mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-27 21:53:56 +00:00
851b04c920
This change, which allows @llvm.assume to be used from within computeKnownBits (and other associated functions in ValueTracking), adds some (optional) parameters to computeKnownBits and friends. These functions now (optionally) take a "context" instruction pointer, an AssumptionTracker pointer, and also a DomTree pointer, and most of the changes are just to pass this new information when it is easily available from InstSimplify, InstCombine, etc. As explained below, the significant conceptual change is that known properties of a value might depend on the control-flow location of the use (because we care that the @llvm.assume dominates the use because assumptions have control-flow dependencies). This means that, when we ask if bits are known in a value, we might get different answers for different uses. The significant changes are all in ValueTracking. Two main changes: First, as with the rest of the code, new parameters need to be passed around. To make this easier, I grouped them into a structure, and I made internal static versions of the relevant functions that take this structure as a parameter. The new code does as you might expect, it looks for @llvm.assume calls that make use of the value we're trying to learn something about (often indirectly), attempts to pattern match that expression, and uses the result if successful. By making use of the AssumptionTracker, the process of finding @llvm.assume calls is not expensive. Part of the structure being passed around inside ValueTracking is a set of already-considered @llvm.assume calls. This is to prevent a query using, for example, the assume(a == b), to recurse on itself. The context and DT params are used to find applicable assumptions. An assumption needs to dominate the context instruction, or come after it deterministically. In this latter case we only handle the specific case where both the assumption and the context instruction are in the same block, and we need to exclude assumptions from being used to simplify their own ephemeral values (those which contribute only to the assumption) because otherwise the assumption would prove its feeding comparison trivial and would be removed. This commit adds the plumbing and the logic for a simple masked-bit propagation (just enough to write a regression test). Future commits add more patterns (and, correspondingly, more regression tests). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
727 lines
28 KiB
C++
727 lines
28 KiB
C++
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass statically checks for common and easily-identified constructs
|
|
// which produce undefined or likely unintended behavior in LLVM IR.
|
|
//
|
|
// It is not a guarantee of correctness, in two ways. First, it isn't
|
|
// comprehensive. There are checks which could be done statically which are
|
|
// not yet implemented. Some of these are indicated by TODO comments, but
|
|
// those aren't comprehensive either. Second, many conditions cannot be
|
|
// checked statically. This pass does no dynamic instrumentation, so it
|
|
// can't check for all possible problems.
|
|
//
|
|
// Another limitation is that it assumes all code will be executed. A store
|
|
// through a null pointer in a basic block which is never reached is harmless,
|
|
// but this pass will warn about it anyway. This is the main reason why most
|
|
// of these checks live here instead of in the Verifier pass.
|
|
//
|
|
// Optimization passes may make conditions that this pass checks for more or
|
|
// less obvious. If an optimization pass appears to be introducing a warning,
|
|
// it may be that the optimization pass is merely exposing an existing
|
|
// condition in the code.
