mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-05 11:19:41 +00:00
8b2794aeff
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30945 91177308-0d34-0410-b5e6-96231b3b80d8
3816 lines
149 KiB
C++
3816 lines
149 KiB
C++
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineDebugInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetFrameInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <map>
|
|
#include <set>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
ViewISelDAGs("view-isel-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show isel dags as they are selected"));
|
|
static cl::opt<bool>
|
|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
#else
|
|
static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
|
|
#endif
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// RegisterScheduler class - Track the registration of instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
MachinePassRegistry RegisterScheduler::Registry;
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// ISHeuristic command line option for instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
namespace {
|
|
cl::opt<RegisterScheduler::FunctionPassCtor, false,
|
|
RegisterPassParser<RegisterScheduler> >
|
|
ISHeuristic("sched",
|
|
cl::init(&createDefaultScheduler),
|
|
cl::desc("Instruction schedulers available:"));
|
|
|
|
static RegisterScheduler
|
|
defaultListDAGScheduler("default", " Best scheduler for the target",
|
|
createDefaultScheduler);
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// RegsForValue - This struct represents the physical registers that a
|
|
/// particular value is assigned and the type information about the value.
|
|
/// This is needed because values can be promoted into larger registers and
|
|
/// expanded into multiple smaller registers than the value.
|
|
struct VISIBILITY_HIDDEN RegsForValue {
|
|
/// Regs - This list hold the register (for legal and promoted values)
|
|
/// or register set (for expanded values) that the value should be assigned
|
|
/// to.
|
|
std::vector<unsigned> Regs;
|
|
|
|
/// RegVT - The value type of each register.
|
|
///
|
|
MVT::ValueType RegVT;
|
|
|
|
/// ValueVT - The value type of the LLVM value, which may be promoted from
|
|
/// RegVT or made from merging the two expanded parts.
|
|
MVT::ValueType ValueVT;
|
|
|
|
RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
|
|
|
|
RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
|
|
: RegVT(regvt), ValueVT(valuevt) {
|
|
Regs.push_back(Reg);
|
|
}
|
|
RegsForValue(const std::vector<unsigned> ®s,
|
|
MVT::ValueType regvt, MVT::ValueType valuevt)
|
|
: Regs(regs), RegVT(regvt), ValueVT(valuevt) {
|
|
}
|
|
|
|
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
|
|
/// this value and returns the result as a ValueVT value. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
SDOperand getCopyFromRegs(SelectionDAG &DAG,
|
|
SDOperand &Chain, SDOperand &Flag) const;
|
|
|
|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
|
|
/// specified value into the registers specified by this object. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
|
|
SDOperand &Chain, SDOperand &Flag,
|
|
MVT::ValueType PtrVT) const;
|
|
|
|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
|
|
/// operand list. This adds the code marker and includes the number of
|
|
/// values added into it.
|
|
void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
|
|
std::vector<SDOperand> &Ops) const;
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
//===--------------------------------------------------------------------===//
|
|
/// createDefaultScheduler - This creates an instruction scheduler appropriate
|
|
/// for the target.
|
|
ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB) {
|
|
TargetLowering &TLI = IS->getTargetLowering();
|
|
|
|
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
|
|
return createTDListDAGScheduler(IS, DAG, BB);
|
|
} else {
|
|
assert(TLI.getSchedulingPreference() ==
|
|
TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
|
|
return createBURRListDAGScheduler(IS, DAG, BB);
|
|
}
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// FunctionLoweringInfo - This contains information that is global to a
|
|
/// function that is used when lowering a region of the function.
|
|
class FunctionLoweringInfo {
|
|
public:
|
|
TargetLowering &TLI;
|
|
Function &Fn;
|
|
MachineFunction &MF;
|
|
SSARegMap *RegMap;
|
|
|
|
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
|
|
|
|
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
|
|
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
|
|
|
|
/// ValueMap - Since we emit code for the function a basic block at a time,
|
|
/// we must remember which virtual registers hold the values for
|
|
/// cross-basic-block values.
|
|
std::map<const Value*, unsigned> ValueMap;
|
|
|
|
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
|
|
/// the entry block. This allows the allocas to be efficiently referenced
|
|
/// anywhere in the function.
|
|
std::map<const AllocaInst*, int> StaticAllocaMap;
|
|
|
|
unsigned MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
unsigned CreateRegForValue(const Value *V);
|
|
|
|
unsigned InitializeRegForValue(const Value *V) {
|
|
unsigned &R = ValueMap[V];
|
|
assert(R == 0 && "Already initialized this value register!");
|
|
return R = CreateRegForValue(V);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it, or used by a
|
|
/// switch instruction, which may expand to multiple basic blocks.
|
|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
|
|
if (isa<PHINode>(I)) return true;
|
|
BasicBlock *BB = I->getParent();
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
|
|
isa<SwitchInst>(*UI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
|
|
/// entry block, return true. This includes arguments used by switches, since
|
|
/// the switch may expand into multiple basic blocks.
|
|
static bool isOnlyUsedInEntryBlock(Argument *A) {
|
|
BasicBlock *Entry = A->getParent()->begin();
|
|
for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
|
|
return false; // Use not in entry block.
|
|
return true;
|
|
}
|
|
|
|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
|
|
Function &fn, MachineFunction &mf)
|
|
: TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
|
|
|
|
// Create a vreg for each argument register that is not dead and is used
|
|
// outside of the entry block for the function.
|
|
for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
|
|
AI != E; ++AI)
|
|
if (!isOnlyUsedInEntryBlock(AI))
|
|
InitializeRegForValue(AI);
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
Function::iterator BB = Fn.begin(), EB = Fn.end();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
|
|
const Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
|
|
unsigned Align =
|
|
std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
|
|
AI->getAlignment());
|
|
|
|
// If the alignment of the value is smaller than the size of the value,
|
|
// and if the size of the value is particularly small (<= 8 bytes),
|
|
// round up to the size of the value for potentially better performance.
|
|
//
|
|
// FIXME: This could be made better with a preferred alignment hook in
|
|
// TargetData. It serves primarily to 8-byte align doubles for X86.
|
|
if (Align < TySize && TySize <= 8) Align = TySize;
|
|
TySize *= CUI->getValue(); // Get total allocated size.
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
StaticAllocaMap[AI] =
|
|
MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
|
|
}
|
|
|
|
for (; BB != EB; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
|
|
if (!isa<AllocaInst>(I) ||
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
InitializeRegForValue(I);
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
|
|
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
|
|
MBBMap[BB] = MBB;
|
|
MF.getBasicBlockList().push_back(MBB);
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
MVT::ValueType VT = TLI.getValueType(PN->getType());
|
|
unsigned NumElements;
|
|
if (VT != MVT::Vector)
|
|
NumElements = TLI.getNumElements(VT);
|
|
else {
|
|
MVT::ValueType VT1,VT2;
|
|
NumElements =
|
|
TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
|
|
VT1, VT2);
|
|
}
|
|
unsigned PHIReg = ValueMap[PN];
|
|
assert(PHIReg &&"PHI node does not have an assigned virtual register!");
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
|
|
/// the correctly promoted or expanded types. Assign these registers
|
|
/// consecutive vreg numbers and return the first assigned number.
|
|
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
|
|
MVT::ValueType VT = TLI.getValueType(V->getType());
|
|
|
|
// The number of multiples of registers that we need, to, e.g., split up
|
|
// a <2 x int64> -> 4 x i32 registers.
|
|
unsigned NumVectorRegs = 1;
|
|
|
|
// If this is a packed type, figure out what type it will decompose into
|
|
// and how many of the elements it will use.
|
|
if (VT == MVT::Vector) {
|
|
const PackedType *PTy = cast<PackedType>(V->getType());
|
|
unsigned NumElts = PTy->getNumElements();
|
|
MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
|
|
|
|
// Divide the input until we get to a supported size. This will always
|
|
// end with a scalar if the target doesn't support vectors.
|
|
while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
|
|
NumElts >>= 1;
|
|
NumVectorRegs <<= 1;
|
|
}
|
|
if (NumElts == 1)
|
|
VT = EltTy;
|
|
else
|
|
VT = getVectorType(EltTy, NumElts);
|
|
}
|
|
|
|
// The common case is that we will only create one register for this
|
|
// value. If we have that case, create and return the virtual register.
|
|
unsigned NV = TLI.getNumElements(VT);
|
|
if (NV == 1) {
|
|
// If we are promoting this value, pick the next largest supported type.
|
|
MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
|
|
unsigned Reg = MakeReg(PromotedType);
|
|
// If this is a vector of supported or promoted types (e.g. 4 x i16),
|
|
// create all of the registers.
|
|
for (unsigned i = 1; i != NumVectorRegs; ++i)
|
|
MakeReg(PromotedType);
|
|
return Reg;
|
|
}
|
|
|
|
// If this value is represented with multiple target registers, make sure
|
|
// to create enough consecutive registers of the right (smaller) type.
|
|
unsigned NT = VT-1; // Find the type to use.
|
|
while (TLI.getNumElements((MVT::ValueType)NT) != 1)
|
|
--NT;
|
|
|
|
unsigned R = MakeReg((MVT::ValueType)NT);
|
|
for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
|
|
MakeReg((MVT::ValueType)NT);
|
|
return R;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SelectionDAGLowering - This is the common target-independent lowering
|
|
/// implementation that is parameterized by a TargetLowering object.
|
|
/// Also, targets can overload any lowering method.
|
|
///
|
|
namespace llvm {
|
|
class SelectionDAGLowering {
|
|
MachineBasicBlock *CurMBB;
|
|
|
|
std::map<const Value*, SDOperand> NodeMap;
|
|
|
|
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
|
|
/// them up and then emit token factor nodes when possible. This allows us to
|
|
/// get simple disambiguation between loads without worrying about alias
|
|
/// analysis.
|
|
std::vector<SDOperand> PendingLoads;
|
|
|
|
/// Case - A pair of values to record the Value for a switch case, and the
|
|
/// case's target basic block.
|
|
typedef std::pair<Constant*, MachineBasicBlock*> Case;
|
|
typedef std::vector<Case>::iterator CaseItr;
|
|
typedef std::pair<CaseItr, CaseItr> CaseRange;
|
|
|
|
/// CaseRec - A struct with ctor used in lowering switches to a binary tree
|
|
/// of conditional branches.
|
|
struct CaseRec {
|
|
CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
|
|
CaseBB(bb), LT(lt), GE(ge), Range(r) {}
|
|
|
|
/// CaseBB - The MBB in which to emit the compare and branch
|
|
MachineBasicBlock *CaseBB;
|
|
/// LT, GE - If nonzero, we know the current case value must be less-than or
|
|
/// greater-than-or-equal-to these Constants.
|
|
Constant *LT;
|
|
Constant *GE;
|
|
/// Range - A pair of iterators representing the range of case values to be
|
|
/// processed at this point in the binary search tree.
|
|
CaseRange Range;
|
|
};
|
|
|
|
/// The comparison function for sorting Case values.
|
|
struct CaseCmp {
|
|
bool operator () (const Case& C1, const Case& C2) {
|
|
if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
|
|
return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
|
|
|
|
const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
|
|
return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
|
|
}
|
|
};
|
|
|
|
public:
|
|
// TLI - This is information that describes the available target features we
|
|
// need for lowering. This indicates when operations are unavailable,
|
|
// implemented with a libcall, etc.
|
|
TargetLowering &TLI;
|
|
SelectionDAG &DAG;
|
|
const TargetData *TD;
|
|
|
|
/// SwitchCases - Vector of CaseBlock structures used to communicate
|
|
/// SwitchInst code generation information.
|
|
std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
|
|
SelectionDAGISel::JumpTable JT;
|
|
|
|
/// FuncInfo - Information about the function as a whole.
|
|
///
|
|
FunctionLoweringInfo &FuncInfo;
|
|
|
|
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
|
|
FunctionLoweringInfo &funcinfo)
|
|
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
|
|
JT(0,0,0,0), FuncInfo(funcinfo) {
|
|
}
|
|
|
|
/// getRoot - Return the current virtual root of the Selection DAG.
|
|
///
|
|
SDOperand getRoot() {
|
|
if (PendingLoads.empty())
|
|
return DAG.getRoot();
|
|
|
|
if (PendingLoads.size() == 1) {
|
|
SDOperand Root = PendingLoads[0];
|
|
DAG.setRoot(Root);
|
|
PendingLoads.clear();
|
|
return Root;
|
|
}
|
|
|
|
// Otherwise, we have to make a token factor node.
|
|
SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&PendingLoads[0], PendingLoads.size());
|
|
PendingLoads.clear();
|
|
DAG.setRoot(Root);
|
|
return Root;
|
|
}
|
|
|
|
void visit(Instruction &I) { visit(I.getOpcode(), I); }
|
|
|
|
void visit(unsigned Opcode, User &I) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown instruction type encountered!");
|
|
abort();
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
|
|
#include "llvm/Instruction.def"
|
|
}
|
|
}
|
|
|
|
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
|
|
|
|
SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
|
|
const Value *SV, SDOperand Root,
|
|
bool isVolatile);
|
|
|
|
SDOperand getIntPtrConstant(uint64_t Val) {
|
|
return DAG.getConstant(Val, TLI.getPointerTy());
|
|
}
|
|
|
|
SDOperand getValue(const Value *V);
|
|
|
|
const SDOperand &setValue(const Value *V, SDOperand NewN) {
|
|
SDOperand &N = NodeMap[V];
|
|
assert(N.Val == 0 && "Already set a value for this node!");
|
|
return N = NewN;
|
|
}
|
|
|
|
RegsForValue GetRegistersForValue(const std::string &ConstrCode,
|
|
MVT::ValueType VT,
|
|
bool OutReg, bool InReg,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs);
|
|
|
|
// Terminator instructions.
|
|
void visitRet(ReturnInst &I);
|
|
void visitBr(BranchInst &I);
|
|
void visitSwitch(SwitchInst &I);
|
|
void visitUnreachable(UnreachableInst &I) { /* noop */ }
|
|
|
|
// Helper for visitSwitch
|
|
void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
|
|
void visitJumpTable(SelectionDAGISel::JumpTable &JT);
|
|
|
|
// These all get lowered before this pass.
