return Hint;
}
}
// Try to evict interference from a cheaper alternative.
unsigned Cost = TRI->getCostPerUse(PhysReg);
// Most registers have 0 additional cost.
if (!Cost)
return PhysReg;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
<< '\n');
unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
return CheapReg ? CheapReg : PhysReg;
}
//===----------------------------------------------------------------------===//
// Interference eviction
//===----------------------------------------------------------------------===//
unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
unsigned PhysReg;
while ((PhysReg = Order.next())) {
if (PhysReg == PrevReg)
continue;
MCRegUnitIterator Units(PhysReg, TRI);
for (; Units.isValid(); ++Units) {
// Instantiate a "subquery", not to be confused with the Queries array.
LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
if (subQ.checkInterference())
break;
}
// If no units have interference, break out with the current PhysReg.
if (!Units.isValid())
break;
}
if (PhysReg)
DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
<< PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
<< '\n');
return PhysReg;
}
/// shouldEvict - determine if A should evict the assigned live range B. The
/// eviction policy defined by this function together with the allocation order
/// defined by enqueue() decides which registers ultimately end up being split
/// and spilled.
///
/// Cascade numbers are used to prevent infinite loops if this function is a
/// cyclic relation.
///
/// @param A The live range to be assigned.
/// @param IsHint True when A is about to be assigned to its preferred
/// register.
/// @param B The live range to be evicted.
/// @param BreaksHint True when B is already assigned to its preferred register.
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
LiveInterval &B, bool BreaksHint) {
bool CanSplit = getStage(B) < RS_Spill;
// Be fairly aggressive about following hints as long as the evictee can be
// split.
if (CanSplit && IsHint && !BreaksHint)
return true;
if (A.weight > B.weight) {
DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
return true;
}
return false;
}
/// canEvictInterference - Return true if all interferences between VirtReg and
/// PhysReg can be evicted.
///
/// @param VirtReg Live range that is about to be assigned.
/// @param PhysReg Desired register for assignment.
/// @param IsHint True when PhysReg is VirtReg's preferred register.
/// @param MaxCost Only look for cheaper candidates and update with new cost
/// when returning true.
/// @returns True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
bool IsHint, EvictionCost &MaxCost) {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
return false;
bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
// Find VirtReg's cascade number. This will be unassigned if VirtReg was never
// involved in an eviction before. If a cascade number was assigned, deny
// evicting anything with the same or a newer cascade number. This prevents
// infinite eviction loops.
//
// This works out so a register without a cascade number is allowed to evict
// anything, and it can be evicted by anything.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = NextCascade;
EvictionCost Cost;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// If there is 10 or more interferences, chances are one is heavier.
if (Q.collectInterferingVRegs(10) >= 10)
return false;
// Check if any interfering live range is heavier than MaxWeight.
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
"Only expecting virtual register interference from query");
// Never evict spill products. They cannot split or spill.
if (getStage(*Intf) == RS_Done)
return false;
// Once a live range becomes small enough, it is urgent that we find a
// register for it. This is indicated by an infinite spill weight. These
// urgent live ranges get to evict almost anything.
//
// Also allow urgent evictions of unspillable ranges from a strictly
// larger allocation order.
bool Urgent = !VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
// We permit breaking cascades for urgent evictions. It should be the
// last resort, though, so make it really expensive.
Cost.BrokenHints += 10;
}
// Would this break a satisfied hint?
bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
// Update eviction cost.
Cost.BrokenHints += BreaksHint;
Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
// Abort if this would be too expensive.
if (!(Cost < MaxCost))
return false;
if (Urgent)
continue;
// Apply the eviction policy for non-urgent evictions.
if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
return false;
// If !MaxCost.isMax(), then we're just looking for a cheap register.
// Evicting another local live range in this case could lead to suboptimal
// coloring.
if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
!canReassign(*Intf, PhysReg)) {
return false;
}
}
}
MaxCost = Cost;
return true;
}
/// evictInterference - Evict any interferring registers that prevent VirtReg
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<unsigned> &NewVRegs) {
// Make sure that VirtReg has a cascade number, and assign that cascade
// number to every evicted register. These live ranges than then only be
// evicted by a newer cascade, preventing infinite loops.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
<< " interference: Cascade " << Cascade << '\n');
// Collect all interfering virtregs first.
SmallVector<LiveInterval*, 8> Intfs;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
Intfs.append(IVR.begin(), IVR.end());
}
// Evict them second. This will invalidate the queries.
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
LiveInterval *Intf = Intfs[i];
// The same VirtReg may be present in multiple RegUnits. Skip duplicates.
if (!VRM->hasPhys(Intf->reg))
continue;
Matrix->unassign(*Intf);
assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
VirtReg.isSpillable() < Intf->isSpillable()) &&
"Cannot decrease cascade number, illegal eviction");
ExtraRegInfo[Intf->reg].Cascade = Cascade;
++NumEvicted;
NewVRegs.push_back(Intf->reg);
}
}
/// tryEvict - Try to evict all interferences for a physreg.
