llvm/lib/DebugInfo/DWARFUnit.cpp
Alexey Samsonov 4387550026 [DWARF parser] Respect address ranges specified in compile unit DIE.
When address ranges for compile unit are specified in compile unit DIE
itself, there is no need to collect ranges from children subprogram DIEs.

This change speeds up llvm-symbolizer on Clang-produced binaries with
full debug info. For instance, symbolizing a first address in a 1Gb binary
is now 2x faster (1s vs. 2s).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206641 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-18 20:30:27 +00:00

367 lines
12 KiB
C++

//===-- DWARFUnit.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFUnit.h"
#include "DWARFContext.h"
#include "llvm/DebugInfo/DWARFFormValue.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Path.h"
#include <cstdio>
using namespace llvm;
using namespace dwarf;
DWARFUnit::DWARFUnit(const DWARFDebugAbbrev *DA, StringRef IS, StringRef AS,
StringRef RS, StringRef SS, StringRef SOS, StringRef AOS,
const RelocAddrMap *M, bool LE)
: Abbrev(DA), InfoSection(IS), AbbrevSection(AS), RangeSection(RS),
StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS),
RelocMap(M), isLittleEndian(LE) {
clear();
}
DWARFUnit::~DWARFUnit() {
}
bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index,
uint64_t &Result) const {
uint32_t Offset = AddrOffsetSectionBase + Index * AddrSize;
if (AddrOffsetSection.size() < Offset + AddrSize)
return false;
DataExtractor DA(AddrOffsetSection, isLittleEndian, AddrSize);
Result = DA.getAddress(&Offset);
return true;
}
bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index,
uint32_t &Result) const {
// FIXME: string offset section entries are 8-byte for DWARF64.
const uint32_t ItemSize = 4;
uint32_t Offset = Index * ItemSize;
if (StringOffsetSection.size() < Offset + ItemSize)
return false;
DataExtractor DA(StringOffsetSection, isLittleEndian, 0);
Result = DA.getU32(&Offset);
return true;
}
bool DWARFUnit::extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) {
Length = debug_info.getU32(offset_ptr);
Version = debug_info.getU16(offset_ptr);
uint64_t abbrOffset = debug_info.getU32(offset_ptr);
AddrSize = debug_info.getU8(offset_ptr);
bool lengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1);
bool versionOK = DWARFContext::isSupportedVersion(Version);
bool abbrOffsetOK = AbbrevSection.size() > abbrOffset;
bool addrSizeOK = AddrSize == 4 || AddrSize == 8;
if (!lengthOK || !versionOK || !addrSizeOK || !abbrOffsetOK)
return false;
Abbrevs = Abbrev->getAbbreviationDeclarationSet(abbrOffset);
return true;
}
bool DWARFUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) {
clear();
Offset = *offset_ptr;
if (debug_info.isValidOffset(*offset_ptr)) {
if (extractImpl(debug_info, offset_ptr))
return true;
// reset the offset to where we tried to parse from if anything went wrong
*offset_ptr = Offset;
}
return false;
}
bool DWARFUnit::extractRangeList(uint32_t RangeListOffset,
DWARFDebugRangeList &RangeList) const {
// Require that compile unit is extracted.
assert(DieArray.size() > 0);
DataExtractor RangesData(RangeSection, isLittleEndian, AddrSize);
uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
return RangeList.extract(RangesData, &ActualRangeListOffset);
}
void DWARFUnit::clear() {
Offset = 0;
Length = 0;
Version = 0;
Abbrevs = nullptr;
AddrSize = 0;
BaseAddr = 0;
RangeSectionBase = 0;
AddrOffsetSectionBase = 0;
clearDIEs(false);
DWO.reset();
}
const char *DWARFUnit::getCompilationDir() {
extractDIEsIfNeeded(true);
if (DieArray.empty())
return nullptr;
return DieArray[0].getAttributeValueAsString(this, DW_AT_comp_dir, nullptr);
}
uint64_t DWARFUnit::getDWOId() {
extractDIEsIfNeeded(true);
const uint64_t FailValue = -1ULL;
if (DieArray.empty())
return FailValue;
return DieArray[0]
.getAttributeValueAsUnsignedConstant(this, DW_AT_GNU_dwo_id, FailValue);
}
void DWARFUnit::setDIERelations() {
if (DieArray.empty())
return;
DWARFDebugInfoEntryMinimal *die_array_begin = &DieArray.front();
DWARFDebugInfoEntryMinimal *die_array_end = &DieArray.back();
DWARFDebugInfoEntryMinimal *curr_die;
// We purposely are skipping the last element in the array in the loop below
// so that we can always have a valid next item
for (curr_die = die_array_begin; curr_die < die_array_end; ++curr_die) {
// Since our loop doesn't include the last element, we can always
// safely access the next die in the array.