|
|
void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
|
|
void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
|
|
|
|
void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
|
|
void visitShift(User &I, unsigned Opcode);
|
|
void visitAdd(User &I) {
|
|
visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
|
|
}
|
|
void visitSub(User &I);
|
|
void visitMul(User &I) {
|
|
visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
|
|
}
|
|
void visitDiv(User &I) {
|
|
const Type *Ty = I.getType();
|
|
visitBinary(I,
|
|
Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
|
|
Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
|
|
}
|
|
void visitRem(User &I) {
|
|
const Type *Ty = I.getType();
|
|
visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
|
|
}
|
|
void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
|
|
void visitOr (User &I) { visitBinary(I, ISD::OR, 0, ISD::VOR); }
|
|
void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
|
|
void visitShl(User &I) { visitShift(I, ISD::SHL); }
|
|
void visitShr(User &I) {
|
|
visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
|
|
}
|
|
|
|
void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
|
|
ISD::CondCode FPOpc);
|
|
void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
|
|
ISD::SETOEQ); }
|
|
void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
|
|
ISD::SETUNE); }
|
|
void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
|
|
ISD::SETOLE); }
|
|
void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
|
|
ISD::SETOGE); }
|
|
void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
|
|
ISD::SETOLT); }
|
|
void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
|
|
ISD::SETOGT); }
|
|
|
|
void visitExtractElement(User &I);
|
|
void visitInsertElement(User &I);
|
|
void visitShuffleVector(User &I);
|
|
|
|
void visitGetElementPtr(User &I);
|
|
void visitCast(User &I);
|
|
void visitSelect(User &I);
|
|
|
|
void visitMalloc(MallocInst &I);
|
|
void visitFree(FreeInst &I);
|
|
void visitAlloca(AllocaInst &I);
|
|
void visitLoad(LoadInst &I);
|
|
void visitStore(StoreInst &I);
|
|
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
|
|
void visitCall(CallInst &I);
|
|
void visitInlineAsm(CallInst &I);
|
|
const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
|
|
void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
|
|
|
|
void visitVAStart(CallInst &I);
|
|
void visitVAArg(VAArgInst &I);
|
|
void visitVAEnd(CallInst &I);
|
|
void visitVACopy(CallInst &I);
|
|
void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
|
|
|
|
void visitMemIntrinsic(CallInst &I, unsigned Op);
|
|
|
|
void visitUserOp1(Instruction &I) {
|
|
assert(0 && "UserOp1 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
void visitUserOp2(Instruction &I) {
|
|
assert(0 && "UserOp2 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
SDOperand SelectionDAGLowering::getValue(const Value *V) {
|
|
SDOperand &N = NodeMap[V];
|
|
if (N.Val) return N;
|
|
|
|
const Type *VTy = V->getType();
|
|
MVT::ValueType VT = TLI.getValueType(VTy);
|
|
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
visit(CE->getOpcode(), *CE);
|
|
assert(N.Val && "visit didn't populate the ValueMap!");
|
|
return N;
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
return N = DAG.getGlobalAddress(GV, VT);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
return N = DAG.getConstant(0, TLI.getPointerTy());
|
|
} else if (isa<UndefValue>(C)) {
|
|
if (!isa<PackedType>(VTy))
|
|
return N = DAG.getNode(ISD::UNDEF, VT);
|
|
|
|
// Create a VBUILD_VECTOR of undef nodes.
|
|
const PackedType *PTy = cast<PackedType>(VTy);
|
|
unsigned NumElements = PTy->getNumElements();
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
|
|
SmallVector<SDOperand, 8> Ops;
|
|
Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
|
|
|
|
// Create a VConstant node with generic Vector type.
|
|
Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
|
|
Ops.push_back(DAG.getValueType(PVT));
|
|
return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
|
|
&Ops[0], Ops.size());
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
return N = DAG.getConstantFP(CFP->getValue(), VT);
|
|
} else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
|
|
unsigned NumElements = PTy->getNumElements();
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
|
|
// Now that we know the number and type of the elements, push a
|
|
// Constant or ConstantFP node onto the ops list for each element of
|
|
// the packed constant.
|
|
SmallVector<SDOperand, 8> Ops;
|
|
if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
Ops.push_back(getValue(CP->getOperand(i)));
|
|
} else {
|
|
assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
|
|
SDOperand Op;
|
|
if (MVT::isFloatingPoint(PVT))
|
|
Op = DAG.getConstantFP(0, PVT);
|
|
else
|
|
Op = DAG.getConstant(0, PVT);
|
|
Ops.assign(NumElements, Op);
|
|
}
|
|
|
|
// Create a VBUILD_VECTOR node with generic Vector type.
|
|
Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
|
|
Ops.push_back(DAG.getValueType(PVT));
|
|
return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
|
|
} else {
|
|
// Canonicalize all constant ints to be unsigned.
|
|
return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
|
|
}
|
|
}
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
std::map<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end())
|
|
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
|
|
}
|
|
|
|
std::map<const Value*, unsigned>::const_iterator VMI =
|
|
FuncInfo.ValueMap.find(V);
|
|
assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
|
|
|
|
unsigned InReg = VMI->second;
|
|
|
|
// If this type is not legal, make it so now.
|
|
if (VT != MVT::Vector) {
|
|
MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
|
|
|
|
N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
|
|
if (DestVT < VT) {
|
|
// Source must be expanded. This input value is actually coming from the
|
|
// register pair VMI->second and VMI->second+1.
|
|
N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
|
|
} else if (DestVT > VT) { // Promotion case
|
|
if (MVT::isFloatingPoint(VT))
|
|
N = DAG.getNode(ISD::FP_ROUND, VT, N);
|
|
else
|
|
N = DAG.getNode(ISD::TRUNCATE, VT, N);
|
|
}
|
|
} else {
|
|
// Otherwise, if this is a vector, make it available as a generic vector
|
|
// here.
|
|
MVT::ValueType PTyElementVT, PTyLegalElementVT;
|
|
const PackedType *PTy = cast<PackedType>(VTy);
|
|
unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
|
|
PTyLegalElementVT);
|
|
|
|
// Build a VBUILD_VECTOR with the input registers.
|
|
SmallVector<SDOperand, 8> Ops;
|
|
if (PTyElementVT == PTyLegalElementVT) {
|
|
// If the value types are legal, just VBUILD the CopyFromReg nodes.
|
|
for (unsigned i = 0; i != NE; ++i)
|
|
Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
|
|
PTyElementVT));
|
|
} else if (PTyElementVT < PTyLegalElementVT) {
|
|
// If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
|
|
for (unsigned i = 0; i != NE; ++i) {
|
|
SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
|
|
PTyElementVT);
|
|
if (MVT::isFloatingPoint(PTyElementVT))
|
|
Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
|
|
else
|
|
Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
|
|
Ops.push_back(Op);
|
|
}
|
|
} else {
|
|
// If the register was expanded, use BUILD_PAIR.
|
|
assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
|
|
for (unsigned i = 0; i != NE/2; ++i) {
|
|
SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
|
|
PTyElementVT);
|
|
SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
|
|
PTyElementVT);
|
|
Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
|
|
}
|
|
}
|
|
|
|
Ops.push_back(DAG.getConstant(NE, MVT::i32));
|
|
Ops.push_back(DAG.getValueType(PTyLegalElementVT));
|
|
N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
|
|
|
|
// Finally, use a VBIT_CONVERT to make this available as the appropriate
|
|
// vector type.
|
|
N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
|
|
DAG.getConstant(PTy->getNumElements(),
|
|
MVT::i32),
|
|
DAG.getValueType(TLI.getValueType(PTy->getElementType())));
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
|
|
return;
|
|
}
|
|
SmallVector<SDOperand, 8> NewValues;
|
|
NewValues.push_back(getRoot());
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
SDOperand RetOp = getValue(I.getOperand(i));
|
|
bool isSigned = I.getOperand(i)->getType()->isSigned();
|
|
|
|
// If this is an integer return value, we need to promote it ourselves to
|
|
// the full width of a register, since LegalizeOp will use ANY_EXTEND rather
|
|
// than sign/zero.
|
|
// FIXME: C calling convention requires the return type to be promoted to
|
|
// at least 32-bit. But this is not necessary for non-C calling conventions.
|
|
if (MVT::isInteger(RetOp.getValueType()) &&
|
|
RetOp.getValueType() < MVT::i64) {
|
|
MVT::ValueType TmpVT;
|
|
if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
|
|
TmpVT = TLI.getTypeToTransformTo(MVT::i32);
|
|
else
|
|
TmpVT = MVT::i32;
|
|
|
|
if (isSigned)
|
|
RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
|
|
else
|
|
RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
|
|
}
|
|
NewValues.push_back(RetOp);
|
|
NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
}
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
|
|
&NewValues[0], NewValues.size()));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBr(BranchInst &I) {
|
|
// Update machine-CFG edges.
|
|
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
|
|
CurMBB->addSuccessor(Succ0MBB);
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CurMBB;
|
|
if (++BBI != CurMBB->getParent()->end())
|
|
NextBlock = BBI;
|
|
|
|
if (I.isUnconditional()) {
|
|
// If this is not a fall-through branch, emit the branch.
|
|
if (Succ0MBB != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
|
|
DAG.getBasicBlock(Succ0MBB)));
|
|
} else {
|
|
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
|
|
CurMBB->addSuccessor(Succ1MBB);
|
|
|
|
SDOperand Cond = getValue(I.getCondition());
|
|
if (Succ1MBB == NextBlock) {
|
|
// If the condition is false, fall through. This means we should branch
|
|
// if the condition is true to Succ #0.
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ0MBB)));
|
|
} else if (Succ0MBB == NextBlock) {
|
|
// If the condition is true, fall through. This means we should branch if
|
|
// the condition is false to Succ #1. Invert the condition first.
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ1MBB)));
|
|
} else {
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
// If the false case is the current basic block, then this is a self
|
|
// loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
|
|
// adds an extra instruction in the loop. Instead, invert the
|
|
// condition and emit "Loop: ... br!cond Loop; br Out.
|
|
if (CurMBB == Succ1MBB) {
|
|
std::swap(Succ0MBB, Succ1MBB);
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
}
|
|
SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
|
|
DAG.getBasicBlock(Succ0MBB));
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
|
|
DAG.getBasicBlock(Succ1MBB)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitSwitchCase - Emits the necessary code to represent a single node in
|
|
/// the binary search tree resulting from lowering a switch instruction.
|
|
void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
|
|
SDOperand SwitchOp = getValue(CB.SwitchV);
|
|
SDOperand CaseOp = getValue(CB.CaseC);
|
|
SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
|
|
|
|
// Set NextBlock to be the MBB immediately after the current one, if any.
|
|
// This is used to avoid emitting unnecessary branches to the next block.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CurMBB;
|
|
if (++BBI != CurMBB->getParent()->end())
|
|
NextBlock = BBI;
|
|
|
|
// If the lhs block is the next block, invert the condition so that we can
|
|
// fall through to the lhs instead of the rhs block.
|
|
if (CB.LHSBB == NextBlock) {
|
|
std::swap(CB.LHSBB, CB.RHSBB);
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
}
|
|
SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
|
|
DAG.getBasicBlock(CB.LHSBB));
|
|
if (CB.RHSBB == NextBlock)
|
|
DAG.setRoot(BrCond);
|
|
else
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
|
|
DAG.getBasicBlock(CB.RHSBB)));
|
|
// Update successor info
|
|
CurMBB->addSuccessor(CB.LHSBB);
|
|
CurMBB->addSuccessor(CB.RHSBB);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
|
|
// Emit the code for the jump table
|
|
MVT::ValueType PTy = TLI.getPointerTy();
|
|
assert((PTy == MVT::i32 || PTy == MVT::i64) &&
|
|
"Jump table entries are 32-bit values");
|
|
bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
// PIC jump table entries are 32-bit values.
|
|
unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
|
|
SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
|
|
SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
|
|
DAG.getConstant(EntrySize, PTy));
|
|
SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
|
|
SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
|
|
SDOperand LD = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
|
|
NULL, 0);
|
|
if (isPIC) {
|
|
// For Pic, the sequence is:
|
|
// BRIND(load(Jumptable + index) + RelocBase)
|
|
// RelocBase is the JumpTable on PPC and X86, GOT on Alpha
|
|
SDOperand Reloc;
|
|
if (TLI.usesGlobalOffsetTable())
|
|
Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
|
|
else
|
|
Reloc = TAB;
|
|
ADD = DAG.getNode(ISD::ADD, PTy,
|
|
((PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD), Reloc);
|
|
DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
|
|
} else {
|
|
DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CurMBB;
|
|
if (++BBI != CurMBB->getParent()->end())
|
|
NextBlock = BBI;
|
|
|
|
// If there is only the default destination, branch to it if it is not the
|
|
// next basic block. Otherwise, just fall through.
|
|
if (I.getNumOperands() == 2) {
|
|
// Update machine-CFG edges.
|
|
MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
|
|
// If this is not a fall-through branch, emit the branch.
|
|
if (DefaultMBB != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
|
|
DAG.getBasicBlock(DefaultMBB)));
|
|
CurMBB->addSuccessor(DefaultMBB);
|
|
return;
|
|
}
|
|
|
|
// If there are any non-default case statements, create a vector of Cases
|
|
// representing each one, and sort the vector so that we can efficiently
|
|
// create a binary search tree from them.
|
|
std::vector<Case> Cases;
|
|
for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
|
|
MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
|
|
Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
|
|
}
|
|
std::sort(Cases.begin(), Cases.end(), CaseCmp());
|
|
|
|
// Get the Value to be switched on and default basic blocks, which will be
|
|
// inserted into CaseBlock records, representing basic blocks in the binary
|
|
// search tree.
|
|
Value *SV = I.getOperand(0);
|
|
MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
|
|
|
|
// Get the MachineFunction which holds the current MBB. This is used during
|
|
// emission of jump tables, and when inserting any additional MBBs necessary
|
|
// to represent the switch.
|
|
MachineFunction *CurMF = CurMBB->getParent();
|
|
const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
|
|
|
|
// If the switch has more than 5 blocks, and at least 31.25% dense, and the
|
|
// target supports indirect branches, then emit a jump table rather than
|
|
// lowering the switch to a binary tree of conditional branches.
|
|
if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
|
|
Cases.size() > 5) {
|
|
uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
|
|
uint64_t Last = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
|
|
double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
|
|
|
|
if (Density >= 0.3125) {
|
|
// Create a new basic block to hold the code for loading the address
|
|
// of the jump table, and jumping to it. Update successor information;
|
|
// we will either branch to the default case for the switch, or the jump
|
|
// table.
|
|
MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
|
|
CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
|
|
CurMBB->addSuccessor(Default);
|
|
CurMBB->addSuccessor(JumpTableBB);
|
|
|
|
// Subtract the lowest switch case value from the value being switched on
|
|
// and conditional branch to default mbb if the result is greater than the
|
|
// difference between smallest and largest cases.