/// @param VirtReg Currently unassigned virtual register.
/// @param Order Physregs to try.
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
unsigned CostPerUseLimit) {
NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
// Keep track of the cheapest interference seen so far.
EvictionCost BestCost;
BestCost.setMax();
unsigned BestPhys = 0;
unsigned OrderLimit = Order.getOrder().size();
// When we are just looking for a reduced cost per use, don't break any
// hints, and only evict smaller spill weights.
if (CostPerUseLimit < ~0u) {
BestCost.BrokenHints = 0;
BestCost.MaxWeight = VirtReg.weight;
// Check of any registers in RC are below CostPerUseLimit.
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
unsigned MinCost = RegClassInfo.getMinCost(RC);
if (MinCost >= CostPerUseLimit) {
DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
<< ", no cheaper registers to be found.\n");
return 0;
}
// It is normal for register classes to have a long tail of registers with
// the same cost. We don't need to look at them if they're too expensive.
if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
OrderLimit = RegClassInfo.getLastCostChange(RC);
DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
}
}
Order.rewind();
while (unsigned PhysReg = Order.next(OrderLimit)) {
if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
continue;
// The first use of a callee-saved register in a function has cost 1.
// Don't start using a CSR when the CostPerUseLimit is low.
if (CostPerUseLimit == 1)
if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
if (!MRI->isPhysRegUsed(CSR)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
<< PrintReg(CSR, TRI) << '\n');
continue;
}
if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
continue;
// Best so far.
BestPhys = PhysReg;
// Stop if the hint can be used.
if (Order.isHint())
break;
}
if (!BestPhys)
return 0;
evictInterference(VirtReg, BestPhys, NewVRegs);
return BestPhys;
}
//===----------------------------------------------------------------------===//
// Region Splitting
//===----------------------------------------------------------------------===//
/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
BlockFrequency &Cost) {
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
// Reset interference dependent info.
SplitConstraints.resize(UseBlocks.size());
BlockFrequency StaticCost = 0;
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
BC.Number = BI.MBB->getNumber();
Intf.moveToBlock(BC.Number);
BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.ChangesValue = BI.FirstDef.isValid();
if (!Intf.hasInterference())
continue;
// Number of spill code instructions to insert.
unsigned Ins = 0;
// Interference for the live-in value.
if (BI.LiveIn) {
if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
BC.Entry = SpillPlacement::MustSpill, ++Ins;
else if (Intf.first() < BI.FirstInstr)
BC.Entry = SpillPlacement::PrefSpill, ++Ins;
else if (Intf.first() < BI.LastInstr)
++Ins;
}
// Interference for the live-out value.
if (BI.LiveOut) {
if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
BC.Exit = SpillPlacement::MustSpill, ++Ins;
else if (Intf.last() > BI.LastInstr)
BC.Exit = SpillPlacement::PrefSpill, ++Ins;
else if (Intf.last() > BI.FirstInstr)
++Ins;
}
// Accumulate the total frequency of inserted spill code.
while (Ins--)
StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
}
Cost = StaticCost;
// Add constraints for use-blocks. Note that these are the only constraints
// that may add a positive bias, it is downhill from here.
SpillPlacer->addConstraints(SplitConstraints);
return SpillPlacer->scanActiveBundles();
}
/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
ArrayRef<unsigned> Blocks) {
const unsigned GroupSize = 8;
SpillPlacement::BlockConstraint BCS[GroupSize];
unsigned TBS[GroupSize];
unsigned B = 0, T = 0;
for (unsigned i = 0; i != Blocks.size(); ++i) {
unsigned Number = Blocks[i];
Intf.moveToBlock(Number);
if (!Intf.hasInterference()) {
assert(T < GroupSize && "Array overflow");
TBS[T] = Number;
if (++T == GroupSize) {
SpillPlacer->addLinks(makeArrayRef(TBS, T));
T = 0;
}
continue;
}
assert(B < GroupSize && "Array overflow");
BCS[B].Number = Number;
// Interference for the live-in value.
if (Intf.first() <= Indexes->getMBBStartIdx(Number))
BCS[B].Entry = SpillPlacement::MustSpill;
else
BCS[B].Entry = SpillPlacement::PrefSpill;
// Interference for the live-out value.
if (Intf.last() >= SA->getLastSplitPoint(Number))
BCS[B].Exit = SpillPlacement::MustSpill;
else
BCS[B].Exit = SpillPlacement::PrefSpill;
if (++B == GroupSize) {
ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
SpillPlacer->addConstraints(Array);
B = 0;
}
}
ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
SpillPlacer->addConstraints(Array);
SpillPlacer->addLinks(makeArrayRef(TBS, T));
}
void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
// Keep track of through blocks that have not been added to SpillPlacer.
