llvm/lib/Target/R600/SILowerControlFlow.cpp
Michel Danzer 7740daa8ba R600/SI: Initial support for LDS/GDS instructions
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186009 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-10 16:36:43 +00:00

519 lines
15 KiB
C++

//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU). Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// %SGPR0 = SI_IF %VCC
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// %SGPR0 = SI_ELSE %SGPR0
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// SI_END_CF %SGPR0
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an optional
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
///
/// label0:
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1 // Use our branch optimization
/// // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
class SILowerControlFlowPass : public MachineFunctionPass {
private:
static const unsigned SkipThreshold = 12;
static char ID;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To);
void Skip(MachineInstr &From, MachineOperand &To);
void SkipIfDead(MachineInstr &MI);
void If(MachineInstr &MI);
void Else(MachineInstr &MI);
void Break(MachineInstr &MI);
void IfBreak(MachineInstr &MI);
void ElseBreak(MachineInstr &MI);
void Loop(MachineInstr &MI);
void EndCf(MachineInstr &MI);
void Kill(MachineInstr &MI);
void Branch(MachineInstr &MI);
void LoadM0(MachineInstr &MI, MachineInstr *MovRel);
void IndirectSrc(MachineInstr &MI);
void IndirectDst(MachineInstr &MI);
public:
SILowerControlFlowPass(TargetMachine &tm) :
MachineFunctionPass(ID), TRI(0), TII(0) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const {
return "SI Lower control flow instructions";
}
};
} // End anonymous namespace
char SILowerControlFlowPass::ID = 0;
FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
return new SILowerControlFlowPass(tm);
}
bool SILowerControlFlowPass::shouldSkip(MachineBasicBlock *From,
MachineBasicBlock *To) {
unsigned NumInstr = 0;
for (MachineBasicBlock *MBB = From; MBB != To && !MBB->succ_empty();
MBB = *MBB->succ_begin()) {
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
NumInstr < SkipThreshold && I != E; ++I) {
if (I->isBundle() || !I->isBundled())
if (++NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
void SILowerControlFlowPass::Skip(MachineInstr &From, MachineOperand &To) {
if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB()))
return;
DebugLoc DL = From.getDebugLoc();
BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addOperand(To)
.addReg(AMDGPU::EXEC);
}
void SILowerControlFlowPass::SkipIfDead(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
if (!shouldSkip(&MBB, &MBB.getParent()->back()))
return;
MachineBasicBlock::iterator Insert = &MI;
++Insert;
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3)
.addReg(AMDGPU::EXEC);
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0);
// ... and terminate wavefront
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));
}
void SILowerControlFlowPass::If(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
.addReg(Vcc);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
Skip(MI, MI.getOperand(2));
MI.eraseFromParent();
}
void SILowerControlFlowPass::Else(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
.addReg(Src); // Saved EXEC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Dst);
Skip(MI, MI.getOperand(2));
MI.eraseFromParent();
}
void SILowerControlFlowPass::Break(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(AMDGPU::EXEC)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::IfBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Vcc)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::ElseBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Saved = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Saved)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Loop(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Src = MI.getOperand(0).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Src);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addOperand(MI.getOperand(1))
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
}
void SILowerControlFlowPass::EndCf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Branch(MachineInstr &MI) {
MachineBasicBlock *Next = MI.getParent()->getNextNode();
MachineBasicBlock *Target = MI.getOperand(0).getMBB();