|
|
SDOperand SwitchOp = getValue(SV);
|
|
MVT::ValueType VT = SwitchOp.getValueType();
|
|
SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
|
|
DAG.getConstant(First, VT));
|
|
|
|
// The SDNode we just created, which holds the value being switched on
|
|
// minus the the smallest case value, needs to be copied to a virtual
|
|
// register so it can be used as an index into the jump table in a
|
|
// subsequent basic block. This value may be smaller or larger than the
|
|
// target's pointer type, and therefore require extension or truncating.
|
|
if (VT > TLI.getPointerTy())
|
|
SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
|
|
else
|
|
SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
|
|
unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
|
|
SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
|
|
|
|
// Emit the range check for the jump table, and branch to the default
|
|
// block for the switch statement if the value being switched on exceeds
|
|
// the largest case in the switch.
|
|
SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
|
|
DAG.getConstant(Last-First,VT), ISD::SETUGT);
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
|
|
DAG.getBasicBlock(Default)));
|
|
|
|
// Build a vector of destination BBs, corresponding to each target
|
|
// of the jump table. If the value of the jump table slot corresponds to
|
|
// a case statement, push the case's BB onto the vector, otherwise, push
|
|
// the default BB.
|
|
std::vector<MachineBasicBlock*> DestBBs;
|
|
uint64_t TEI = First;
|
|
for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
|
|
if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
|
|
DestBBs.push_back(ii->second);
|
|
++ii;
|
|
} else {
|
|
DestBBs.push_back(Default);
|
|
}
|
|
}
|
|
|
|
// Update successor info
|
|
for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
|
|
E = DestBBs.end(); I != E; ++I)
|
|
JumpTableBB->addSuccessor(*I);
|
|
|
|
// Create a jump table index for this jump table, or return an existing
|
|
// one.
|
|
unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
|
|
|
|
// Set the jump table information so that we can codegen it as a second
|
|
// MachineBasicBlock
|
|
JT.Reg = JumpTableReg;
|
|
JT.JTI = JTI;
|
|
JT.MBB = JumpTableBB;
|
|
JT.Default = Default;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Push the initial CaseRec onto the worklist
|
|
std::vector<CaseRec> CaseVec;
|
|
CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
|
|
|
|
while (!CaseVec.empty()) {
|
|
// Grab a record representing a case range to process off the worklist
|
|
CaseRec CR = CaseVec.back();
|
|
CaseVec.pop_back();
|
|
|
|
// Size is the number of Cases represented by this range. If Size is 1,
|
|
// then we are processing a leaf of the binary search tree. Otherwise,
|
|
// we need to pick a pivot, and push left and right ranges onto the
|
|
// worklist.
|
|
unsigned Size = CR.Range.second - CR.Range.first;
|
|
|
|
if (Size == 1) {
|
|
// Create a CaseBlock record representing a conditional branch to
|
|
// the Case's target mbb if the value being switched on SV is equal
|
|
// to C. Otherwise, branch to default.
|
|
Constant *C = CR.Range.first->first;
|
|
MachineBasicBlock *Target = CR.Range.first->second;
|
|
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
|
|
CR.CaseBB);
|
|
// If the MBB representing the leaf node is the current MBB, then just
|
|
// call visitSwitchCase to emit the code into the current block.
|
|
// Otherwise, push the CaseBlock onto the vector to be later processed
|
|
// by SDISel, and insert the node's MBB before the next MBB.
|
|
if (CR.CaseBB == CurMBB)
|
|
visitSwitchCase(CB);
|
|
else {
|
|
SwitchCases.push_back(CB);
|
|
CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
|
|
}
|
|
} else {
|
|
// split case range at pivot
|
|
CaseItr Pivot = CR.Range.first + (Size / 2);
|
|
CaseRange LHSR(CR.Range.first, Pivot);
|
|
CaseRange RHSR(Pivot, CR.Range.second);
|
|
Constant *C = Pivot->first;
|
|
MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
|
|
// We know that we branch to the LHS if the Value being switched on is
|
|
// less than the Pivot value, C. We use this to optimize our binary
|
|
// tree a bit, by recognizing that if SV is greater than or equal to the
|
|
// LHS's Case Value, and that Case Value is exactly one less than the
|
|
// Pivot's Value, then we can branch directly to the LHS's Target,
|
|
// rather than creating a leaf node for it.
|
|
if ((LHSR.second - LHSR.first) == 1 &&
|
|
LHSR.first->first == CR.GE &&
|
|
cast<ConstantIntegral>(C)->getRawValue() ==
|
|
(cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
|
|
LHSBB = LHSR.first->second;
|
|
} else {
|
|
LHSBB = new MachineBasicBlock(LLVMBB);
|
|
CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
|
|
}
|
|
// Similar to the optimization above, if the Value being switched on is
|
|
// known to be less than the Constant CR.LT, and the current Case Value
|
|
// is CR.LT - 1, then we can branch directly to the target block for
|
|
// the current Case Value, rather than emitting a RHS leaf node for it.
|
|
if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
|
|
cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
|
|
(cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
|
|
RHSBB = RHSR.first->second;
|
|
} else {
|
|
RHSBB = new MachineBasicBlock(LLVMBB);
|
|
CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
|
|
}
|
|
// Create a CaseBlock record representing a conditional branch to
|
|
// the LHS node if the value being switched on SV is less than C.
|
|
// Otherwise, branch to LHS.
|
|
ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
|
|
SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
|
|
if (CR.CaseBB == CurMBB)
|
|
visitSwitchCase(CB);
|
|
else {
|
|
SwitchCases.push_back(CB);
|
|
CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSub(User &I) {
|
|
// -0.0 - X --> fneg
|
|
if (I.getType()->isFloatingPoint()) {
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
|
|
if (CFP->isExactlyValue(-0.0)) {
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
|
|
return;
|
|
}
|
|
}
|
|
visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
|
|
unsigned VecOp) {
|
|
const Type *Ty = I.getType();
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
|
|
if (Ty->isIntegral()) {
|
|
setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
|
|
} else if (Ty->isFloatingPoint()) {
|
|
setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
|
|
} else {
|
|
const PackedType *PTy = cast<PackedType>(Ty);
|
|
SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
|
|
SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
|
|
setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
|
|
Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
|
|
|
|
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
|
|
ISD::CondCode UnsignedOpcode,
|
|
ISD::CondCode FPOpcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
ISD::CondCode Opcode = SignedOpcode;
|
|
if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
|
|
Opcode = FPOpcode;
|
|
else if (I.getOperand(0)->getType()->isUnsigned())
|
|
Opcode = UnsignedOpcode;
|
|
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSelect(User &I) {
|
|
SDOperand Cond = getValue(I.getOperand(0));
|
|
SDOperand TrueVal = getValue(I.getOperand(1));
|
|
SDOperand FalseVal = getValue(I.getOperand(2));
|
|
if (!isa<PackedType>(I.getType())) {
|
|
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
|
|
TrueVal, FalseVal));
|
|
} else {
|
|
setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
|
|
*(TrueVal.Val->op_end()-2),
|
|
*(TrueVal.Val->op_end()-1)));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitCast(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
MVT::ValueType SrcVT = N.getValueType();
|
|
MVT::ValueType DestVT = TLI.getValueType(I.getType());
|
|
|
|
if (DestVT == MVT::Vector) {
|
|
// This is a cast to a vector from something else. This is always a bit
|
|
// convert. Get information about the input vector.
|
|
const PackedType *DestTy = cast<PackedType>(I.getType());
|
|
MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
|
|
setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
|
|
DAG.getConstant(DestTy->getNumElements(),MVT::i32),
|
|
DAG.getValueType(EltVT)));
|
|
} else if (SrcVT == DestVT) {
|
|
setValue(&I, N); // noop cast.
|
|
} else if (DestVT == MVT::i1) {
|
|
// Cast to bool is a comparison against zero, not truncation to zero.
|
|
SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
|
|
DAG.getConstantFP(0.0, N.getValueType());
|
|
setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
|
|
} else if (isInteger(SrcVT)) {
|
|
if (isInteger(DestVT)) { // Int -> Int cast
|
|
if (DestVT < SrcVT) // Truncating cast?
|
|
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
|
|
else if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
|
|
} else if (isFloatingPoint(DestVT)) { // Int -> FP cast
|
|
if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
|
|
} else {
|
|
assert(0 && "Unknown cast!");
|
|
}
|
|
} else if (isFloatingPoint(SrcVT)) {
|
|
if (isFloatingPoint(DestVT)) { // FP -> FP cast
|
|
if (DestVT < SrcVT) // Rounding cast?
|
|
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
|
|
} else if (isInteger(DestVT)) { // FP -> Int cast.
|
|
if (I.getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
|
|
} else {
|
|
assert(0 && "Unknown cast!");
|
|
}
|
|
} else {
|
|
assert(SrcVT == MVT::Vector && "Unknown cast!");
|
|
assert(DestVT != MVT::Vector && "Casts to vector already handled!");
|
|
// This is a cast from a vector to something else. This is always a bit
|
|
// convert. Get information about the input vector.
|
|
setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitInsertElement(User &I) {
|
|
SDOperand InVec = getValue(I.getOperand(0));
|
|
SDOperand InVal = getValue(I.getOperand(1));
|
|
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
|
|
getValue(I.getOperand(2)));
|
|
|
|
SDOperand Num = *(InVec.Val->op_end()-2);
|
|
SDOperand Typ = *(InVec.Val->op_end()-1);
|
|
setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
|
|
InVec, InVal, InIdx, Num, Typ));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitExtractElement(User &I) {
|
|
SDOperand InVec = getValue(I.getOperand(0));
|
|
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
|
|
getValue(I.getOperand(1)));
|
|
SDOperand Typ = *(InVec.Val->op_end()-1);
|
|
setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
|
|
TLI.getValueType(I.getType()), InVec, InIdx));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitShuffleVector(User &I) {
|
|
SDOperand V1 = getValue(I.getOperand(0));
|
|
SDOperand V2 = getValue(I.getOperand(1));
|
|
SDOperand Mask = getValue(I.getOperand(2));
|
|
|
|
SDOperand Num = *(V1.Val->op_end()-2);
|
|
SDOperand Typ = *(V2.Val->op_end()-1);
|
|
setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
|
|
V1, V2, Mask, Num, Typ));
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
|
|
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
|
|
OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
|
|
getIntPtrConstant(Offset));
|
|
}
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// If this is a constant subscript, handle it quickly.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->getRawValue() == 0) continue;
|
|
|
|
uint64_t Offs;
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
|
|
Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
|
|
else
|
|
Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
|
|
continue;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
uint64_t ElementSize = TD->getTypeSize(Ty);
|
|
SDOperand IdxN = getValue(Idx);
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend
|
|
// it.
|
|
if (IdxN.getValueType() < N.getValueType()) {
|
|
if (Idx->getType()->isSigned())
|
|
IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
|
|
else
|
|
IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
|
|
} else if (IdxN.getValueType() > N.getValueType())
|
|
IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
|
|
|
|
// If this is a multiply by a power of two, turn it into a shl
|
|
// immediately. This is a very common case.
|
|
if (isPowerOf2_64(ElementSize)) {
|
|
unsigned Amt = Log2_64(ElementSize);
|
|
IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
|
|
DAG.getConstant(Amt, TLI.getShiftAmountTy()));
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
|
continue;
|
|
}
|
|
|
|
SDOperand Scale = getIntPtrConstant(ElementSize);
|
|
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
|
}
|
|
}
|
|
setValue(&I, N);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
|
|
// If this is a fixed sized alloca in the entry block of the function,
|
|
// allocate it statically on the stack.
|
|
if (FuncInfo.StaticAllocaMap.count(&I))
|
|
return; // getValue will auto-populate this.
|
|
|
|
const Type *Ty = I.getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
|
|
unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
|
|
I.getAlignment());
|
|
|
|
SDOperand AllocSize = getValue(I.getArraySize());
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
if (IntPtr < AllocSize.getValueType())
|
|
AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
|
|
else if (IntPtr > AllocSize.getValueType())
|
|
AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
|
|
|
|
AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
|
|
getIntPtrConstant(TySize));
|
|
|
|
// Handle alignment. If the requested alignment is less than or equal to the
|
|
// stack alignment, ignore it and round the size of the allocation up to the
|
|
// stack alignment size. If the size is greater than the stack alignment, we
|
|
// note this in the DYNAMIC_STACKALLOC node.
|
|
unsigned StackAlign =
|
|
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
|
|
if (Align <= StackAlign) {
|
|
Align = 0;
|
|
// Add SA-1 to the size.
|
|
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(StackAlign-1));
|
|
// Mask out the low bits for alignment purposes.
|
|
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(~(uint64_t)(StackAlign-1)));
|
|
}
|
|
|
|
SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
|
|
const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
|
|
MVT::Other);
|
|
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
|
|
DAG.setRoot(setValue(&I, DSA).getValue(1));
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
|
|
SDOperand Ptr = getValue(I.getOperand(0));
|
|
|
|
SDOperand Root;
|
|
if (I.isVolatile())
|
|
Root = getRoot();
|
|
else {
|
|
// Do not serialize non-volatile loads against each other.
|
|
Root = DAG.getRoot();
|
|
}
|
|
|
|
setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
|
|
Root, I.isVolatile()));
|
|
}
|
|
|
|
SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
|
|
const Value *SV, SDOperand Root,
|
|
bool isVolatile) {
|
|
SDOperand L;
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
|
|
DAG.getSrcValue(SV));
|
|
} else {
|
|
L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
|
|
}
|
|
|
|
if (isVolatile)
|
|
DAG.setRoot(L.getValue(1));
|
|
else
|
|
PendingLoads.push_back(L.getValue(1));
|
|
|
|
return L;
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitStore(StoreInst &I) {
|
|
Value *SrcV = I.getOperand(0);
|
|
SDOperand Src = getValue(SrcV);
|
|
SDOperand Ptr = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
|
|
I.isVolatile()));
|
|
}
|
|
|
|
/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
|
|
/// access memory and has no other side effects at all.
|
|
static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
|
|
#define GET_NO_MEMORY_INTRINSICS
|
|
#include "llvm/Intrinsics.gen"
|
|
#undef GET_NO_MEMORY_INTRINSICS
|
|
return false;
|
|
}
|
|
|
|
// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
|
|
// have any side-effects or if it only reads memory.
|
|
static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
|
|
#define GET_SIDE_EFFECT_INFO
|
|
#include "llvm/Intrinsics.gen"
|
|
#undef GET_SIDE_EFFECT_INFO
|
|
return false;
|
|
}
|
|
|
|
/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
|
|
/// node.
|
|
void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
|
|
unsigned Intrinsic) {
|
|
bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
|
|
bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
|
|
|
|
// Build the operand list.
|
|
SmallVector<SDOperand, 8> Ops;
|
|
if (HasChain) { // If this intrinsic has side-effects, chainify it.
|
|
if (OnlyLoad) {
|
|
// We don't need to serialize loads against other loads.
|
|
Ops.push_back(DAG.getRoot());
|
|
} else {
|
|
Ops.push_back(getRoot());
|
|
}
|
|
}
|
|
|
|
// Add the intrinsic ID as an integer operand.
|
|
Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
|
|
|
|
// Add all operands of the call to the operand list.