BitVector Todo = SA->getThroughBlocks();
SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
unsigned AddedTo = 0;
#ifndef NDEBUG
unsigned Visited = 0;
#endif
for (;;) {
ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
// Find new through blocks in the periphery of PrefRegBundles.
for (int i = 0, e = NewBundles.size(); i != e; ++i) {
unsigned Bundle = NewBundles[i];
// Look at all blocks connected to Bundle in the full graph.
ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
I != E; ++I) {
unsigned Block = *I;
if (!Todo.test(Block))
continue;
Todo.reset(Block);
// This is a new through block. Add it to SpillPlacer later.
ActiveBlocks.push_back(Block);
#ifndef NDEBUG
++Visited;
#endif
}
}
// Any new blocks to add?
if (ActiveBlocks.size() == AddedTo)
break;
// Compute through constraints from the interference, or assume that all
// through blocks prefer spilling when forming compact regions.
ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
if (Cand.PhysReg)
addThroughConstraints(Cand.Intf, NewBlocks);
else
// Provide a strong negative bias on through blocks to prevent unwanted
// liveness on loop backedges.
SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
AddedTo = ActiveBlocks.size();
// Perhaps iterating can enable more bundles?
SpillPlacer->iterate();
}
DEBUG(dbgs() << ", v=" << Visited);
}
/// calcCompactRegion - Compute the set of edge bundles that should be live
/// when splitting the current live range into compact regions. Compact
/// regions can be computed without looking at interference. They are the
/// regions formed by removing all the live-through blocks from the live range.
///
/// Returns false if the current live range is already compact, or if the
/// compact regions would form single block regions anyway.
bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
// Without any through blocks, the live range is already compact.
if (!SA->getNumThroughBlocks())
return false;
// Compact regions don't correspond to any physreg.
Cand.reset(IntfCache, 0);
DEBUG(dbgs() << "Compact region bundles");
// Use the spill placer to determine the live bundles. GrowRegion pretends
// that all the through blocks have interference when PhysReg is unset.
SpillPlacer->prepare(Cand.LiveBundles);
// The static split cost will be zero since Cand.Intf reports no interference.
BlockFrequency Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
DEBUG(dbgs() << ", none.\n");
return false;
}
growRegion(Cand);
SpillPlacer->finish();
if (!Cand.LiveBundles.any()) {
DEBUG(dbgs() << ", none.\n");
return false;
}
DEBUG({
for (int i = Cand.LiveBundles.find_first(); i>=0;
i = Cand.LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
return true;
}
/// calcSpillCost - Compute how expensive it would be to split the live range in
/// SA around all use blocks instead of forming bundle regions.
BlockFrequency RAGreedy::calcSpillCost() {
BlockFrequency Cost = 0;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
// We normally only need one spill instruction - a load or a store.
Cost += SpillPlacer->getBlockFrequency(Number);
// Unless the value is redefined in the block.
if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
Cost += SpillPlacer->getBlockFrequency(Number);
}
return Cost;
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
BlockFrequency GlobalCost = 0;
const BitVector &LiveBundles = Cand.LiveBundles;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
unsigned Ins = 0;
if (BI.LiveIn)
Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
if (BI.LiveOut)
Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
while (Ins--)
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
}
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
unsigned Number = Cand.ActiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
if (!RegIn && !RegOut)
continue;
if (RegIn && RegOut) {
// We need double spill code if this block has interference.
Cand.Intf.moveToBlock(Number);
if (Cand.Intf.hasInterference()) {
GlobalCost += SpillPlacer->getBlockFrequency(Number);
GlobalCost += SpillPlacer->getBlockFrequency(Number);
}
continue;
}
// live-in / stack-out or stack-in live-out.
GlobalCost += SpillPlacer->getBlockFrequency(Number);
}
return GlobalCost;
}
/// splitAroundRegion - Split the current live range around the regions
/// determined by BundleCand and GlobalCand.
///
/// Before calling this function, GlobalCand and BundleCand must be initialized
/// so each bundle is assigned to a valid candidate, or NoCand for the
/// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
/// objects must be initialized for the current live range, and intervals
/// created for the used candidates.
///
/// @param LREdit The LiveRangeEdit object handling the current split.
/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
/// must appear in this list.
void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
ArrayRef<unsigned> UsedCands) {
// These are the intervals created for new global ranges. We may create more
// intervals for local ranges.
const unsigned NumGlobalIntvs = LREdit.size();
DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
assert(NumGlobalIntvs && "No global intervals configured");
// Isolate even single instructions when dealing with a proper sub-class.
// That guarantees register class inflation for the stack interval because it
// is all copies.
unsigned Reg = SA->getParent().reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
// First handle all the blocks with uses.