|
|
//
|
|
// This code may be run before instcombine. In many cases, instcombine checks
|
|
// for the same kinds of things and turns instructions with undefined behavior
|
|
// into unreachable (or equivalent). Because of this, this pass makes some
|
|
// effort to look through bitcasts and so on.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Lint.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionTracker.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
namespace MemRef {
|
|
static unsigned Read = 1;
|
|
static unsigned Write = 2;
|
|
static unsigned Callee = 4;
|
|
static unsigned Branchee = 8;
|
|
}
|
|
|
|
class Lint : public FunctionPass, public InstVisitor<Lint> {
|
|
friend class InstVisitor<Lint>;
|
|
|
|
void visitFunction(Function &F);
|
|
|
|
void visitCallSite(CallSite CS);
|
|
void visitMemoryReference(Instruction &I, Value *Ptr,
|
|
uint64_t Size, unsigned Align,
|
|
Type *Ty, unsigned Flags);
|
|
|
|
void visitCallInst(CallInst &I);
|
|
void visitInvokeInst(InvokeInst &I);
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitXor(BinaryOperator &I);
|
|
void visitSub(BinaryOperator &I);
|
|
void visitLShr(BinaryOperator &I);
|
|
void visitAShr(BinaryOperator &I);
|
|
void visitShl(BinaryOperator &I);
|
|
void visitSDiv(BinaryOperator &I);
|
|
void visitUDiv(BinaryOperator &I);
|
|
void visitSRem(BinaryOperator &I);
|
|
void visitURem(BinaryOperator &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
void visitIndirectBrInst(IndirectBrInst &I);
|
|
void visitExtractElementInst(ExtractElementInst &I);
|
|
void visitInsertElementInst(InsertElementInst &I);
|
|
void visitUnreachableInst(UnreachableInst &I);
|
|
|
|
Value *findValue(Value *V, bool OffsetOk) const;
|
|
Value *findValueImpl(Value *V, bool OffsetOk,
|
|
SmallPtrSetImpl<Value *> &Visited) const;
|
|
|
|
public:
|
|
Module *Mod;
|
|
AliasAnalysis *AA;
|
|
AssumptionTracker *AT;
|
|
DominatorTree *DT;
|
|
const DataLayout *DL;
|
|
TargetLibraryInfo *TLI;
|
|
|
|
std::string Messages;
|
|
raw_string_ostream MessagesStr;
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
Lint() : FunctionPass(ID), MessagesStr(Messages) {
|
|
initializeLintPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<AssumptionTracker>();
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
}
|
|
void print(raw_ostream &O, const Module *M) const override {}
|
|
|
|
void WriteValue(const Value *V) {
|
|
if (!V) return;
|
|
if (isa<Instruction>(V)) {
|
|
MessagesStr << *V << '\n';
|
|
} else {
|
|
V->printAsOperand(MessagesStr, true, Mod);
|
|
MessagesStr << '\n';
|
|
}
|
|
}
|
|
|
|
// CheckFailed - A check failed, so print out the condition and the message
|
|
// that failed. This provides a nice place to put a breakpoint if you want
|
|
// to see why something is not correct.
|
|
void CheckFailed(const Twine &Message,
|
|
const Value *V1 = nullptr, const Value *V2 = nullptr,
|
|
const Value *V3 = nullptr, const Value *V4 = nullptr) {
|
|
MessagesStr << Message.str() << "\n";
|
|
WriteValue(V1);
|
|
WriteValue(V2);
|
|
WriteValue(V3);
|
|
WriteValue(V4);
|
|
}
|
|
};
|
|
}
|
|
|
|
char Lint::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
|
|
false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
|
|
false, true)
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, M) \
|
|
do { if (!(C)) { CheckFailed(M); return; } } while (0)
|
|
#define Assert1(C, M, V1) \
|
|
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
|
|
#define Assert2(C, M, V1, V2) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
|
|
#define Assert3(C, M, V1, V2, V3) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
|
|
#define Assert4(C, M, V1, V2, V3, V4) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
|
|
|
|
// Lint::run - This is the main Analysis entry point for a
|
|
// function.
|
|
//
|
|
bool Lint::runOnFunction(Function &F) {
|
|
Mod = F.getParent();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
AT = &getAnalysis<AssumptionTracker>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
visit(F);
|
|
dbgs() << MessagesStr.str();
|
|
Messages.clear();
|
|
return false;
|
|
}
|
|
|
|
void Lint::visitFunction(Function &F) {
|
|
// This isn't undefined behavior, it's just a little unusual, and it's a
|
|
// fairly common mistake to neglect to name a function.
|
|
Assert1(F.hasName() || F.hasLocalLinkage(),
|
|
"Unusual: Unnamed function with non-local linkage", &F);
|
|
|
|
// TODO: Check for irreducible control flow.