if (Target == Next)
MI.eraseFromParent();
else
assert(0);
}
void SILowerControlFlowPass::Kill(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
// Kill is only allowed in pixel shaders
assert(MBB.getParent()->getInfo<SIMachineFunctionInfo>()->ShaderType ==
ShaderType::PIXEL);
// Clear this pixel from the exec mask if the operand is negative
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32), AMDGPU::VCC)
.addImm(0)
.addOperand(MI.getOperand(0));
MI.eraseFromParent();
}
void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock::iterator I = MI;
unsigned Save = MI.getOperand(1).getReg();
unsigned Idx = MI.getOperand(3).getReg();
if (AMDGPU::SReg_32RegClass.contains(Idx)) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(Idx);
MBB.insert(I, MovRel);
MI.eraseFromParent();
return;
}
assert(AMDGPU::SReg_64RegClass.contains(Save));
assert(AMDGPU::VReg_32RegClass.contains(Idx));
// Save the EXEC mask
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save)
.addReg(AMDGPU::EXEC);
// Read the next variant into VCC (lower 32 bits) <- also loop target
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32_e32), AMDGPU::VCC)
.addReg(Idx);
// Move index from VCC into M0
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(AMDGPU::VCC);
// Compare the just read M0 value to all possible Idx values
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32), AMDGPU::VCC)
.addReg(AMDGPU::M0)
.addReg(Idx);
// Update EXEC, save the original EXEC value to VCC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
.addReg(AMDGPU::VCC);
// Do the actual move
MBB.insert(I, MovRel);
// Update EXEC, switch all done bits to 0 and all todo bits to 1
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::VCC);
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(-7)
.addReg(AMDGPU::EXEC);
// Restore EXEC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addReg(Save);
MI.eraseFromParent();
}
void SILowerControlFlowPass::IndirectSrc(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vec = MI.getOperand(2).getReg();
unsigned Off = MI.getOperand(4).getImm();
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(TRI->getSubReg(Vec, AMDGPU::sub0) + Off)
.addReg(AMDGPU::M0, RegState::Implicit)
.addReg(Vec, RegState::Implicit);
LoadM0(MI, MovRel);
}
void SILowerControlFlowPass::IndirectDst(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Off = MI.getOperand(4).getImm();
unsigned Val = MI.getOperand(5).getReg();
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32))
.addReg(TRI->getSubReg(Dst, AMDGPU::sub0) + Off, RegState::Define)
.addReg(Val)
.addReg(AMDGPU::M0, RegState::Implicit)
.addReg(Dst, RegState::Implicit);
LoadM0(MI, MovRel);
}
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
TRI = MF.getTarget().getRegisterInfo();
bool HaveKill = false;
bool NeedM0 = false;
bool NeedWQM = false;
unsigned Depth = 0;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
I != MBB.end(); I = Next) {
Next = llvm::next(I);
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::SI_IF:
++Depth;
If(MI);
break;
case AMDGPU::SI_ELSE:
Else(MI);
break;
case AMDGPU::SI_BREAK:
Break(MI);
break;
case AMDGPU::SI_IF_BREAK:
IfBreak(MI);
break;
case AMDGPU::SI_ELSE_BREAK:
ElseBreak(MI);
break;
case AMDGPU::SI_LOOP:
++Depth;
Loop(MI);
break;
case AMDGPU::SI_END_CF:
if (--Depth == 0 && HaveKill) {
SkipIfDead(MI);
HaveKill = false;
}
EndCf(MI);
break;
case AMDGPU::SI_KILL:
if (Depth == 0)
SkipIfDead(MI);
else
HaveKill = true;
Kill(MI);
break;
case AMDGPU::S_BRANCH:
Branch(MI);
break;
case AMDGPU::SI_INDIRECT_SRC:
IndirectSrc(MI);
break;
case AMDGPU::SI_INDIRECT_DST_V2:
case AMDGPU::SI_INDIRECT_DST_V4:
case AMDGPU::SI_INDIRECT_DST_V8:
case AMDGPU::SI_INDIRECT_DST_V16:
IndirectDst(MI);
break;
case AMDGPU::DS_READ_B32:
NeedWQM = true;
// Fall through
case AMDGPU::DS_WRITE_B32:
NeedM0 = true;
break;
case AMDGPU::V_INTERP_P1_F32:
case AMDGPU::V_INTERP_P2_F32:
case AMDGPU::V_INTERP_MOV_F32:
NeedWQM = true;
break;
}
}
}
if (NeedM0) {
MachineBasicBlock &MBB = MF.front();
// Initialize M0 to a value that won't cause LDS access to be discarded
// due to offset clamping
BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_MOV_B32),
AMDGPU::M0).addImm(0xffffffff);
}
if (NeedWQM) {
MachineBasicBlock &MBB = MF.front();
BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC).addReg(AMDGPU::EXEC);
}
return true;
}