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
if (BI.LiveIn) {
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
}
if (BI.LiveOut) {
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
}
// Create separate intervals for isolated blocks with multiple uses.
if (!IntvIn && !IntvOut) {
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
continue;
}
if (IntvIn && IntvOut)
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
else if (IntvIn)
SE->splitRegInBlock(BI, IntvIn, IntfIn);
else
SE->splitRegOutBlock(BI, IntvOut, IntfOut);
}
// Handle live-through blocks. The relevant live-through blocks are stored in
// the ActiveBlocks list with each candidate. We need to filter out
// duplicates.
BitVector Todo = SA->getThroughBlocks();
for (unsigned c = 0; c != UsedCands.size(); ++c) {
ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
unsigned Number = Blocks[i];
if (!Todo.test(Number))
continue;
Todo.reset(Number);
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
if (!IntvIn && !IntvOut)
continue;
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
}
}
++NumGlobalSplits;
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
unsigned OrigBlocks = SA->getNumLiveBlocks();
// Sort out the new intervals created by splitting. We get four kinds:
// - Remainder intervals should not be split again.
// - Candidate intervals can be assigned to Cand.PhysReg.
// - Block-local splits are candidates for local splitting.
// - DCE leftovers should go back on the queue.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
// Ignore old intervals from DCE.
if (getStage(Reg) != RS_New)
continue;
// Remainder interval. Don't try splitting again, spill if it doesn't
// allocate.
if (IntvMap[i] == 0) {
setStage(Reg, RS_Spill);
continue;
}
// Global intervals. Allow repeated splitting as long as the number of live
// blocks is strictly decreasing.
if (IntvMap[i] < NumGlobalIntvs) {
if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
<< " blocks as original.\n");
// Don't allow repeated splitting as a safe guard against looping.
setStage(Reg, RS_Split2);
}
continue;
}
// Other intervals are treated as new. This includes local intervals created
// for blocks with multiple uses, and anything created by DCE.
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around region");
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
unsigned NumCands = 0;
unsigned BestCand = NoCand;
BlockFrequency BestCost;
SmallVector<unsigned, 8> UsedCands;
// Check if we can split this live range around a compact region.
bool HasCompact = calcCompactRegion(GlobalCand.front());
if (HasCompact) {
// Yes, keep GlobalCand[0] as the compact region candidate.
NumCands = 1;
BestCost = BlockFrequency::getMaxFrequency();
} else {
// No benefit from the compact region, our fallback will be per-block
// splitting. Make sure we find a solution that is cheaper than spilling.
BestCost = calcSpillCost();
DEBUG(dbgs() << "Cost of isolating all blocks = ";
MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
}
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Discard bad candidates before we run out of interference cache cursors.
// This will only affect register classes with a lot of registers (>32).
if (NumCands == IntfCache.getMaxCursors()) {
unsigned WorstCount = ~0u;
unsigned Worst = 0;
for (unsigned i = 0; i != NumCands; ++i) {
if (i == BestCand || !GlobalCand[i].PhysReg)
continue;
unsigned Count = GlobalCand[i].LiveBundles.count();
if (Count < WorstCount)
Worst = i, WorstCount = Count;
}
--NumCands;
GlobalCand[Worst] = GlobalCand[NumCands];
if (BestCand == NumCands)
BestCand = Worst;
}
if (GlobalCand.size() <= NumCands)
GlobalCand.resize(NumCands+1);
GlobalSplitCandidate &Cand = GlobalCand[NumCands];
Cand.reset(IntfCache, PhysReg);
SpillPlacer->prepare(Cand.LiveBundles);
BlockFrequency Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
continue;
}
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
MBFI->printBlockFreq(dbgs(), Cost));
if (Cost >= BestCost) {
DEBUG({
if (BestCand == NoCand)
dbgs() << " worse than no bundles\n";
else
dbgs() << " worse than "
<< PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
});
continue;
}
growRegion(Cand);
SpillPlacer->finish();
// No live bundles, defer to splitSingleBlocks().
if (!Cand.LiveBundles.any()) {
DEBUG(dbgs() << " no bundles.\n");
continue;
}
Cost += calcGlobalSplitCost(Cand);
DEBUG({
dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
<< " with bundles";
for (int i = Cand.LiveBundles.find_first(); i>=0;
i = Cand.LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
if (Cost < BestCost) {
BestCand = NumCands;
BestCost = Cost;
}
++NumCands;
}
// No solutions found, fall back to single block splitting.
if (!HasCompact && BestCand == NoCand)
return 0;
// Prepare split editor.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitSpillMode);
// Assign all edge bundles to the preferred candidate, or NoCand.