|
|
}
|
|
|
|
void Lint::visitCallSite(CallSite CS) {
|
|
Instruction &I = *CS.getInstruction();
|
|
Value *Callee = CS.getCalledValue();
|
|
|
|
visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Callee);
|
|
|
|
if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
|
|
Assert1(CS.getCallingConv() == F->getCallingConv(),
|
|
"Undefined behavior: Caller and callee calling convention differ",
|
|
&I);
|
|
|
|
FunctionType *FT = F->getFunctionType();
|
|
unsigned NumActualArgs = CS.arg_size();
|
|
|
|
Assert1(FT->isVarArg() ?
|
|
FT->getNumParams() <= NumActualArgs :
|
|
FT->getNumParams() == NumActualArgs,
|
|
"Undefined behavior: Call argument count mismatches callee "
|
|
"argument count", &I);
|
|
|
|
Assert1(FT->getReturnType() == I.getType(),
|
|
"Undefined behavior: Call return type mismatches "
|
|
"callee return type", &I);
|
|
|
|
// Check argument types (in case the callee was casted) and attributes.
|
|
// TODO: Verify that caller and callee attributes are compatible.
|
|
Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
|
|
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
for (; AI != AE; ++AI) {
|
|
Value *Actual = *AI;
|
|
if (PI != PE) {
|
|
Argument *Formal = PI++;
|
|
Assert1(Formal->getType() == Actual->getType(),
|
|
"Undefined behavior: Call argument type mismatches "
|
|
"callee parameter type", &I);
|
|
|
|
// Check that noalias arguments don't alias other arguments. This is
|
|
// not fully precise because we don't know the sizes of the dereferenced
|
|
// memory regions.
|
|
if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
|
|
for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
|
|
if (AI != BI && (*BI)->getType()->isPointerTy()) {
|
|
AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
|
|
Assert1(Result != AliasAnalysis::MustAlias &&
|
|
Result != AliasAnalysis::PartialAlias,
|
|
"Unusual: noalias argument aliases another argument", &I);
|
|
}
|
|
|
|
// Check that an sret argument points to valid memory.
|
|
if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
|
|
Type *Ty =
|
|
cast<PointerType>(Formal->getType())->getElementType();
|
|
visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
|
|
DL ? DL->getABITypeAlignment(Ty) : 0,
|
|
Ty, MemRef::Read | MemRef::Write);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
|
|
for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
AI != AE; ++AI) {
|
|
Value *Obj = findValue(*AI, /*OffsetOk=*/true);
|
|
Assert1(!isa<AllocaInst>(Obj),
|
|
"Undefined behavior: Call with \"tail\" keyword references "
|
|
"alloca", &I);
|
|
}
|
|
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
|
|
switch (II->getIntrinsicID()) {
|
|
default: break;
|
|
|
|
// TODO: Check more intrinsics
|
|
|
|
case Intrinsic::memcpy: {
|
|
MemCpyInst *MCI = cast<MemCpyInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
|
|
MCI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
|
|
MCI->getAlignment(), nullptr,
|
|
MemRef::Read);
|
|
|
|
// Check that the memcpy arguments don't overlap. The AliasAnalysis API
|
|
// isn't expressive enough for what we really want to do. Known partial
|
|
// overlap is not distinguished from the case where nothing is known.
|
|
uint64_t Size = 0;
|
|
if (const ConstantInt *Len =
|
|
dyn_cast<ConstantInt>(findValue(MCI->getLength(),
|
|
/*OffsetOk=*/false)))
|
|
if (Len->getValue().isIntN(32))
|
|
Size = Len->getValue().getZExtValue();
|
|
Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
|
|
AliasAnalysis::MustAlias,
|
|
"Undefined behavior: memcpy source and destination overlap", &I);
|
|
break;
|
|
}
|
|
case Intrinsic::memmove: {
|
|
MemMoveInst *MMI = cast<MemMoveInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
|
|
MMI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
|
|
MMI->getAlignment(), nullptr,
|
|
MemRef::Read);
|
|
break;
|
|
}
|
|
case Intrinsic::memset: {
|
|
MemSetInst *MSI = cast<MemSetInst>(&I);
|
|
// TODO: If the size is known, use it.