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
SDOperand Op = getValue(I.getOperand(i));
|
|
|
|
// If this is a vector type, force it to the right packed type.
|
|
if (Op.getValueType() == MVT::Vector) {
|
|
const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
|
|
MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
|
|
|
|
MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
|
|
assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
|
|
Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
|
|
}
|
|
|
|
assert(TLI.isTypeLegal(Op.getValueType()) &&
|
|
"Intrinsic uses a non-legal type?");
|
|
Ops.push_back(Op);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> VTs;
|
|
if (I.getType() != Type::VoidTy) {
|
|
MVT::ValueType VT = TLI.getValueType(I.getType());
|
|
if (VT == MVT::Vector) {
|
|
const PackedType *DestTy = cast<PackedType>(I.getType());
|
|
MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
|
|
|
|
VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
|
|
assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
|
|
}
|
|
|
|
assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
|
|
VTs.push_back(VT);
|
|
}
|
|
if (HasChain)
|
|
VTs.push_back(MVT::Other);
|
|
|
|
const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
|
|
|
|
// Create the node.
|
|
SDOperand Result;
|
|
if (!HasChain)
|
|
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
|
|
&Ops[0], Ops.size());
|
|
else if (I.getType() != Type::VoidTy)
|
|
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
|
|
&Ops[0], Ops.size());
|
|
else
|
|
Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
|
|
&Ops[0], Ops.size());
|
|
|
|
if (HasChain) {
|
|
SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
|
|
if (OnlyLoad)
|
|
PendingLoads.push_back(Chain);
|
|
else
|
|
DAG.setRoot(Chain);
|
|
}
|
|
if (I.getType() != Type::VoidTy) {
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
|
|
MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
|
|
Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
|
|
DAG.getConstant(PTy->getNumElements(), MVT::i32),
|
|
DAG.getValueType(EVT));
|
|
}
|
|
setValue(&I, Result);
|
|
}
|
|
}
|
|
|
|
/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
|
|
/// we want to emit this as a call to a named external function, return the name
|
|
/// otherwise lower it and return null.
|
|
const char *
|
|
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
|
|
switch (Intrinsic) {
|
|
default:
|
|
// By default, turn this into a target intrinsic node.
|
|
visitTargetIntrinsic(I, Intrinsic);
|
|
return 0;
|
|
case Intrinsic::vastart: visitVAStart(I); return 0;
|
|
case Intrinsic::vaend: visitVAEnd(I); return 0;
|
|
case Intrinsic::vacopy: visitVACopy(I); return 0;
|
|
case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
|
|
case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return 0;
|
|
case Intrinsic::setjmp:
|
|
return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
|
|
break;
|
|
case Intrinsic::longjmp:
|
|
return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
|
|
break;
|
|
case Intrinsic::memcpy_i32:
|
|
case Intrinsic::memcpy_i64:
|
|
visitMemIntrinsic(I, ISD::MEMCPY);
|
|
return 0;
|
|
case Intrinsic::memset_i32:
|
|
case Intrinsic::memset_i64:
|
|
visitMemIntrinsic(I, ISD::MEMSET);
|
|
return 0;
|
|
case Intrinsic::memmove_i32:
|
|
case Intrinsic::memmove_i64:
|
|
visitMemIntrinsic(I, ISD::MEMMOVE);
|
|
return 0;
|
|
|
|
case Intrinsic::dbg_stoppoint: {
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
|
|
if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
|
|
SDOperand Ops[5];
|
|
|
|
Ops[0] = getRoot();
|
|
Ops[1] = getValue(SPI.getLineValue());
|
|
Ops[2] = getValue(SPI.getColumnValue());
|
|
|
|
DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
|
|
assert(DD && "Not a debug information descriptor");
|
|
CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
|
|
|
|
Ops[3] = DAG.getString(CompileUnit->getFileName());
|
|
Ops[4] = DAG.getString(CompileUnit->getDirectory());
|
|
|
|
DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_region_start: {
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
|
|
if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
|
|
unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
|
|
DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
|
|
DAG.getConstant(LabelID, MVT::i32)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_region_end: {
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
|
|
if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
|
|
unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
|
|
DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
|
|
getRoot(), DAG.getConstant(LabelID, MVT::i32)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_func_start: {
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
|
|
if (DebugInfo && FSI.getSubprogram() &&
|
|
DebugInfo->Verify(FSI.getSubprogram())) {
|
|
unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
|
|
DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
|
|
getRoot(), DAG.getConstant(LabelID, MVT::i32)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_declare: {
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
|
|
if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
|
|
SDOperand AddressOp = getValue(DI.getAddress());
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
|
|
DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
case Intrinsic::isunordered_f32:
|
|
case Intrinsic::isunordered_f64:
|
|
setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2)), ISD::SETUO));
|
|
return 0;
|
|
|
|
case Intrinsic::sqrt_f32:
|
|
case Intrinsic::sqrt_f64:
|
|
setValue(&I, DAG.getNode(ISD::FSQRT,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::powi_f32:
|
|
case Intrinsic::powi_f64:
|
|
setValue(&I, DAG.getNode(ISD::FPOWI,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2))));
|
|
return 0;
|
|
case Intrinsic::pcmarker: {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
|
|
return 0;
|
|
}
|
|
case Intrinsic::readcyclecounter: {
|
|
SDOperand Op = getRoot();
|
|
SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
|
|
DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
|
|
&Op, 1);
|
|
setValue(&I, Tmp);
|
|
DAG.setRoot(Tmp.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::bswap_i16:
|
|
case Intrinsic::bswap_i32:
|
|
case Intrinsic::bswap_i64:
|
|
setValue(&I, DAG.getNode(ISD::BSWAP,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::cttz_i8:
|
|
case Intrinsic::cttz_i16:
|
|
case Intrinsic::cttz_i32:
|
|
case Intrinsic::cttz_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTTZ,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::ctlz_i8:
|
|
case Intrinsic::ctlz_i16:
|
|
case Intrinsic::ctlz_i32:
|
|
case Intrinsic::ctlz_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTLZ,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::ctpop_i8:
|
|
case Intrinsic::ctpop_i16:
|
|
case Intrinsic::ctpop_i32:
|
|
case Intrinsic::ctpop_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTPOP,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::stacksave: {
|
|
SDOperand Op = getRoot();
|
|
SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
|
|
DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
|
|
setValue(&I, Tmp);
|
|
DAG.setRoot(Tmp.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::stackrestore: {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
|
|
return 0;
|
|
}
|
|
case Intrinsic::prefetch:
|
|
// FIXME: Currently discarding prefetches.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitCall(CallInst &I) {
|
|
const char *RenameFn = 0;
|
|
if (Function *F = I.getCalledFunction()) {
|
|
if (F->isExternal())
|
|
if (unsigned IID = F->getIntrinsicID()) {
|
|
RenameFn = visitIntrinsicCall(I, IID);
|
|
if (!RenameFn)
|
|
return;
|
|
} else { // Not an LLVM intrinsic.
|
|
const std::string &Name = F->getName();
|
|
if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
|
|
if (I.getNumOperands() == 3 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType() &&
|
|
I.getType() == I.getOperand(2)->getType()) {
|
|
SDOperand LHS = getValue(I.getOperand(1));
|
|
SDOperand RHS = getValue(I.getOperand(2));
|
|
setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
|
|
LHS, RHS));
|
|
return;
|
|
}
|
|
} else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if (isa<InlineAsm>(I.getOperand(0))) {
|
|
visitInlineAsm(I);
|
|
return;
|
|
}
|
|
|
|
SDOperand Callee;
|
|
if (!RenameFn)
|
|
Callee = getValue(I.getOperand(0));
|
|
else
|
|
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.reserve(I.getNumOperands());
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
Value *Arg = I.getOperand(i);
|
|
SDOperand ArgNode = getValue(Arg);
|
|
Args.push_back(std::make_pair(ArgNode, Arg->getType()));
|
|
}
|
|
|
|
const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
|
|
I.isTailCall(), Callee, Args, DAG);
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, Result.first);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
|
|
SDOperand &Chain, SDOperand &Flag)const{
|
|
SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
|
|
Chain = Val.getValue(1);
|
|
Flag = Val.getValue(2);
|
|
|
|
// If the result was expanded, copy from the top part.
|
|
if (Regs.size() > 1) {
|
|
assert(Regs.size() == 2 &&
|
|
"Cannot expand to more than 2 elts yet!");
|
|
SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
|
|
Chain = Hi.getValue(1);
|
|
Flag = Hi.getValue(2);
|
|
if (DAG.getTargetLoweringInfo().isLittleEndian())
|
|
return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
|
|
else
|
|
return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
|
|
}
|
|
|
|
// Otherwise, if the return value was promoted or extended, truncate it to the
|
|
// appropriate type.
|
|
if (RegVT == ValueVT)
|
|
return Val;
|
|
|
|
if (MVT::isInteger(RegVT)) {
|
|
if (ValueVT < RegVT)
|
|
return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
|
|
else
|
|
return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
|
|
} else {
|
|
return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
|
|
}
|
|
}
|
|
|
|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
|
|
/// specified value into the registers specified by this object. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
|
|
SDOperand &Chain, SDOperand &Flag,
|
|
MVT::ValueType PtrVT) const {
|
|
if (Regs.size() == 1) {
|
|
// If there is a single register and the types differ, this must be
|
|
// a promotion.
|
|
if (RegVT != ValueVT) {
|
|
if (MVT::isInteger(RegVT)) {
|
|
if (RegVT < ValueVT)
|
|
Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
|
|
else
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
|
|
} else
|
|
Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
|
|
}
|
|
Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
} else {
|
|
std::vector<unsigned> R(Regs);
|
|
if (!DAG.getTargetLoweringInfo().isLittleEndian())
|
|
std::reverse(R.begin(), R.end());
|
|
|
|
for (unsigned i = 0, e = R.size(); i != e; ++i) {
|
|
SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
|
|
DAG.getConstant(i, PtrVT));
|
|
Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
|
|
/// operand list. This adds the code marker and includes the number of
|
|
/// values added into it.
|
|
void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
|
|
std::vector<SDOperand> &Ops) const {
|
|
Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(Regs[i], RegVT));
|
|
}
|
|
|
|
/// isAllocatableRegister - If the specified register is safe to allocate,
|
|
/// i.e. it isn't a stack pointer or some other special register, return the
|
|
/// register class for the register. Otherwise, return null.
|
|
static const TargetRegisterClass *
|
|
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
|
|
const TargetLowering &TLI, const MRegisterInfo *MRI) {
|
|
MVT::ValueType FoundVT = MVT::Other;
|
|
const TargetRegisterClass *FoundRC = 0;
|
|
for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
|
|
E = MRI->regclass_end(); RCI != E; ++RCI) {
|
|
MVT::ValueType ThisVT = MVT::Other;
|
|
|
|
const TargetRegisterClass *RC = *RCI;
|
|
// If none of the the value types for this register class are valid, we
|
|
// can't use it. For example, 64-bit reg classes on 32-bit targets.
|
|
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
|
|
I != E; ++I) {
|
|
if (TLI.isTypeLegal(*I)) {
|
|
// If we have already found this register in a different register class,
|
|
// choose the one with the largest VT specified. For example, on
|
|
// PowerPC, we favor f64 register classes over f32.
|
|
if (FoundVT == MVT::Other ||
|
|
MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
|
|
ThisVT = *I;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ThisVT == MVT::Other) continue;
|
|
|
|
// NOTE: This isn't ideal. In particular, this might allocate the
|
|
// frame pointer in functions that need it (due to them not being taken
|
|
// out of allocation, because a variable sized allocation hasn't been seen
|
|
// yet). This is a slight code pessimization, but should still work.
|
|
for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
|
|
E = RC->allocation_order_end(MF); I != E; ++I)
|
|
if (*I == Reg) {
|
|
// We found a matching register class. Keep looking at others in case
|
|
// we find one with larger registers that this physreg is also in.
|
|
FoundRC = RC;
|
|
FoundVT = ThisVT;
|
|
break;
|
|
}
|
|
}
|
|
return FoundRC;
|
|
}
|
|
|
|
RegsForValue SelectionDAGLowering::
|
|
GetRegistersForValue(const std::string &ConstrCode,
|
|
MVT::ValueType VT, bool isOutReg, bool isInReg,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs) {
|
|
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
|
|
TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
|
|
std::vector<unsigned> Regs;
|
|
|
|
unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
|
|
MVT::ValueType RegVT;
|
|
MVT::ValueType ValueVT = VT;
|
|
|
|
if (PhysReg.first) {
|
|
if (VT == MVT::Other)
|
|
ValueVT = *PhysReg.second->vt_begin();
|
|
|
|
// Get the actual register value type. This is important, because the user
|
|
// may have asked for (e.g.) the AX register in i32 type. We need to
|
|
// remember that AX is actually i16 to get the right extension.
|
|
RegVT = *PhysReg.second->vt_begin();
|
|
|
|
// This is a explicit reference to a physical register.
|
|
Regs.push_back(PhysReg.first);
|
|
|
|
// If this is an expanded reference, add the rest of the regs to Regs.
|
|
if (NumRegs != 1) {
|
|
TargetRegisterClass::iterator I = PhysReg.second->begin();
|
|
TargetRegisterClass::iterator E = PhysReg.second->end();
|
|
for (; *I != PhysReg.first; ++I)
|
|
assert(I != E && "Didn't find reg!");
|
|
|
|
// Already added the first reg.
|
|
--NumRegs; ++I;
|
|
for (; NumRegs; --NumRegs, ++I) {
|
|
assert(I != E && "Ran out of registers to allocate!");
|
|
Regs.push_back(*I);
|
|
}
|
|
}
|
|
return RegsForValue(Regs, RegVT, ValueVT);
|
|
}
|
|
|
|
// This is a reference to a register class. Allocate NumRegs consecutive,
|
|
// available, registers from the class.