BundleCand.assign(Bundles->getNumBundles(), NoCand);
// Assign bundles for the best candidate region.
if (BestCand != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[BestCand];
if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
UsedCands.push_back(BestCand);
Cand.IntvIdx = SE->openIntv();
DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
<< B << " bundles, intv " << Cand.IntvIdx << ".\n");
(void)B;
}
}
// Assign bundles for the compact region.
if (HasCompact) {
GlobalSplitCandidate &Cand = GlobalCand.front();
assert(!Cand.PhysReg && "Compact region has no physreg");
if (unsigned B = Cand.getBundles(BundleCand, 0)) {
UsedCands.push_back(0);
Cand.IntvIdx = SE->openIntv();
DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
<< Cand.IntvIdx << ".\n");
(void)B;
}
}
splitAroundRegion(LREdit, UsedCands);
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Block Splitting
//===----------------------------------------------------------------------===//
/// tryBlockSplit - Split a global live range around every block with uses. This
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
/// they don't allocate.
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
unsigned Reg = VirtReg.reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitSpillMode);
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
}
// No blocks were split.
if (LREdit.empty())
return 0;
// We did split for some blocks.
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
// Tell LiveDebugVariables about the new ranges.
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Sort out the new intervals created by splitting. The remainder interval
// goes straight to spilling, the new local ranges get to stay RS_New.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &LI = LIS->getInterval(LREdit.get(i));
if (getStage(LI) == RS_New && IntvMap[i] == 0)
setStage(LI, RS_Spill);
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Instruction Splitting
//===----------------------------------------------------------------------===//
/// Get the number of allocatable registers that match the constraints of \p Reg
/// on \p MI and that are also in \p SuperRC.
static unsigned getNumAllocatableRegsForConstraints(
const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
const RegisterClassInfo &RCI) {
assert(SuperRC && "Invalid register class");
const TargetRegisterClass *ConstrainedRC =
MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
/* ExploreBundle */ true);
if (!ConstrainedRC)
return 0;
return RCI.getNumAllocatableRegs(ConstrainedRC);
}
/// tryInstructionSplit - Split a live range around individual instructions.
/// This is normally not worthwhile since the spiller is doing essentially the
/// same thing. However, when the live range is in a constrained register
/// class, it may help to insert copies such that parts of the live range can
/// be moved to a larger register class.
///
/// This is similar to spilling to a larger register class.
unsigned
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
// There is no point to this if there are no larger sub-classes.
if (!RegClassInfo.isProperSubClass(CurRC))
return 0;
// Always enable split spill mode, since we're effectively spilling to a
// register.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitEditor::SM_Size);
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 1)
return 0;
DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(CurRC);
unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
// Split around every non-copy instruction if this split will relax
// the constraints on the virtual register.
// Otherwise, splitting just inserts uncoalescable copies that do not help
// the allocation.
for (unsigned i = 0; i != Uses.size(); ++i) {
if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
if (MI->isFullCopy() ||
SuperRCNumAllocatableRegs ==
getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
TRI, RCI)) {
DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
continue;
}
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
SE->useIntv(SegStart, SegStop);
}
if (LREdit.empty()) {
DEBUG(dbgs() << "All uses were copies.\n");
return 0;
}
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Assign all new registers to RS_Spill. This was the last chance.
setStage(LREdit.begin(), LREdit.end(), RS_Spill);
return 0;
}
//===----------------------------------------------------------------------===//
// Local Splitting
//===----------------------------------------------------------------------===//
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
SmallVectorImpl<float> &GapWeight) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
const unsigned NumGaps = Uses.size()-1;
// Start and end points for the interference check.
SlotIndex StartIdx =
BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
SlotIndex StopIdx =
BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
GapWeight.assign(NumGaps, 0.0f);
// Add interference from each overlapping register.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
.checkInterference())
continue;
// We know that VirtReg is a continuous interval from FirstInstr to
// LastInstr, so we don't need InterferenceQuery.
//
// Interference that overlaps an instruction is counted in both gaps
// surrounding the instruction. The exception is interference before
// StartIdx and after StopIdx.
//
LiveIntervalUnion::SegmentIter IntI =
Matrix->getLiveUnions()[*Units] .find(StartIdx);
for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
// Skip the gaps before IntI.
while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
// Update the gaps covered by IntI.
const float weight = IntI.value()->weight;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = std::max(GapWeight[Gap], weight);
if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
break;
}
if (Gap == NumGaps)
break;
}
}
// Add fixed interference.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
const LiveRange &LR = LIS->getRegUnit(*Units);
LiveRange::const_iterator I = LR.find(StartIdx);
LiveRange::const_iterator E = LR.end();
// Same loop as above. Mark any overlapped gaps as HUGE_VALF.
for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
while (Uses[Gap+1].getBoundaryIndex() < I->start)
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = llvm::huge_valf;
if (Uses[Gap+1].getBaseIndex() >= I->end)
break;
}
if (Gap == NumGaps)
break;
}
}
}
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
// Note that it is possible to have an interval that is live-in or live-out
// while only covering a single block - A phi-def can use undef values from
// predecessors, and the block could be a single-block loop.
// We don't bother doing anything clever about such a case, we simply assume
// that the interval is continuous from FirstInstr to LastInstr. We should
// make sure that we don't do anything illegal to such an interval, though.