|
|
visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
|
|
MSI->getAlignment(), nullptr,
|
|
MemRef::Write);
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::vastart:
|
|
Assert1(I.getParent()->getParent()->isVarArg(),
|
|
"Undefined behavior: va_start called in a non-varargs function",
|
|
&I);
|
|
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
case Intrinsic::vacopy:
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Write);
|
|
visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read);
|
|
break;
|
|
case Intrinsic::vaend:
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
|
|
case Intrinsic::stackrestore:
|
|
// Stackrestore doesn't read or write memory, but it sets the
|
|
// stack pointer, which the compiler may read from or write to
|
|
// at any time, so check it for both readability and writeability.
|
|
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
|
|
0, nullptr, MemRef::Read | MemRef::Write);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Lint::visitCallInst(CallInst &I) {
|
|
return visitCallSite(&I);
|
|
}
|
|
|
|
void Lint::visitInvokeInst(InvokeInst &I) {
|
|
return visitCallSite(&I);
|
|
}
|
|
|
|
void Lint::visitReturnInst(ReturnInst &I) {
|
|
Function *F = I.getParent()->getParent();
|
|
Assert1(!F->doesNotReturn(),
|
|
"Unusual: Return statement in function with noreturn attribute",
|
|
&I);
|
|
|
|
if (Value *V = I.getReturnValue()) {
|
|
Value *Obj = findValue(V, /*OffsetOk=*/true);
|
|
Assert1(!isa<AllocaInst>(Obj),
|
|
"Unusual: Returning alloca value", &I);
|
|
}
|
|
}
|
|
|
|
// TODO: Check that the reference is in bounds.
|
|
// TODO: Check readnone/readonly function attributes.
|
|
void Lint::visitMemoryReference(Instruction &I,
|
|
Value *Ptr, uint64_t Size, unsigned Align,
|
|
Type *Ty, unsigned Flags) {
|
|
// If no memory is being referenced, it doesn't matter if the pointer
|
|
// is valid.
|
|
if (Size == 0)
|
|
return;
|
|
|
|
Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
|
|
Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
|
|
"Undefined behavior: Null pointer dereference", &I);
|
|
Assert1(!isa<UndefValue>(UnderlyingObject),
|
|
"Undefined behavior: Undef pointer dereference", &I);
|
|
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
|
|
!cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
|
|
"Unusual: All-ones pointer dereference", &I);
|
|
Assert1(!isa<ConstantInt>(UnderlyingObject) ||
|
|
!cast<ConstantInt>(UnderlyingObject)->isOne(),
|
|
"Unusual: Address one pointer dereference", &I);
|
|
|
|
if (Flags & MemRef::Write) {
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
|
|
Assert1(!GV->isConstant(),
|
|
"Undefined behavior: Write to read-only memory", &I);
|
|
Assert1(!isa<Function>(UnderlyingObject) &&
|
|
!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Write to text section", &I);
|
|
}
|
|
if (Flags & MemRef::Read) {
|
|
Assert1(!isa<Function>(UnderlyingObject),
|
|
"Unusual: Load from function body", &I);
|
|
Assert1(!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Load from block address", &I);
|
|
}
|
|
if (Flags & MemRef::Callee) {
|
|
Assert1(!isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Call to block address", &I);
|
|
}
|
|
if (Flags & MemRef::Branchee) {
|
|
Assert1(!isa<Constant>(UnderlyingObject) ||
|
|
isa<BlockAddress>(UnderlyingObject),
|
|
"Undefined behavior: Branch to non-blockaddress", &I);
|
|
}
|
|
|
|
// Check for buffer overflows and misalignment.
|
|
// Only handles memory references that read/write something simple like an
|
|
// alloca instruction or a global variable.
|
|
int64_t Offset = 0;
|
|
if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
|
|
// OK, so the access is to a constant offset from Ptr. Check that Ptr is
|
|
// something we can handle and if so extract the size of this base object
|
|
// along with its alignment.