|
|
std::vector<unsigned> RegClassRegs =
|
|
TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
|
|
|
|
const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
|
|
MachineFunction &MF = *CurMBB->getParent();
|
|
unsigned NumAllocated = 0;
|
|
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
|
|
unsigned Reg = RegClassRegs[i];
|
|
// See if this register is available.
|
|
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
|
|
(isInReg && InputRegs.count(Reg))) { // Already used.
|
|
// Make sure we find consecutive registers.
|
|
NumAllocated = 0;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if this register is allocatable (i.e. don't give out the
|
|
// stack pointer).
|
|
const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
|
|
if (!RC) {
|
|
// Make sure we find consecutive registers.
|
|
NumAllocated = 0;
|
|
continue;
|
|
}
|
|
|
|
// Okay, this register is good, we can use it.
|
|
++NumAllocated;
|
|
|
|
// If we allocated enough consecutive
|
|
if (NumAllocated == NumRegs) {
|
|
unsigned RegStart = (i-NumAllocated)+1;
|
|
unsigned RegEnd = i+1;
|
|
// Mark all of the allocated registers used.
|
|
for (unsigned i = RegStart; i != RegEnd; ++i) {
|
|
unsigned Reg = RegClassRegs[i];
|
|
Regs.push_back(Reg);
|
|
if (isOutReg) OutputRegs.insert(Reg); // Mark reg used.
|
|
if (isInReg) InputRegs.insert(Reg); // Mark reg used.
|
|
}
|
|
|
|
return RegsForValue(Regs, *RC->vt_begin(), VT);
|
|
}
|
|
}
|
|
|
|
// Otherwise, we couldn't allocate enough registers for this.
|
|
return RegsForValue();
|
|
}
|
|
|
|
|
|
/// visitInlineAsm - Handle a call to an InlineAsm object.
|
|
///
|
|
void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
|
|
InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
|
|
|
|
SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
|
|
MVT::Other);
|
|
|
|
// Note, we treat inline asms both with and without side-effects as the same.
|
|
// If an inline asm doesn't have side effects and doesn't access memory, we
|
|
// could not choose to not chain it.
|
|
bool hasSideEffects = IA->hasSideEffects();
|
|
|
|
std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
|
|
std::vector<MVT::ValueType> ConstraintVTs;
|
|
|
|
/// AsmNodeOperands - A list of pairs. The first element is a register, the
|
|
/// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
|
|
/// if it is a def of that register.
|
|
std::vector<SDOperand> AsmNodeOperands;
|
|
AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
|
|
AsmNodeOperands.push_back(AsmStr);
|
|
|
|
SDOperand Chain = getRoot();
|
|
SDOperand Flag;
|
|
|
|
// We fully assign registers here at isel time. This is not optimal, but
|
|
// should work. For register classes that correspond to LLVM classes, we
|
|
// could let the LLVM RA do its thing, but we currently don't. Do a prepass
|
|
// over the constraints, collecting fixed registers that we know we can't use.
|
|
std::set<unsigned> OutputRegs, InputRegs;
|
|
unsigned OpNum = 1;
|
|
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
|
assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
|
|
std::string &ConstraintCode = Constraints[i].Codes[0];
|
|
|
|
MVT::ValueType OpVT;
|
|
|
|
// Compute the value type for each operand and add it to ConstraintVTs.
|
|
switch (Constraints[i].Type) {
|
|
case InlineAsm::isOutput:
|
|
if (!Constraints[i].isIndirectOutput) {
|
|
assert(I.getType() != Type::VoidTy && "Bad inline asm!");
|
|
OpVT = TLI.getValueType(I.getType());
|
|
} else {
|
|
const Type *OpTy = I.getOperand(OpNum)->getType();
|
|
OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
|
|
OpNum++; // Consumes a call operand.
|
|
}
|
|
break;
|
|
case InlineAsm::isInput:
|
|
OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
|
|
OpNum++; // Consumes a call operand.
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
OpVT = MVT::Other;
|
|
break;
|
|
}
|
|
|
|
ConstraintVTs.push_back(OpVT);
|
|
|
|
if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
|
|
continue; // Not assigned a fixed reg.
|
|
|
|
// Build a list of regs that this operand uses. This always has a single
|
|
// element for promoted/expanded operands.
|
|
RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
|
|
false, false,
|
|
OutputRegs, InputRegs);
|
|
|
|
switch (Constraints[i].Type) {
|
|
case InlineAsm::isOutput:
|
|
// We can't assign any other output to this register.
|
|
OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
|
|
// If this is an early-clobber output, it cannot be assigned to the same
|
|
// value as the input reg.
|
|
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
|
|
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
|
|
break;
|
|
case InlineAsm::isInput:
|
|
// We can't assign any other input to this register.
|
|
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
// Clobbered regs cannot be used as inputs or outputs.
|
|
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
|
|
OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Loop over all of the inputs, copying the operand values into the
|
|
// appropriate registers and processing the output regs.
|
|
RegsForValue RetValRegs;
|
|
std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
|
|
OpNum = 1;
|
|
|
|
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
|
assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
|
|
std::string &ConstraintCode = Constraints[i].Codes[0];
|
|
|
|
switch (Constraints[i].Type) {
|
|
case InlineAsm::isOutput: {
|
|
TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
|
|
if (ConstraintCode.size() == 1) // not a physreg name.
|
|
CTy = TLI.getConstraintType(ConstraintCode[0]);
|
|
|
|
if (CTy == TargetLowering::C_Memory) {
|
|
// Memory output.
|
|
SDOperand InOperandVal = getValue(I.getOperand(OpNum));
|
|
|
|
// Check that the operand (the address to store to) isn't a float.
|
|
if (!MVT::isInteger(InOperandVal.getValueType()))
|
|
assert(0 && "MATCH FAIL!");
|
|
|
|
if (!Constraints[i].isIndirectOutput)
|
|
assert(0 && "MATCH FAIL!");
|
|
|
|
OpNum++; // Consumes a call operand.
|
|
|
|
// Extend/truncate to the right pointer type if needed.
|
|
MVT::ValueType PtrType = TLI.getPointerTy();
|
|
if (InOperandVal.getValueType() < PtrType)
|
|
InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
|
|
else if (InOperandVal.getValueType() > PtrType)
|
|
InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
|
|
|
|
// Add information to the INLINEASM node to know about this output.
|
|
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
|
|
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
|
|
AsmNodeOperands.push_back(InOperandVal);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, this is a register output.
|
|
assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
|
|
|
|
// If this is an early-clobber output, or if there is an input
|
|
// constraint that matches this, we need to reserve the input register
|
|
// so no other inputs allocate to it.
|
|
bool UsesInputRegister = false;
|
|
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
|
|
UsesInputRegister = true;
|
|
|
|
// Copy the output from the appropriate register. Find a register that
|
|
// we can use.
|
|
RegsForValue Regs =
|
|
GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
|
|
true, UsesInputRegister,
|
|
OutputRegs, InputRegs);
|
|
assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
|
|
|
|
if (!Constraints[i].isIndirectOutput) {
|
|
assert(RetValRegs.Regs.empty() &&
|
|
"Cannot have multiple output constraints yet!");
|
|
assert(I.getType() != Type::VoidTy && "Bad inline asm!");
|
|
RetValRegs = Regs;
|
|
} else {
|
|
IndirectStoresToEmit.push_back(std::make_pair(Regs,
|
|
I.getOperand(OpNum)));
|
|
OpNum++; // Consumes a call operand.
|
|
}
|
|
|
|
// Add information to the INLINEASM node to know that this register is
|
|
// set.
|
|
Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
case InlineAsm::isInput: {
|
|
SDOperand InOperandVal = getValue(I.getOperand(OpNum));
|
|
OpNum++; // Consumes a call operand.
|
|
|
|
if (isdigit(ConstraintCode[0])) { // Matching constraint?
|
|
// If this is required to match an output register we have already set,
|
|
// just use its register.
|
|
unsigned OperandNo = atoi(ConstraintCode.c_str());
|
|
|
|
// Scan until we find the definition we already emitted of this operand.
|
|
// When we find it, create a RegsForValue operand.
|
|
unsigned CurOp = 2; // The first operand.
|
|
for (; OperandNo; --OperandNo) {
|
|
// Advance to the next operand.
|
|
unsigned NumOps =
|
|
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
|
|
assert(((NumOps & 7) == 2 /*REGDEF*/ ||
|
|
(NumOps & 7) == 4 /*MEM*/) &&
|
|
"Skipped past definitions?");
|
|
CurOp += (NumOps>>3)+1;
|
|
}
|
|
|
|
unsigned NumOps =
|
|
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
|
|
assert((NumOps & 7) == 2 /*REGDEF*/ &&
|
|
"Skipped past definitions?");
|
|
|
|
// Add NumOps>>3 registers to MatchedRegs.
|
|
RegsForValue MatchedRegs;
|
|
MatchedRegs.ValueVT = InOperandVal.getValueType();
|
|
MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
|
|
for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
|
|
unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
|
|
MatchedRegs.Regs.push_back(Reg);
|
|
}
|
|
|
|
// Use the produced MatchedRegs object to
|
|
MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
|
|
TLI.getPointerTy());
|
|
MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
|
|
TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
|
|
if (ConstraintCode.size() == 1) // not a physreg name.
|
|
CTy = TLI.getConstraintType(ConstraintCode[0]);
|
|
|
|
if (CTy == TargetLowering::C_Other) {
|
|
if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
|
|
assert(0 && "MATCH FAIL!");
|
|
|
|
// Add information to the INLINEASM node to know about this input.
|
|
unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
|
|
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
|
|
AsmNodeOperands.push_back(InOperandVal);
|
|
break;
|
|
} else if (CTy == TargetLowering::C_Memory) {
|
|
// Memory input.
|
|
|
|
// Check that the operand isn't a float.
|
|
if (!MVT::isInteger(InOperandVal.getValueType()))
|
|
assert(0 && "MATCH FAIL!");
|
|
|
|
// Extend/truncate to the right pointer type if needed.
|
|
MVT::ValueType PtrType = TLI.getPointerTy();
|
|
if (InOperandVal.getValueType() < PtrType)
|
|
InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
|
|
else if (InOperandVal.getValueType() > PtrType)
|
|
InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
|
|
|
|
// Add information to the INLINEASM node to know about this input.
|
|
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
|
|
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
|
|
AsmNodeOperands.push_back(InOperandVal);
|
|
break;
|
|
}
|
|
|
|
assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
|
|
|
|
// Copy the input into the appropriate registers.
|
|
RegsForValue InRegs =
|
|
GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
|
|
false, true, OutputRegs, InputRegs);
|
|
// FIXME: should be match fail.
|
|
assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
|
|
|
|
InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
|
|
|
|
InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
case InlineAsm::isClobber: {
|
|
RegsForValue ClobberedRegs =
|
|
GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
|
|
OutputRegs, InputRegs);
|
|
// Add the clobbered value to the operand list, so that the register
|
|
// allocator is aware that the physreg got clobbered.
|
|
if (!ClobberedRegs.Regs.empty())
|
|
ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finish up input operands.
|
|
AsmNodeOperands[0] = Chain;
|
|
if (Flag.Val) AsmNodeOperands.push_back(Flag);
|
|
|
|
Chain = DAG.getNode(ISD::INLINEASM,
|
|
DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
|
|
&AsmNodeOperands[0], AsmNodeOperands.size());
|
|
Flag = Chain.getValue(1);
|
|
|
|
// If this asm returns a register value, copy the result from that register
|
|
// and set it as the value of the call.
|
|
if (!RetValRegs.Regs.empty())
|
|
setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
|
|
|
|
std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
|
|
|
|
// Process indirect outputs, first output all of the flagged copies out of
|
|
// physregs.
|
|
for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
|
|
RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
|
|
Value *Ptr = IndirectStoresToEmit[i].second;
|
|
SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
|
|
StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
|
|
}
|
|
|
|
// Emit the non-flagged stores from the physregs.
|
|
SmallVector<SDOperand, 8> OutChains;
|
|
for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
|
|
OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
|
|
getValue(StoresToEmit[i].second),
|
|
StoresToEmit[i].second, 0));
|
|
if (!OutChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
DAG.setRoot(Chain);
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
|
|
SDOperand Src = getValue(I.getOperand(0));
|
|
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
|
|
if (IntPtr < Src.getValueType())
|
|
Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
|
|
else if (IntPtr > Src.getValueType())
|
|
Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
|
|
|
|
// Scale the source by the type size.
|
|
uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
|
|
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
|
|
Src, getIntPtrConstant(ElementSize));
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
|
|
DAG.getExternalSymbol("malloc", IntPtr),
|
|
Args, DAG);
|
|
setValue(&I, Result.first); // Pointers always fit in registers
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFree(FreeInst &I) {
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(0)),
|
|
TLI.getTargetData()->getIntPtrType()));
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
|
|
DAG.getExternalSymbol("free", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
// InsertAtEndOfBasicBlock - This method should be implemented by targets that
|
|
// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and the scheduler passes ownership of it to this method.
|
|
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
std::cerr << "If a target marks an instruction with "
|
|
"'usesCustomDAGSchedInserter', it must implement "
|
|
"TargetLowering::InsertAtEndOfBasicBlock!\n";
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(1))));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
|
|
SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
|
|
getValue(I.getOperand(0)),
|
|
DAG.getSrcValue(I.getOperand(0)));
|
|
setValue(&I, V);
|
|
DAG.setRoot(V.getValue(1));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(1))));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2)),
|
|
DAG.getSrcValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(2))));
|
|
}
|
|
|
|
/// TargetLowering::LowerArguments - This is the default LowerArguments
|
|
/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
|
|
/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
|
|
/// integrated into SDISel.
|
|
std::vector<SDOperand>
|
|
TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
|
|
// Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(DAG.getRoot());
|
|
Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
|
|
Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
|
|
|
|
// Add one result value for each formal argument.
|
|
std::vector<MVT::ValueType> RetVals;
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
MVT::ValueType VT = getValueType(I->getType());
|
|
|
|
switch (getTypeAction(VT)) {
|
|
default: assert(0 && "Unknown type action!");
|
|
case Legal:
|
|
RetVals.push_back(VT);
|
|
break;
|
|
case Promote:
|
|
RetVals.push_back(getTypeToTransformTo(VT));
|
|
break;
|
|
case Expand:
|
|
if (VT != MVT::Vector) {
|
|
// If this is a large integer, it needs to be broken up into small
|
|
// integers. Figure out what the destination type is and how many small
|
|
// integers it turns into.