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 2)
return 0;
const unsigned NumGaps = Uses.size()-1;
DEBUG({
dbgs() << "tryLocalSplit: ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
dbgs() << ' ' << Uses[i];
dbgs() << '\n';
});
// If VirtReg is live across any register mask operands, compute a list of
// gaps with register masks.
SmallVector<unsigned, 8> RegMaskGaps;
if (Matrix->checkRegMaskInterference(VirtReg)) {
// Get regmask slots for the whole block.
ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
DEBUG(dbgs() << RMS.size() << " regmasks in block:");
// Constrain to VirtReg's live range.
unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
Uses.front().getRegSlot()) - RMS.begin();
unsigned re = RMS.size();
for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
// Look for Uses[i] <= RMS <= Uses[i+1].
assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
continue;
// Skip a regmask on the same instruction as the last use. It doesn't
// overlap the live range.
if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
break;
DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
RegMaskGaps.push_back(i);
// Advance ri to the next gap. A regmask on one of the uses counts in
// both gaps.
while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
++ri;
}
DEBUG(dbgs() << '\n');
}
// Since we allow local split results to be split again, there is a risk of
// creating infinite loops. It is tempting to require that the new live
// ranges have less instructions than the original. That would guarantee
// convergence, but it is too strict. A live range with 3 instructions can be
// split 2+3 (including the COPY), and we want to allow that.
//
// Instead we use these rules:
//
// 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
// noop split, of course).
// 2. Require progress be made for ranges with getStage() == RS_Split2. All
// the new ranges must have fewer instructions than before the split.
// 3. New ranges with the same number of instructions are marked RS_Split2,
// smaller ranges are marked RS_New.
//
// These rules allow a 3 -> 2+3 split once, which we need. They also prevent
// excessive splitting and infinite loops.
//
bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
// Best split candidate.
unsigned BestBefore = NumGaps;
unsigned BestAfter = 0;
float BestDiff = 0;
const float blockFreq =
SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
(1.0f / MBFI->getEntryFreq());
SmallVector<float, 8> GapWeight;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Keep track of the largest spill weight that would need to be evicted in
// order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
calcGapWeights(PhysReg, GapWeight);
// Remove any gaps with regmask clobbers.
if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
// Try to find the best sequence of gaps to close.
// The new spill weight must be larger than any gap interference.
// We will split before Uses[SplitBefore] and after Uses[SplitAfter].
unsigned SplitBefore = 0, SplitAfter = 1;
// MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
// It is the spill weight that needs to be evicted.
float MaxGap = GapWeight[0];
for (;;) {
// Live before/after split?
const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
<< Uses[SplitBefore] << '-' << Uses[SplitAfter]
<< " i=" << MaxGap);
// Stop before the interval gets so big we wouldn't be making progress.
if (!LiveBefore && !LiveAfter) {
DEBUG(dbgs() << " all\n");
break;
}
// Should the interval be extended or shrunk?
bool Shrink = true;
// How many gaps would the new range have?
unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
// Legally, without causing looping?
bool Legal = !ProgressRequired || NewGaps < NumGaps;
if (Legal && MaxGap < llvm::huge_valf) {
// Estimate the new spill weight. Each instruction reads or writes the
// register. Conservatively assume there are no read-modify-write
// instructions.
//
// Try to guess the size of the new interval.
const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
Uses[SplitBefore].distance(Uses[SplitAfter]) +
(LiveBefore + LiveAfter)*SlotIndex::InstrDist);
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
DEBUG(dbgs() << " w=" << EstWeight);
if (EstWeight * Hysteresis >= MaxGap) {
Shrink = false;
float Diff = EstWeight - MaxGap;
if (Diff > BestDiff) {
DEBUG(dbgs() << " (best)");
BestDiff = Hysteresis * Diff;
BestBefore = SplitBefore;
BestAfter = SplitAfter;
}
}
}
// Try to shrink.
if (Shrink) {
if (++SplitBefore < SplitAfter) {
DEBUG(dbgs() << " shrink\n");
// Recompute the max when necessary.
if (GapWeight[SplitBefore - 1] >= MaxGap) {
MaxGap = GapWeight[SplitBefore];
for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
MaxGap = std::max(MaxGap, GapWeight[i]);
}
continue;
}
MaxGap = 0;
}
// Try to extend the interval.
if (SplitAfter >= NumGaps) {
DEBUG(dbgs() << " end\n");
break;
}
DEBUG(dbgs() << " extend\n");
MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
}
}
// Didn't find any candidates?
if (BestBefore == NumGaps)
return 0;
DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
<< '-' << Uses[BestAfter] << ", " << BestDiff
<< ", " << (BestAfter - BestBefore + 1) << " instrs\n");
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit);
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
SE->useIntv(SegStart, SegStop);
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
// If the new range has the same number of instructions as before, mark it as
// RS_Split2 so the next split will be forced to make progress. Otherwise,
// leave the new intervals as RS_New so they can compete.