DWARFDebugInfoEntryMinimal *next_die = curr_die + 1;
const DWARFAbbreviationDeclaration *curr_die_abbrev =
curr_die->getAbbreviationDeclarationPtr();
if (curr_die_abbrev) {
// Normal DIE
if (curr_die_abbrev->hasChildren())
next_die->setParent(curr_die);
else
curr_die->setSibling(next_die);
} else {
// NULL DIE that terminates a sibling chain
DWARFDebugInfoEntryMinimal *parent = curr_die->getParent();
if (parent)
parent->setSibling(next_die);
}
}
// Since we skipped the last element, we need to fix it up!
if (die_array_begin < die_array_end)
curr_die->setParent(die_array_begin);
}
void DWARFUnit::extractDIEsToVector(
bool AppendCUDie, bool AppendNonCUDies,
std::vector<DWARFDebugInfoEntryMinimal> &Dies) const {
if (!AppendCUDie && !AppendNonCUDies)
return;
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
uint32_t Offset = getFirstDIEOffset();
uint32_t NextCUOffset = getNextUnitOffset();
DWARFDebugInfoEntryMinimal DIE;
uint32_t Depth = 0;
bool IsCUDie = true;
while (Offset < NextCUOffset && DIE.extractFast(this, &Offset)) {
if (IsCUDie) {
if (AppendCUDie)
Dies.push_back(DIE);
if (!AppendNonCUDies)
break;
// The average bytes per DIE entry has been seen to be
// around 14-20 so let's pre-reserve the needed memory for
// our DIE entries accordingly.
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
IsCUDie = false;
} else {
Dies.push_back(DIE);
}
const DWARFAbbreviationDeclaration *AbbrDecl =
DIE.getAbbreviationDeclarationPtr();
if (AbbrDecl) {
// Normal DIE
if (AbbrDecl->hasChildren())
++Depth;
} else {
// NULL DIE.
if (Depth > 0)
--Depth;
if (Depth == 0)
break; // We are done with this compile unit!
}
}
// Give a little bit of info if we encounter corrupt DWARF (our offset
// should always terminate at or before the start of the next compilation
// unit header).
if (Offset > NextCUOffset)
fprintf(stderr, "warning: DWARF compile unit extends beyond its "
"bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), Offset);
}
size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
if ((CUDieOnly && DieArray.size() > 0) ||
DieArray.size() > 1)
return 0; // Already parsed.
bool HasCUDie = DieArray.size() > 0;
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
if (DieArray.empty())
return 0;
// If CU DIE was just parsed, copy several attribute values from it.
if (!HasCUDie) {
uint64_t BaseAddr =
DieArray[0].getAttributeValueAsAddress(this, DW_AT_low_pc, -1ULL);
if (BaseAddr == -1ULL)
BaseAddr = DieArray[0].getAttributeValueAsAddress(this, DW_AT_entry_pc, 0);
setBaseAddress(BaseAddr);
AddrOffsetSectionBase = DieArray[0].getAttributeValueAsSectionOffset(
this, DW_AT_GNU_addr_base, 0);
RangeSectionBase = DieArray[0].getAttributeValueAsSectionOffset(
this, DW_AT_GNU_ranges_base, 0);
}
setDIERelations();
return DieArray.size();
}
DWARFUnit::DWOHolder::DWOHolder(object::ObjectFile *DWOFile)
: DWOFile(DWOFile),
DWOContext(cast<DWARFContext>(DIContext::getDWARFContext(DWOFile))),
DWOU(nullptr) {
if (DWOContext->getNumDWOCompileUnits() > 0)
DWOU = DWOContext->getDWOCompileUnitAtIndex(0);
}
bool DWARFUnit::parseDWO() {
if (DWO.get())
return false;
extractDIEsIfNeeded(true);
if (DieArray.empty())
return false;
const char *DWOFileName =
DieArray[0].getAttributeValueAsString(this, DW_AT_GNU_dwo_name, nullptr);
if (!DWOFileName)
return false;
const char *CompilationDir =
DieArray[0].getAttributeValueAsString(this, DW_AT_comp_dir, nullptr);
SmallString<16> AbsolutePath;
if (sys::path::is_relative(DWOFileName) && CompilationDir != nullptr) {
sys::path::append(AbsolutePath, CompilationDir);
}
sys::path::append(AbsolutePath, DWOFileName);
ErrorOr<object::ObjectFile *> DWOFile =
object::ObjectFile::createObjectFile(AbsolutePath);
if (!DWOFile)
return false;
// Reset DWOHolder.