|
|
MVT::ValueType NVT = getTypeToTransformTo(VT);
|
|
unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
|
|
for (unsigned i = 0; i != NumVals; ++i)
|
|
RetVals.push_back(NVT);
|
|
} else {
|
|
// Otherwise, this is a vector type. We only support legal vectors
|
|
// right now.
|
|
unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
|
|
const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
|
|
|
|
// Figure out if there is a Packed type corresponding to this Vector
|
|
// type. If so, convert to the packed type.
|
|
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
|
|
if (TVT != MVT::Other && isTypeLegal(TVT)) {
|
|
RetVals.push_back(TVT);
|
|
} else {
|
|
assert(0 && "Don't support illegal by-val vector arguments yet!");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
// Create the node.
|
|
SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
|
|
DAG.getNodeValueTypes(RetVals), RetVals.size(),
|
|
&Ops[0], Ops.size()).Val;
|
|
|
|
DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
|
|
|
|
// Set up the return result vector.
|
|
Ops.clear();
|
|
unsigned i = 0;
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
MVT::ValueType VT = getValueType(I->getType());
|
|
|
|
switch (getTypeAction(VT)) {
|
|
default: assert(0 && "Unknown type action!");
|
|
case Legal:
|
|
Ops.push_back(SDOperand(Result, i++));
|
|
break;
|
|
case Promote: {
|
|
SDOperand Op(Result, i++);
|
|
if (MVT::isInteger(VT)) {
|
|
unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
|
|
: ISD::AssertZext;
|
|
Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
|
|
Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
|
|
} else {
|
|
assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
|
|
Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
|
|
}
|
|
Ops.push_back(Op);
|
|
break;
|
|
}
|
|
case Expand:
|
|
if (VT != MVT::Vector) {
|
|
// If this is a large integer, it needs to be reassembled from small
|
|
// integers. Figure out what the source elt type is and how many small
|
|
// integers it is.
|
|
MVT::ValueType NVT = getTypeToTransformTo(VT);
|
|
unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
|
|
if (NumVals == 2) {
|
|
SDOperand Lo = SDOperand(Result, i++);
|
|
SDOperand Hi = SDOperand(Result, i++);
|
|
|
|
if (!isLittleEndian())
|
|
std::swap(Lo, Hi);
|
|
|
|
Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
|
|
} else {
|
|
// Value scalarized into many values. Unimp for now.
|
|
assert(0 && "Cannot expand i64 -> i16 yet!");
|
|
}
|
|
} else {
|
|
// Otherwise, this is a vector type. We only support legal vectors
|
|
// right now.
|
|
const PackedType *PTy = cast<PackedType>(I->getType());
|
|
unsigned NumElems = PTy->getNumElements();
|
|
const Type *EltTy = PTy->getElementType();
|
|
|
|
// Figure out if there is a Packed type corresponding to this Vector
|
|
// type. If so, convert to the packed type.
|
|
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
|
|
if (TVT != MVT::Other && isTypeLegal(TVT)) {
|
|
SDOperand N = SDOperand(Result, i++);
|
|
// Handle copies from generic vectors to registers.
|
|
N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
|
|
DAG.getConstant(NumElems, MVT::i32),
|
|
DAG.getValueType(getValueType(EltTy)));
|
|
Ops.push_back(N);
|
|
} else {
|
|
assert(0 && "Don't support illegal by-val vector arguments yet!");
|
|
abort();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return Ops;
|
|
}
|
|
|
|
|
|
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
|
|
/// implementation, which just inserts an ISD::CALL node, which is later custom
|
|
/// lowered by the target to something concrete. FIXME: When all targets are
|
|
/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
|
|
std::pair<SDOperand, SDOperand>
|
|
TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
|
|
unsigned CallingConv, bool isTailCall,
|
|
SDOperand Callee,
|
|
ArgListTy &Args, SelectionDAG &DAG) {
|
|
SmallVector<SDOperand, 32> Ops;
|
|
Ops.push_back(Chain); // Op#0 - Chain
|
|
Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
|
|
Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
|
|
Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
|
|
Ops.push_back(Callee);
|
|
|
|
// Handle all of the outgoing arguments.
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
MVT::ValueType VT = getValueType(Args[i].second);
|
|
SDOperand Op = Args[i].first;
|
|
bool isSigned = Args[i].second->isSigned();
|
|
switch (getTypeAction(VT)) {
|
|
default: assert(0 && "Unknown type action!");
|
|
case Legal:
|
|
Ops.push_back(Op);
|
|
Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
break;
|
|
case Promote:
|
|
if (MVT::isInteger(VT)) {
|
|
unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
|
|
} else {
|
|
assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
|
|
Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
|
|
}
|
|
Ops.push_back(Op);
|
|
Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
break;
|
|
case Expand:
|
|
if (VT != MVT::Vector) {
|
|
// If this is a large integer, it needs to be broken down into small
|
|
// integers. Figure out what the source elt type is and how many small
|
|
// integers it is.
|
|
MVT::ValueType NVT = getTypeToTransformTo(VT);
|
|
unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
|
|
if (NumVals == 2) {
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
|
|
DAG.getConstant(0, getPointerTy()));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
|
|
DAG.getConstant(1, getPointerTy()));
|
|
if (!isLittleEndian())
|
|
std::swap(Lo, Hi);
|
|
|
|
Ops.push_back(Lo);
|
|
Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
Ops.push_back(Hi);
|
|
Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
} else {
|
|
// Value scalarized into many values. Unimp for now.
|
|
assert(0 && "Cannot expand i64 -> i16 yet!");
|
|
}
|
|
} else {
|
|
// Otherwise, this is a vector type. We only support legal vectors
|
|
// right now.
|
|
const PackedType *PTy = cast<PackedType>(Args[i].second);
|
|
unsigned NumElems = PTy->getNumElements();
|
|
const Type *EltTy = PTy->getElementType();
|
|
|
|
// Figure out if there is a Packed type corresponding to this Vector
|
|
// type. If so, convert to the packed type.
|
|
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
|
|
if (TVT != MVT::Other && isTypeLegal(TVT)) {
|
|
// Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
|
|
Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
|
|
Ops.push_back(Op);
|
|
Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
|
|
} else {
|
|
assert(0 && "Don't support illegal by-val vector call args yet!");
|
|
abort();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Figure out the result value types.
|
|
SmallVector<MVT::ValueType, 4> RetTys;
|
|
|
|
if (RetTy != Type::VoidTy) {
|
|
MVT::ValueType VT = getValueType(RetTy);
|
|
switch (getTypeAction(VT)) {
|
|
default: assert(0 && "Unknown type action!");
|
|
case Legal:
|
|
RetTys.push_back(VT);
|
|
break;
|
|
case Promote:
|
|
RetTys.push_back(getTypeToTransformTo(VT));
|
|
break;
|
|
case Expand:
|
|
if (VT != MVT::Vector) {
|
|
// If this is a large integer, it needs to be reassembled from small
|
|
// integers. Figure out what the source elt type is and how many small
|
|
// integers it is.
|
|
MVT::ValueType NVT = getTypeToTransformTo(VT);
|
|
unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
|
|
for (unsigned i = 0; i != NumVals; ++i)
|
|
RetTys.push_back(NVT);
|
|
} else {
|
|
// Otherwise, this is a vector type. We only support legal vectors
|
|
// right now.
|
|
const PackedType *PTy = cast<PackedType>(RetTy);
|
|
unsigned NumElems = PTy->getNumElements();
|
|
const Type *EltTy = PTy->getElementType();
|
|
|
|
// Figure out if there is a Packed type corresponding to this Vector
|
|
// type. If so, convert to the packed type.
|
|
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
|
|
if (TVT != MVT::Other && isTypeLegal(TVT)) {
|
|
RetTys.push_back(TVT);
|
|
} else {
|
|
assert(0 && "Don't support illegal by-val vector call results yet!");
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RetTys.push_back(MVT::Other); // Always has a chain.
|
|
|
|
// Finally, create the CALL node.
|
|
SDOperand Res = DAG.getNode(ISD::CALL,
|
|
DAG.getVTList(&RetTys[0], RetTys.size()),
|
|
&Ops[0], Ops.size());
|
|
|
|
// This returns a pair of operands. The first element is the
|
|
// return value for the function (if RetTy is not VoidTy). The second
|
|
// element is the outgoing token chain.
|
|
SDOperand ResVal;
|
|
if (RetTys.size() != 1) {
|
|
MVT::ValueType VT = getValueType(RetTy);
|
|
if (RetTys.size() == 2) {
|
|
ResVal = Res;
|
|
|
|
// If this value was promoted, truncate it down.
|
|
if (ResVal.getValueType() != VT) {
|
|
if (VT == MVT::Vector) {
|
|
// Insert a VBITCONVERT to convert from the packed result type to the
|
|
// MVT::Vector type.
|
|
unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
|
|
const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
|
|
|
|
// Figure out if there is a Packed type corresponding to this Vector
|
|
// type. If so, convert to the packed type.
|
|
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
|
|
if (TVT != MVT::Other && isTypeLegal(TVT)) {
|
|
// Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
|
|
// "N x PTyElementVT" MVT::Vector type.
|
|
ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
|
|
DAG.getConstant(NumElems, MVT::i32),
|
|
DAG.getValueType(getValueType(EltTy)));
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (MVT::isInteger(VT)) {
|
|
unsigned AssertOp = RetTy->isSigned() ?
|
|
ISD::AssertSext : ISD::AssertZext;
|
|
ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
|
|
DAG.getValueType(VT));
|
|
ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
|
|
} else {
|
|
assert(MVT::isFloatingPoint(VT));
|
|
ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
|
|
}
|
|
}
|
|
} else if (RetTys.size() == 3) {
|
|
ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
|
|
Res.getValue(0), Res.getValue(1));
|
|
|
|
} else {
|
|
assert(0 && "Case not handled yet!");
|
|
}
|
|
}
|
|
|
|
return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
|
|
}
|
|
|
|
|
|
|
|
// It is always conservatively correct for llvm.returnaddress and
|
|
// llvm.frameaddress to return 0.
|
|
//
|
|
// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
|
|
// expanded to 0 if the target wants.
|
|
std::pair<SDOperand, SDOperand>
|
|
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
|
|
unsigned Depth, SelectionDAG &DAG) {
|
|
return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
|
|
}
|
|
|
|
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(0 && "LowerOperation not implemented for this target!");
|
|
abort();
|
|
return SDOperand();
|
|
}
|
|
|
|
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
|
|
SelectionDAG &DAG) {
|
|
assert(0 && "CustomPromoteOperation not implemented for this target!");
|
|
abort();
|
|
return SDOperand();
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
|
|
unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
|
|
setValue(&I, Result.first);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
/// getMemsetValue - Vectorized representation of the memset value
|
|
/// operand.
|
|
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
|
|
SelectionDAG &DAG) {
|
|
MVT::ValueType CurVT = VT;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
|
|
uint64_t Val = C->getValue() & 255;
|
|
unsigned Shift = 8;
|
|
while (CurVT != MVT::i8) {
|
|
Val = (Val << Shift) | Val;
|
|
Shift <<= 1;
|
|
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
|
}
|
|
return DAG.getConstant(Val, VT);
|
|
} else {
|
|
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
|
|
unsigned Shift = 8;
|
|
while (CurVT != MVT::i8) {
|
|
Value =
|
|
DAG.getNode(ISD::OR, VT,
|
|
DAG.getNode(ISD::SHL, VT, Value,
|
|
DAG.getConstant(Shift, MVT::i8)), Value);
|
|
Shift <<= 1;
|
|
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
}
|
|
|
|
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
|
|
/// used when a memcpy is turned into a memset when the source is a constant
|
|
/// string ptr.
|
|
static SDOperand getMemsetStringVal(MVT::ValueType VT,
|
|
SelectionDAG &DAG, TargetLowering &TLI,
|
|
std::string &Str, unsigned Offset) {
|
|
MVT::ValueType CurVT = VT;
|
|
uint64_t Val = 0;
|
|
unsigned MSB = getSizeInBits(VT) / 8;
|
|
if (TLI.isLittleEndian())
|
|
Offset = Offset + MSB - 1;
|
|
for (unsigned i = 0; i != MSB; ++i) {
|
|
Val = (Val << 8) | Str[Offset];
|
|
Offset += TLI.isLittleEndian() ? -1 : 1;
|
|
}
|
|
return DAG.getConstant(Val, VT);
|
|
}
|
|
|
|
/// getMemBasePlusOffset - Returns base and offset node for the
|
|
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
|
|
SelectionDAG &DAG, TargetLowering &TLI) {
|
|
MVT::ValueType VT = Base.getValueType();
|
|
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
|
|
}
|
|
|
|
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
|
|
/// to replace the memset / memcpy is below the threshold. It also returns the
|
|
/// types of the sequence of memory ops to perform memset / memcpy.
|
|
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
|
|
unsigned Limit, uint64_t Size,
|
|
unsigned Align, TargetLowering &TLI) {
|
|
MVT::ValueType VT;
|
|
|
|
if (TLI.allowsUnalignedMemoryAccesses()) {
|
|
VT = MVT::i64;
|
|
} else {
|
|
switch (Align & 7) {
|
|
case 0:
|
|
VT = MVT::i64;
|
|
break;
|
|
case 4:
|
|
VT = MVT::i32;
|
|
break;
|
|
case 2:
|
|
VT = MVT::i16;
|
|
break;
|
|
default:
|
|
VT = MVT::i8;
|
|
break;
|
|
}
|
|
}
|
|
|
|
MVT::ValueType LVT = MVT::i64;
|
|
while (!TLI.isTypeLegal(LVT))
|
|
LVT = (MVT::ValueType)((unsigned)LVT - 1);
|
|
assert(MVT::isInteger(LVT));
|
|
|
|
if (VT > LVT)
|
|
VT = LVT;
|
|
|
|
unsigned NumMemOps = 0;
|
|
while (Size != 0) {
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
while (VTSize > Size) {
|
|
VT = (MVT::ValueType)((unsigned)VT - 1);
|
|
VTSize >>= 1;
|
|
}
|
|
assert(MVT::isInteger(VT));
|
|
|
|
if (++NumMemOps > Limit)
|
|
return false;
|
|
MemOps.push_back(VT);
|
|
Size -= VTSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
|
|
SDOperand Op1 = getValue(I.getOperand(1));
|
|
SDOperand Op2 = getValue(I.getOperand(2));
|
|
SDOperand Op3 = getValue(I.getOperand(3));
|
|
SDOperand Op4 = getValue(I.getOperand(4));
|
|
unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
|
|
std::vector<MVT::ValueType> MemOps;
|
|
|
|
// Expand memset / memcpy to a series of load / store ops
|
|
// if the size operand falls below a certain threshold.