bool LiveBefore = BestBefore != 0 || BI.LiveIn;
bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
if (NewGaps >= NumGaps) {
DEBUG(dbgs() << "Tagging non-progress ranges: ");
assert(!ProgressRequired && "Didn't make progress when it was required.");
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
if (IntvMap[i] == 1) {
setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
DEBUG(dbgs() << PrintReg(LREdit.get(i)));
}
DEBUG(dbgs() << '\n');
}
++NumLocalSplits;
return 0;
}
//===----------------------------------------------------------------------===//
// Live Range Splitting
//===----------------------------------------------------------------------===//
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned>&NewVRegs) {
// Ranges must be Split2 or less.
if (getStage(VirtReg) >= RS_Spill)
return 0;
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
return tryInstructionSplit(VirtReg, Order, NewVRegs);
}
NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
// FIXME: SplitAnalysis may repair broken live ranges coming from the
// coalescer. That may cause the range to become allocatable which means that
// tryRegionSplit won't be making progress. This check should be replaced with
// an assertion when the coalescer is fixed.
if (SA->didRepairRange()) {
// VirtReg has changed, so all cached queries are invalid.
Matrix->invalidateVirtRegs();
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
}
// First try to split around a region spanning multiple blocks. RS_Split2
// ranges already made dubious progress with region splitting, so they go
// straight to single block splitting.
if (getStage(VirtReg) < RS_Split2) {
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
}
// Then isolate blocks.
return tryBlockSplit(VirtReg, Order, NewVRegs);
}
//===----------------------------------------------------------------------===//
// Last Chance Recoloring
//===----------------------------------------------------------------------===//
/// mayRecolorAllInterferences - Check if the virtual registers that
/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
/// recolored to free \p PhysReg.
/// When true is returned, \p RecoloringCandidates has been augmented with all
/// the live intervals that need to be recolored in order to free \p PhysReg
/// for \p VirtReg.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
bool
RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
SmallLISet &RecoloringCandidates,
const SmallVirtRegSet &FixedRegisters) {
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// If there is LastChanceRecoloringMaxInterference or more interferences,
// chances are one would not be recolorable.
if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
LastChanceRecoloringMaxInterference) {
DEBUG(dbgs() << "Early abort: too many interferences.\n");
return false;
}
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
// If Intf is done and sit on the same register class as VirtReg,
// it would not be recolorable as it is in the same state as VirtReg.
if ((getStage(*Intf) == RS_Done &&
MRI->getRegClass(Intf->reg) == CurRC) ||
FixedRegisters.count(Intf->reg)) {
DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
return false;
}
RecoloringCandidates.insert(Intf);
}
}
return true;
}
/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
/// its interferences.
/// Last chance recoloring chooses a color for \p VirtReg and recolors every
/// virtual register that was using it. The recoloring process may recursively
/// use the last chance recoloring. Therefore, when a virtual register has been
/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
/// be last-chance-recolored again during this recoloring "session".
/// E.g.,
/// Let
/// vA can use {R1, R2 }
/// vB can use { R2, R3}
/// vC can use {R1 }
/// Where vA, vB, and vC cannot be split anymore (they are reloads for
/// instance) and they all interfere.
///
/// vA is assigned R1
/// vB is assigned R2
/// vC tries to evict vA but vA is already done.
/// Regular register allocation fails.
///
/// Last chance recoloring kicks in:
/// vC does as if vA was evicted => vC uses R1.
/// vC is marked as fixed.
/// vA needs to find a color.
/// None are available.
/// vA cannot evict vC: vC is a fixed virtual register now.
/// vA does as if vB was evicted => vA uses R2.
/// vB needs to find a color.
/// R3 is available.
/// Recoloring => vC = R1, vA = R2, vB = R3
///
/// \p Order defines the preferred allocation order for \p VirtReg.
/// \p NewRegs will contain any new virtual register that have been created
/// (split, spill) during the process and that must be assigned.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
/// \p Depth gives the current depth of the last chance recoloring.
/// \return a physical register that can be used for VirtReg or ~0u if none
/// exists.
unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
// Ranges must be Done.
assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
"Last chance recoloring should really be last chance");
// Set the max depth to LastChanceRecoloringMaxDepth.
// We may want to reconsider that if we end up with a too large search space
// for target with hundreds of registers.
// Indeed, in that case we may want to cut the search space earlier.
if (Depth >= LastChanceRecoloringMaxDepth) {
DEBUG(dbgs() << "Abort because max depth has been reached.\n");
return ~0u;
}
// Set of Live intervals that will need to be recolored.
SmallLISet RecoloringCandidates;
// Record the original mapping virtual register to physical register in case
// the recoloring fails.
DenseMap<unsigned, unsigned> VirtRegToPhysReg;
// Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
// this recoloring "session".