DWO.reset(new DWOHolder(DWOFile.get()));
DWARFUnit *DWOCU = DWO->getUnit();
// Verify that compile unit in .dwo file is valid.
if (!DWOCU || DWOCU->getDWOId() != getDWOId()) {
DWO.reset();
return false;
}
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
DWOCU->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase);
DWOCU->setRangesSection(RangeSection, RangeSectionBase);
return true;
}
void DWARFUnit::clearDIEs(bool KeepCUDie) {
if (DieArray.size() > (unsigned)KeepCUDie) {
// std::vectors never get any smaller when resized to a smaller size,
// or when clear() or erase() are called, the size will report that it
// is smaller, but the memory allocated remains intact (call capacity()
// to see this). So we need to create a temporary vector and swap the
// contents which will cause just the internal pointers to be swapped
// so that when temporary vector goes out of scope, it will destroy the
// contents.
std::vector<DWARFDebugInfoEntryMinimal> TmpArray;
DieArray.swap(TmpArray);
// Save at least the compile unit DIE
if (KeepCUDie)
DieArray.push_back(TmpArray.front());
}
}
void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) {
// First, check if CU DIE describes address ranges for the unit.
const auto &CUDIERanges = getCompileUnitDIE()->getAddressRanges(this);
if (!CUDIERanges.empty()) {
CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end());
return;
}
// This function is usually called if there in no .debug_aranges section
// in order to produce a compile unit level set of address ranges that
// is accurate. If the DIEs weren't parsed, then we don't want all dies for
// all compile units to stay loaded when they weren't needed. So we can end
// up parsing the DWARF and then throwing them all away to keep memory usage
// down.
const bool ClearDIEs = extractDIEsIfNeeded(false) > 1;
DieArray[0].collectChildrenAddressRanges(this, CURanges);
// Collect address ranges from DIEs in .dwo if necessary.
bool DWOCreated = parseDWO();
if (DWO.get())
DWO->getUnit()->collectAddressRanges(CURanges);
if (DWOCreated)
DWO.reset();
// Keep memory down by clearing DIEs if this generate function
// caused them to be parsed.
if (ClearDIEs)
clearDIEs(true);
}
const DWARFDebugInfoEntryMinimal *
DWARFUnit::getSubprogramForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
for (const DWARFDebugInfoEntryMinimal &DIE : DieArray) {
if (DIE.isSubprogramDIE() &&
DIE.addressRangeContainsAddress(this, Address)) {
return &DIE;
}
}
return nullptr;
}
DWARFDebugInfoEntryInlinedChain
DWARFUnit::getInlinedChainForAddress(uint64_t Address) {
// First, find a subprogram that contains the given address (the root
// of inlined chain).
const DWARFUnit *ChainCU = nullptr;
const DWARFDebugInfoEntryMinimal *SubprogramDIE =
getSubprogramForAddress(Address);
if (SubprogramDIE) {
ChainCU = this;
} else {
// Try to look for subprogram DIEs in the DWO file.
parseDWO();
if (DWO.get()) {
SubprogramDIE = DWO->getUnit()->getSubprogramForAddress(Address);
if (SubprogramDIE)
ChainCU = DWO->getUnit();
}
}
// Get inlined chain rooted at this subprogram DIE.
if (!SubprogramDIE)
return DWARFDebugInfoEntryInlinedChain();
return SubprogramDIE->getInlinedChainForAddress(ChainCU, Address);
}