|
|
SmallVector<SDOperand, 8> OutChains;
|
|
switch (Op) {
|
|
default: break; // Do nothing for now.
|
|
case ISD::MEMSET: {
|
|
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
|
|
Size->getValue(), Align, TLI)) {
|
|
unsigned NumMemOps = MemOps.size();
|
|
unsigned Offset = 0;
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
MVT::ValueType VT = MemOps[i];
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
SDOperand Value = getMemsetValue(Op2, VT, DAG);
|
|
SDOperand Store = DAG.getStore(getRoot(), Value,
|
|
getMemBasePlusOffset(Op1, Offset, DAG, TLI),
|
|
I.getOperand(1), Offset);
|
|
OutChains.push_back(Store);
|
|
Offset += VTSize;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::MEMCPY: {
|
|
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
|
|
Size->getValue(), Align, TLI)) {
|
|
unsigned NumMemOps = MemOps.size();
|
|
unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
|
|
GlobalAddressSDNode *G = NULL;
|
|
std::string Str;
|
|
bool CopyFromStr = false;
|
|
|
|
if (Op2.getOpcode() == ISD::GlobalAddress)
|
|
G = cast<GlobalAddressSDNode>(Op2);
|
|
else if (Op2.getOpcode() == ISD::ADD &&
|
|
Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
|
|
Op2.getOperand(1).getOpcode() == ISD::Constant) {
|
|
G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
|
|
SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
|
|
}
|
|
if (G) {
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
|
|
if (GV) {
|
|
Str = GV->getStringValue(false);
|
|
if (!Str.empty()) {
|
|
CopyFromStr = true;
|
|
SrcOff += SrcDelta;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
MVT::ValueType VT = MemOps[i];
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
SDOperand Value, Chain, Store;
|
|
|
|
if (CopyFromStr) {
|
|
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
|
|
Chain = getRoot();
|
|
Store =
|
|
DAG.getStore(Chain, Value,
|
|
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
|
|
I.getOperand(1), DstOff);
|
|
} else {
|
|
Value = DAG.getLoad(VT, getRoot(),
|
|
getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
|
|
I.getOperand(2), SrcOff);
|
|
Chain = Value.getValue(1);
|
|
Store =
|
|
DAG.getStore(Chain, Value,
|
|
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
|
|
I.getOperand(1), DstOff);
|
|
}
|
|
OutChains.push_back(Store);
|
|
SrcOff += VTSize;
|
|
DstOff += VTSize;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!OutChains.empty()) {
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&OutChains[0], OutChains.size()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAGISel code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
// FIXME: we only modify the CFG to split critical edges. This
|
|
// updates dom and loop info.
|
|
}
|
|
|
|
|
|
/// OptimizeNoopCopyExpression - We have determined that the specified cast
|
|
/// instruction is a noop copy (e.g. it's casting from one pointer type to
|
|
/// another, int->uint, or int->sbyte on PPC.
|
|
///
|
|
/// Return true if any changes are made.
|
|
static bool OptimizeNoopCopyExpression(CastInst *CI) {
|
|
BasicBlock *DefBB = CI->getParent();
|
|
|
|
/// InsertedCasts - Only insert a cast in each block once.
|
|
std::map<BasicBlock*, CastInst*> InsertedCasts;
|
|
|
|
bool MadeChange = false;
|
|
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
|
|
UI != E; ) {
|
|
Use &TheUse = UI.getUse();
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
// Figure out which BB this cast is used in. For PHI's this is the
|
|
// appropriate predecessor block.
|
|
BasicBlock *UserBB = User->getParent();
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
unsigned OpVal = UI.getOperandNo()/2;
|
|
UserBB = PN->getIncomingBlock(OpVal);
|
|
}
|
|
|
|
// Preincrement use iterator so we don't invalidate it.
|
|
++UI;
|
|
|
|
// If this user is in the same block as the cast, don't change the cast.
|
|
if (UserBB == DefBB) continue;
|
|
|
|
// If we have already inserted a cast into this block, use it.
|
|
CastInst *&InsertedCast = InsertedCasts[UserBB];
|
|
|
|
if (!InsertedCast) {
|
|
BasicBlock::iterator InsertPt = UserBB->begin();
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
InsertedCast =
|
|
new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
|
|
MadeChange = true;
|
|
}
|
|
|
|
// Replace a use of the cast with a use of the new casat.
|
|
TheUse = InsertedCast;
|
|
}
|
|
|
|
// If we removed all uses, nuke the cast.
|
|
if (CI->use_empty())
|
|
CI->eraseFromParent();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
|
|
/// casting to the type of GEPI.
|
|
static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
|
|
Instruction *GEPI, Value *Ptr,
|
|
Value *PtrOffset) {
|
|
if (V) return V; // Already computed.
|
|
|
|
BasicBlock::iterator InsertPt;
|
|
if (BB == GEPI->getParent()) {
|
|
// If insert into the GEP's block, insert right after the GEP.
|
|
InsertPt = GEPI;
|
|
++InsertPt;
|
|
} else {
|
|
// Otherwise, insert at the top of BB, after any PHI nodes
|
|
InsertPt = BB->begin();
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
}
|
|
|
|
// If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
|
|
// BB so that there is only one value live across basic blocks (the cast
|
|
// operand).
|
|
if (CastInst *CI = dyn_cast<CastInst>(Ptr))
|
|
if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
|
|
Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
|
|
|
|
// Add the offset, cast it to the right type.
|
|
Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
|
|
return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
|
|
}
|
|
|
|
/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
|
|
/// compute its value. The RepPtr value can be computed with Ptr+PtrOffset. One
|
|
/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
|
|
/// block, then ReplaceAllUsesWith'ing everything. However, we would prefer to
|
|
/// sink PtrOffset into user blocks where doing so will likely allow us to fold
|
|
/// the constant add into a load or store instruction. Additionally, if a user
|
|
/// is a pointer-pointer cast, we look through it to find its users.
|
|
static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
|
|
Constant *PtrOffset, BasicBlock *DefBB,
|
|
GetElementPtrInst *GEPI,
|
|
std::map<BasicBlock*,Instruction*> &InsertedExprs) {
|
|
while (!RepPtr->use_empty()) {
|
|
Instruction *User = cast<Instruction>(RepPtr->use_back());
|
|
|
|
// If the user is a Pointer-Pointer cast, recurse.
|
|
if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
|
|
ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
|
|
|
|
// Drop the use of RepPtr. The cast is dead. Don't delete it now, else we
|
|
// could invalidate an iterator.
|
|
User->setOperand(0, UndefValue::get(RepPtr->getType()));
|
|
continue;
|
|
}
|
|
|
|
// If this is a load of the pointer, or a store through the pointer, emit
|
|
// the increment into the load/store block.
|
|
Instruction *NewVal;
|
|
if (isa<LoadInst>(User) ||
|
|
(isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
|
|
User->getParent(), GEPI,
|
|
Ptr, PtrOffset);
|
|
} else {
|
|
// If this use is not foldable into the addressing mode, use a version
|
|
// emitted in the GEP block.
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
|
|
Ptr, PtrOffset);
|
|
}
|
|
|
|
if (GEPI->getType() != RepPtr->getType()) {
|
|
BasicBlock::iterator IP = NewVal;
|
|
++IP;
|
|
NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
|
|
}
|
|
User->replaceUsesOfWith(RepPtr, NewVal);
|
|
}
|
|
}
|
|
|
|
|
|
/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
|
|
/// selection, we want to be a bit careful about some things. In particular, if
|
|
/// we have a GEP instruction that is used in a different block than it is
|
|
/// defined, the addressing expression of the GEP cannot be folded into loads or
|
|
/// stores that use it. In this case, decompose the GEP and move constant
|
|
/// indices into blocks that use it.
|
|
static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
|
|
const TargetData *TD) {
|
|
// If this GEP is only used inside the block it is defined in, there is no
|
|
// need to rewrite it.
|
|
bool isUsedOutsideDefBB = false;
|
|
BasicBlock *DefBB = GEPI->getParent();
|
|
for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
|
|
UI != E; ++UI) {
|
|
if (cast<Instruction>(*UI)->getParent() != DefBB) {
|
|
isUsedOutsideDefBB = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!isUsedOutsideDefBB) return false;
|
|
|
|
// If this GEP has no non-zero constant indices, there is nothing we can do,
|
|
// ignore it.
|
|
bool hasConstantIndex = false;
|
|
bool hasVariableIndex = false;
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
|
|
if (CI->getRawValue()) {
|
|
hasConstantIndex = true;
|
|
break;
|
|
}
|
|
} else {
|
|
hasVariableIndex = true;
|
|
}
|
|
}
|
|
|
|
// If this is a "GEP X, 0, 0, 0", turn this into a cast.
|
|
if (!hasConstantIndex && !hasVariableIndex) {
|
|
Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
|
|
GEPI->getName(), GEPI);
|
|
GEPI->replaceAllUsesWith(NC);
|
|
GEPI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
|
|
if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
|
|
return false;
|
|
|
|
// Otherwise, decompose the GEP instruction into multiplies and adds. Sum the
|
|
// constant offset (which we now know is non-zero) and deal with it later.
|
|
uint64_t ConstantOffset = 0;
|
|
const Type *UIntPtrTy = TD->getIntPtrType();
|
|
Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
|
|
const Type *Ty = GEPI->getOperand(0)->getType();
|
|
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
|
if (Field)
|
|
ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// Handle constant subscripts.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->getRawValue() == 0) continue;
|
|
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
|
|
ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
|
|
else
|
|
ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
|
|
continue;
|
|
}
|
|
|
|
// Ptr = Ptr + Idx * ElementSize;
|
|
|
|
// Cast Idx to UIntPtrTy if needed.
|
|
Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
|
|
|
|
uint64_t ElementSize = TD->getTypeSize(Ty);
|
|
// Mask off bits that should not be set.
|
|
ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
|
|
|
|
// Multiply by the element size and add to the base.
|
|
Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
|
|
Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
|
|
}
|
|
}
|
|
|
|
// Make sure that the offset fits in uintptr_t.
|
|
ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
|
|
|
|
// Okay, we have now emitted all of the variable index parts to the BB that
|
|
// the GEP is defined in. Loop over all of the using instructions, inserting
|
|
// an "add Ptr, ConstantOffset" into each block that uses it and update the
|
|
// instruction to use the newly computed value, making GEPI dead. When the
|
|
// user is a load or store instruction address, we emit the add into the user
|
|
// block, otherwise we use a canonical version right next to the gep (these
|
|
// won't be foldable as addresses, so we might as well share the computation).
|
|
|
|
std::map<BasicBlock*,Instruction*> InsertedExprs;
|
|
ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
|
|
|
|
// Finally, the GEP is dead, remove it.
|
|
GEPI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
|
|
/// constant operands, and if any of the edges feeding the PHI node are
|
|
/// critical, split them so that the assignments of a constant to a register
|
|
/// will not be executed on a path that isn't relevant.
|
|
void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
|
|
// The most common case is that this is a PHI node with two incoming
|
|
// successors handle this case efficiently, because it is simple.
|
|
PHINode *PN = cast<PHINode>(BB->begin());
|
|
if (PN->getNumIncomingValues() == 2) {
|
|
// If neither edge is critical, we never need to split.
|
|
if (PN->getIncomingBlock(0)->getTerminator()->getNumSuccessors() == 1 &&
|
|
PN->getIncomingBlock(1)->getTerminator()->getNumSuccessors() == 1)
|
|
return;
|
|
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
while ((PN = dyn_cast<PHINode>(BBI++))) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (isa<Constant>(PN->getIncomingValue(i)))
|
|
SplitCriticalEdge(PN->getIncomingBlock(i), BB);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, things are a bit trickier.
|
|
|
|
// BE SMART HERE.
|
|
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
while ((PN = dyn_cast<PHINode>(BBI++))) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (isa<Constant>(PN->getIncomingValue(i)))
|
|
SplitCriticalEdge(PN->getIncomingBlock(i), BB);
|
|
}
|
|
}
|
|
|
|
|
|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
|
|
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
|
|
RegMap = MF.getSSARegMap();
|
|
DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
|
|
|
|
// First, split all critical edges for PHI nodes with incoming values that are
|
|
// constants, this way the load of the constant into a vreg will not be placed
|
|
// into MBBs that are used some other way.
|
|
//
|
|
// In this pass we also look for GEP and cast instructions that are used
|
|
// across basic blocks and rewrite them to improve basic-block-at-a-time
|
|
// selection.
|
|
//
|
|
//
|
|
bool MadeChange = true;
|
|
while (MadeChange) {
|
|
MadeChange = false;
|
|
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
// If this block has any PHI nodes with constant operands, and if any of the
|
|
// edges feeding the PHI node are critical, split them.
|
|
if (isa<PHINode>(BB->begin()))
|
|
SplitCritEdgesForPHIConstants(BB);
|
|
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
|
|
Instruction *I = BBI++;
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
|
|
MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
// If the source of the cast is a constant, then this should have
|
|
// already been constant folded. The only reason NOT to constant fold
|
|
// it is if something (e.g. LSR) was careful to place the constant
|
|
// evaluation in a block other than then one that uses it (e.g. to hoist
|
|
// the address of globals out of a loop). If this is the case, we don't
|
|
// want to forward-subst the cast.
|
|
if (isa<Constant>(CI->getOperand(0)))
|
|
continue;
|
|
|
|
// If this is a noop copy, sink it into user blocks to reduce the number
|
|
// of virtual registers that must be created and coallesced.
|
|
MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
|
|
MVT::ValueType DstVT = TLI.getValueType(CI->getType());
|
|
|
|
// This is an fp<->int conversion?
|
|
if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
|
|
continue;
|
|
|
|
// If this is an extension, it will be a zero or sign extension, which
|
|
// isn't a noop.
|
|
if (SrcVT < DstVT) continue;
|
|
|
|
// If these values will be promoted, find out what they will be promoted
|
|
// to. This helps us consider truncates on PPC as noop copies when they
|
|
// are.
|
|
if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
|
|
SrcVT = TLI.getTypeToTransformTo(SrcVT);
|
|
if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
|
|
DstVT = TLI.getTypeToTransformTo(DstVT);
|
|
|
|
// If, after promotion, these are the same types, this is a noop copy.
|
|
if (SrcVT == DstVT)
|
|
MadeChange |= OptimizeNoopCopyExpression(CI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
|
|
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
SelectBasicBlock(I, MF, FuncInfo);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
SDOperand SelectionDAGISel::
|
|
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
|
|
SDOperand Op = SDL.getValue(V);
|
|
assert((Op.getOpcode() != ISD::CopyFromReg ||
|
|
cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
|
|
"Copy from a reg to the same reg!");
|
|
|
|
// If this type is not legal, we must make sure to not create an invalid
|
|
// register use.