FixedRegisters.insert(VirtReg.reg);
Order.rewind();
while (unsigned PhysReg = Order.next()) {
DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
<< PrintReg(PhysReg, TRI) << '\n');
RecoloringCandidates.clear();
VirtRegToPhysReg.clear();
// It is only possible to recolor virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) >
LiveRegMatrix::IK_VirtReg) {
DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
continue;
}
// Early give up on this PhysReg if it is obvious we cannot recolor all
// the interferences.
if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
FixedRegisters)) {
DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
continue;
}
// RecoloringCandidates contains all the virtual registers that interfer
// with VirtReg on PhysReg (or one of its aliases).
// Enqueue them for recoloring and perform the actual recoloring.
PQueue RecoloringQueue;
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
EndIt = RecoloringCandidates.end();
It != EndIt; ++It) {
unsigned ItVirtReg = (*It)->reg;
enqueue(RecoloringQueue, *It);
assert(VRM->hasPhys(ItVirtReg) &&
"Interferences are supposed to be with allocated vairables");
// Record the current allocation.
VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
// unset the related struct.
Matrix->unassign(**It);
}
// Do as if VirtReg was assigned to PhysReg so that the underlying
// recoloring has the right information about the interferes and
// available colors.
Matrix->assign(VirtReg, PhysReg);
// Save the current recoloring state.
// If we cannot recolor all the interferences, we will have to start again
// at this point for the next physical register.
SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
Depth)) {
// Do not mess up with the global assignment process.
// I.e., VirtReg must be unassigned.
Matrix->unassign(VirtReg);
return PhysReg;
}
DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
<< PrintReg(PhysReg, TRI) << '\n');
// The recoloring attempt failed, undo the changes.
FixedRegisters = SaveFixedRegisters;
Matrix->unassign(VirtReg);
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
EndIt = RecoloringCandidates.end();
It != EndIt; ++It) {
unsigned ItVirtReg = (*It)->reg;
if (VRM->hasPhys(ItVirtReg))
Matrix->unassign(**It);
Matrix->assign(**It, VirtRegToPhysReg[ItVirtReg]);
}
}
// Last chance recoloring did not worked either, give up.
return ~0u;
}
/// tryRecoloringCandidates - Try to assign a new color to every register
/// in \RecoloringQueue.
/// \p NewRegs will contain any new virtual register created during the
/// recoloring process.
/// \p FixedRegisters[in/out] contains all the registers that have been
/// recolored.
/// \return true if all virtual registers in RecoloringQueue were successfully
/// recolored, false otherwise.
bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
while (!RecoloringQueue.empty()) {
LiveInterval *LI = dequeue(RecoloringQueue);
DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
unsigned PhysReg;
PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
if (PhysReg == ~0u || !PhysReg)
return false;
DEBUG(dbgs() << "Recoloring of " << *LI
<< " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
Matrix->assign(*LI, PhysReg);
FixedRegisters.insert(LI->reg);
}
return true;
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &NewVRegs) {
SmallVirtRegSet FixedRegisters;
return selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
}
unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
LiveRangeStage Stage = getStage(VirtReg);
DEBUG(dbgs() << StageName[Stage]
<< " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
// Try to evict a less worthy live range, but only for ranges from the primary
// queue. The RS_Split ranges already failed to do this, and they should not
// get a second chance until they have been split.
if (Stage != RS_Split)
if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
return PhysReg;
assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
// This gives a better picture of the interference to split around.
if (Stage < RS_Split) {
setStage(VirtReg, RS_Split);
DEBUG(dbgs() << "wait for second round\n");
NewVRegs.push_back(VirtReg.reg);
return 0;
}
// If we couldn't allocate a register from spilling, there is probably some
// invalid inline assembly. The base class wil report it.
if (Stage >= RS_Done || !VirtReg.isSpillable())
return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
Depth);
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
// Finally spill VirtReg itself.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
spiller().spill(LRE);
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
if (VerifyEnabled)
MF->verify(this, "After spilling");
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
TRI = MF->getTarget().getRegisterInfo();
TII = MF->getTarget().getInstrInfo();
RCI.runOnMachineFunction(mf);
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
Indexes = &getAnalysis<SlotIndexes>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
DomTree = &getAnalysis<MachineDominatorTree>();
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Loops = &getAnalysis<MachineLoopInfo>();
Bundles = &getAnalysis<EdgeBundles>();
SpillPlacer = &getAnalysis<SpillPlacement>();
DebugVars = &getAnalysis<LiveDebugVariables>();
calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
DEBUG(LIS->dump());
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
ExtraRegInfo.clear();
ExtraRegInfo.resize(MRI->getNumVirtRegs());
NextCascade = 1;
IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
GlobalCand.resize(32); // This will grow as needed.
allocatePhysRegs();
releaseMemory();
return true;
}