|
|
MVT::ValueType SrcVT = Op.getValueType();
|
|
MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
|
|
SelectionDAG &DAG = SDL.DAG;
|
|
if (SrcVT == DestVT) {
|
|
return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
|
|
} else if (SrcVT == MVT::Vector) {
|
|
// Handle copies from generic vectors to registers.
|
|
MVT::ValueType PTyElementVT, PTyLegalElementVT;
|
|
unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
|
|
PTyElementVT, PTyLegalElementVT);
|
|
|
|
// Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
|
|
// MVT::Vector type.
|
|
Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
|
|
DAG.getConstant(NE, MVT::i32),
|
|
DAG.getValueType(PTyElementVT));
|
|
|
|
// Loop over all of the elements of the resultant vector,
|
|
// VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
|
|
// copying them into output registers.
|
|
SmallVector<SDOperand, 8> OutChains;
|
|
SDOperand Root = SDL.getRoot();
|
|
for (unsigned i = 0; i != NE; ++i) {
|
|
SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
|
|
Op, DAG.getConstant(i, TLI.getPointerTy()));
|
|
if (PTyElementVT == PTyLegalElementVT) {
|
|
// Elements are legal.
|
|
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
|
|
} else if (PTyLegalElementVT > PTyElementVT) {
|
|
// Elements are promoted.
|
|
if (MVT::isFloatingPoint(PTyLegalElementVT))
|
|
Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
|
|
else
|
|
Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
|
|
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
|
|
} else {
|
|
// Elements are expanded.
|
|
// The src value is expanded into multiple registers.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
|
|
Elt, DAG.getConstant(0, TLI.getPointerTy()));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
|
|
Elt, DAG.getConstant(1, TLI.getPointerTy()));
|
|
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
|
|
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
|
|
}
|
|
}
|
|
return DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
} else if (SrcVT < DestVT) {
|
|
// The src value is promoted to the register.
|
|
if (MVT::isFloatingPoint(SrcVT))
|
|
Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
|
|
else
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
|
|
return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
|
|
} else {
|
|
// The src value is expanded into multiple registers.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
|
|
Op, DAG.getConstant(0, TLI.getPointerTy()));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
|
|
Op, DAG.getConstant(1, TLI.getPointerTy()));
|
|
Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
|
|
return DAG.getCopyToReg(Op, Reg+1, Hi);
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::
|
|
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
|
|
std::vector<SDOperand> &UnorderedChains) {
|
|
// If this is the entry block, emit arguments.
|
|
Function &F = *BB->getParent();
|
|
FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
|
|
SDOperand OldRoot = SDL.DAG.getRoot();
|
|
std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
|
|
|
|
unsigned a = 0;
|
|
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
|
|
AI != E; ++AI, ++a)
|
|
if (!AI->use_empty()) {
|
|
SDL.setValue(AI, Args[a]);
|
|
|
|
// If this argument is live outside of the entry block, insert a copy from
|
|
// whereever we got it to the vreg that other BB's will reference it as.
|
|
if (FuncInfo.ValueMap.count(AI)) {
|
|
SDOperand Copy =
|
|
CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
|
|
UnorderedChains.push_back(Copy);
|
|
}
|
|
}
|
|
|
|
// Finally, if the target has anything special to do, allow it to do so.
|
|
// FIXME: this should insert code into the DAG!
|
|
EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
|
|
}
|
|
|
|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
|
|
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
|
|
|
|
std::vector<SDOperand> UnorderedChains;
|
|
|
|
// Lower any arguments needed in this block if this is the entry block.
|
|
if (LLVMBB == &LLVMBB->getParent()->front())
|
|
LowerArguments(LLVMBB, SDL, UnorderedChains);
|
|
|
|
BB = FuncInfo.MBBMap[LLVMBB];
|
|
SDL.setCurrentBasicBlock(BB);
|
|
|
|
// Lower all of the non-terminator instructions.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
|
|
I != E; ++I)
|
|
SDL.visit(*I);
|
|
|
|
// Ensure that all instructions which are used outside of their defining
|
|
// blocks are available as virtual registers.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
|
|
if (!I->use_empty() && !isa<PHINode>(I)) {
|
|
std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
|
|
if (VMI != FuncInfo.ValueMap.end())
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, I, VMI->second));
|
|
}
|
|
|
|
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
|
|
// ensure constants are generated when needed. Remember the virtual registers
|
|
// that need to be added to the Machine PHI nodes as input. We cannot just
|
|
// directly add them, because expansion might result in multiple MBB's for one
|
|
// BB. As such, the start of the BB might correspond to a different MBB than
|
|
// the end.
|
|
//
|
|
|
|
// Emit constants only once even if used by multiple PHI nodes.
|
|
std::map<Constant*, unsigned> ConstantsOut;
|
|
|
|
// Check successor nodes PHI nodes that expect a constant to be available from
|
|
// this block.
|
|
TerminatorInst *TI = LLVMBB->getTerminator();
|
|
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
|
BasicBlock *SuccBB = TI->getSuccessor(succ);
|
|
if (!isa<PHINode>(SuccBB->begin())) continue;
|
|
|
|
MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
|
|
PHINode *PN;
|
|
|
|
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
|
// nodes and Machine PHI nodes, but the incoming operands have not been
|
|
// emitted yet.
|
|
for (BasicBlock::iterator I = SuccBB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
unsigned Reg;
|
|
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
|
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
|
|
unsigned &RegOut = ConstantsOut[C];
|
|
if (RegOut == 0) {
|
|
RegOut = FuncInfo.CreateRegForValue(C);
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, C, RegOut));
|
|
}
|
|
Reg = RegOut;
|
|
} else {
|
|
Reg = FuncInfo.ValueMap[PHIOp];
|
|
if (Reg == 0) {
|
|
assert(isa<AllocaInst>(PHIOp) &&
|
|
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
|
|
"Didn't codegen value into a register!??");
|
|
Reg = FuncInfo.CreateRegForValue(PHIOp);
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, PHIOp, Reg));
|
|
}
|
|
}
|
|
|
|
// Remember that this register needs to added to the machine PHI node as
|
|
// the input for this MBB.
|
|
MVT::ValueType VT = TLI.getValueType(PN->getType());
|
|
unsigned NumElements;
|
|
if (VT != MVT::Vector)
|
|
NumElements = TLI.getNumElements(VT);
|
|
else {
|
|
MVT::ValueType VT1,VT2;
|
|
NumElements =
|
|
TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
|
|
VT1, VT2);
|
|
}
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i)
|
|
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
|
|
}
|
|
}
|
|
ConstantsOut.clear();
|
|
|
|
// Turn all of the unordered chains into one factored node.
|
|
if (!UnorderedChains.empty()) {
|
|
SDOperand Root = SDL.getRoot();
|
|
if (Root.getOpcode() != ISD::EntryToken) {
|
|
unsigned i = 0, e = UnorderedChains.size();
|
|
for (; i != e; ++i) {
|
|
assert(UnorderedChains[i].Val->getNumOperands() > 1);
|
|
if (UnorderedChains[i].Val->getOperand(0) == Root)
|
|
break; // Don't add the root if we already indirectly depend on it.
|
|
}
|
|
|
|
if (i == e)
|
|
UnorderedChains.push_back(Root);
|
|
}
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&UnorderedChains[0], UnorderedChains.size()));
|
|
}
|
|
|
|
// Lower the terminator after the copies are emitted.
|
|
SDL.visit(*LLVMBB->getTerminator());
|
|
|
|
// Copy over any CaseBlock records that may now exist due to SwitchInst
|
|
// lowering, as well as any jump table information.
|
|
SwitchCases.clear();
|
|
SwitchCases = SDL.SwitchCases;
|
|
JT = SDL.JT;
|
|
|
|
// Make sure the root of the DAG is up-to-date.
|
|
DAG.setRoot(SDL.getRoot());
|
|
}
|
|
|
|
void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
|
|
// Run the DAG combiner in pre-legalize mode.
|
|
DAG.Combine(false);
|
|
|
|
DEBUG(std::cerr << "Lowered selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
DAG.Legalize();
|
|
|
|
DEBUG(std::cerr << "Legalized selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Run the DAG combiner in post-legalize mode.
|
|
DAG.Combine(true);
|
|
|
|
if (ViewISelDAGs) DAG.viewGraph();
|
|
|
|
// Third, instruction select all of the operations to machine code, adding the
|
|
// code to the MachineBasicBlock.
|
|
InstructionSelectBasicBlock(DAG);
|
|
|
|
DEBUG(std::cerr << "Selected machine code:\n");
|
|
DEBUG(BB->dump());
|
|
}
|
|
|
|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
|
|
{
|
|
SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
|
|
CurDAG = &DAG;
|
|
|
|
// First step, lower LLVM code to some DAG. This DAG may use operations and
|
|
// types that are not supported by the target.
|
|
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
|
|
|
|
// Second step, emit the lowered DAG as machine code.
|
|
CodeGenAndEmitDAG(DAG);
|
|
}
|
|
|
|
// Next, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
if (SwitchCases.empty() && JT.Reg == 0) {
|
|
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = PHINodesToUpdate[i].first;
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
PHI->addRegOperand(PHINodesToUpdate[i].second, false);
|
|
PHI->addMachineBasicBlockOperand(BB);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the JumpTable record is filled in, then we need to emit a jump table.
|
|
// Updating the PHI nodes is tricky in this case, since we need to determine
|
|
// whether the PHI is a successor of the range check MBB or the jump table MBB
|
|
if (JT.Reg) {
|
|
assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
|
|
SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
|
|
CurDAG = &SDAG;
|
|
SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
|
|
MachineBasicBlock *RangeBB = BB;
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = JT.MBB;
|
|
SDL.setCurrentBasicBlock(BB);
|
|
// Emit the code
|
|
SDL.visitJumpTable(JT);
|
|
SDAG.setRoot(SDL.getRoot());
|
|
CodeGenAndEmitDAG(SDAG);
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
|
|
MachineInstr *PHI = PHINodesToUpdate[pi].first;
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
if (PHIBB == JT.Default) {
|
|
PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
|
|
PHI->addMachineBasicBlockOperand(RangeBB);
|
|
}
|
|
if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
|
|
PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
|
|
PHI->addMachineBasicBlockOperand(BB);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we generated any switch lowering information, build and codegen any
|
|
// additional DAGs necessary.
|
|
for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
|
|
SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
|
|
CurDAG = &SDAG;
|
|
SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
|
|
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SwitchCases[i].ThisBB;
|
|
SDL.setCurrentBasicBlock(BB);
|
|
|
|
// Emit the code
|
|
SDL.visitSwitchCase(SwitchCases[i]);
|
|
SDAG.setRoot(SDL.getRoot());
|
|
CodeGenAndEmitDAG(SDAG);
|
|
|
|
// Handle any PHI nodes in successors of this chunk, as if we were coming
|
|
// from the original BB before switch expansion. Note that PHI nodes can
|
|
// occur multiple times in PHINodesToUpdate. We have to be very careful to
|
|
// handle them the right number of times.
|
|
while ((BB = SwitchCases[i].LHSBB)) { // Handle LHS and RHS.
|
|
for (MachineBasicBlock::iterator Phi = BB->begin();
|
|
Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
|
|
// This value for this PHI node is recorded in PHINodesToUpdate, get it.
|
|
for (unsigned pn = 0; ; ++pn) {
|
|
assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
|
|
if (PHINodesToUpdate[pn].first == Phi) {
|
|
Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
|
|
Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't process RHS if same block as LHS.
|
|
if (BB == SwitchCases[i].RHSBB)
|
|
SwitchCases[i].RHSBB = 0;
|
|
|
|
// If we haven't handled the RHS, do so now. Otherwise, we're done.
|
|
SwitchCases[i].LHSBB = SwitchCases[i].RHSBB;
|
|
SwitchCases[i].RHSBB = 0;
|
|
}
|
|
assert(SwitchCases[i].LHSBB == 0 && SwitchCases[i].RHSBB == 0);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
|
|
/// target node in the graph.
|
|
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
|
|
if (ViewSchedDAGs) DAG.viewGraph();
|
|
|
|
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
|
|
|
|
if (!Ctor) {
|
|
Ctor = ISHeuristic;
|
|
RegisterScheduler::setDefault(Ctor);
|
|
}
|
|
|
|
ScheduleDAG *SL = Ctor(this, &DAG, BB);
|
|
BB = SL->Run();
|
|
delete SL;
|
|
}
|
|
|
|
|
|
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
|
|
return new HazardRecognizer();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions used by the generated instruction selector.
|
|
//===----------------------------------------------------------------------===//
|
|
// Calls to these methods are generated by tblgen.
|
|
|
|
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) {
|
|
uint64_t ActualMask = RHS->getValue();
|
|
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask & ~DesiredMask)
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
uint64_t NeededMask = DesiredMask & ~ActualMask;
|
|
if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) {
|
|
uint64_t ActualMask = RHS->getValue();
|
|
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask & ~DesiredMask)
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
uint64_t NeededMask = DesiredMask & ~ActualMask;
|
|
|
|
uint64_t KnownZero, KnownOne;
|
|
getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
|
|
|
|
// If all the missing bits in the or are already known to be set, match!
|
|
if ((NeededMask & KnownOne) == NeededMask)
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
|
|
/// by tblgen. Others should not call it.
|
|
void SelectionDAGISel::
|
|
SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
|
|
std::vector<SDOperand> InOps;
|
|
std::swap(InOps, Ops);
|
|
|
|
Ops.push_back(InOps[0]); // input chain.
|
|
Ops.push_back(InOps[1]); // input asm string.
|
|
|
|
unsigned i = 2, e = InOps.size();
|
|
if (InOps[e-1].getValueType() == MVT::Flag)
|
|
--e; // Don't process a flag operand if it is here.
|
|
|
|
while (i != e) {
|
|
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
|
|
if ((Flags & 7) != 4 /*MEM*/) {
|
|
// Just skip over this operand, copying the operands verbatim.
|
|
Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
|
|
i += (Flags >> 3) + 1;
|
|
} else {
|
|
assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
|
|
// Otherwise, this is a memory operand. Ask the target to select it.
|
|
std::vector<SDOperand> SelOps;
|
|
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
|
|
std::cerr << "Could not match memory address. Inline asm failure!\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Add this to the output node.
|
|
Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
|
|
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
// Add the flag input back if present.
|
|
if (e != InOps.size())
|
|
Ops.push_back(InOps.back());
|
|
}
|