|
|
uint64_t BaseSize = AliasAnalysis::UnknownSize;
|
|
unsigned BaseAlign = 0;
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
|
|
Type *ATy = AI->getAllocatedType();
|
|
if (DL && !AI->isArrayAllocation() && ATy->isSized())
|
|
BaseSize = DL->getTypeAllocSize(ATy);
|
|
BaseAlign = AI->getAlignment();
|
|
if (DL && BaseAlign == 0 && ATy->isSized())
|
|
BaseAlign = DL->getABITypeAlignment(ATy);
|
|
} else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
|
|
// If the global may be defined differently in another compilation unit
|
|
// then don't warn about funky memory accesses.
|
|
if (GV->hasDefinitiveInitializer()) {
|
|
Type *GTy = GV->getType()->getElementType();
|
|
if (DL && GTy->isSized())
|
|
BaseSize = DL->getTypeAllocSize(GTy);
|
|
BaseAlign = GV->getAlignment();
|
|
if (DL && BaseAlign == 0 && GTy->isSized())
|
|
BaseAlign = DL->getABITypeAlignment(GTy);
|
|
}
|
|
}
|
|
|
|
// Accesses from before the start or after the end of the object are not
|
|
// defined.
|
|
Assert1(Size == AliasAnalysis::UnknownSize ||
|
|
BaseSize == AliasAnalysis::UnknownSize ||
|
|
(Offset >= 0 && Offset + Size <= BaseSize),
|
|
"Undefined behavior: Buffer overflow", &I);
|
|
|
|
// Accesses that say that the memory is more aligned than it is are not
|
|
// defined.
|
|
if (DL && Align == 0 && Ty && Ty->isSized())
|
|
Align = DL->getABITypeAlignment(Ty);
|
|
Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
|
|
"Undefined behavior: Memory reference address is misaligned", &I);
|
|
}
|
|
}
|
|
|
|
void Lint::visitLoadInst(LoadInst &I) {
|
|
visitMemoryReference(I, I.getPointerOperand(),
|
|
AA->getTypeStoreSize(I.getType()), I.getAlignment(),
|
|
I.getType(), MemRef::Read);
|
|
}
|
|
|
|
void Lint::visitStoreInst(StoreInst &I) {
|
|
visitMemoryReference(I, I.getPointerOperand(),
|
|
AA->getTypeStoreSize(I.getOperand(0)->getType()),
|
|
I.getAlignment(),
|
|
I.getOperand(0)->getType(), MemRef::Write);
|
|
}
|
|
|
|
void Lint::visitXor(BinaryOperator &I) {
|
|
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
|
|
!isa<UndefValue>(I.getOperand(1)),
|
|
"Undefined result: xor(undef, undef)", &I);
|
|
}
|
|
|
|
void Lint::visitSub(BinaryOperator &I) {
|
|
Assert1(!isa<UndefValue>(I.getOperand(0)) ||
|
|
!isa<UndefValue>(I.getOperand(1)),
|
|
"Undefined result: sub(undef, undef)", &I);
|
|
}
|
|
|
|
void Lint::visitLShr(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
void Lint::visitAShr(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
void Lint::visitShl(BinaryOperator &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
|
|
"Undefined result: Shift count out of range", &I);
|
|
}
|
|
|
|
static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
|
|
AssumptionTracker *AT) {
|
|
// Assume undef could be zero.
|
|
if (isa<UndefValue>(V))
|
|
return true;
|
|
|
|
VectorType *VecTy = dyn_cast<VectorType>(V->getType());
|
|
if (!VecTy) {
|
|
unsigned BitWidth = V->getType()->getIntegerBitWidth();
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
computeKnownBits(V, KnownZero, KnownOne, DL,
|
|
0, AT, dyn_cast<Instruction>(V), DT);
|
|
return KnownZero.isAllOnesValue();
|
|
}
|
|
|
|
// Per-component check doesn't work with zeroinitializer
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return false;
|
|
|
|
if (C->isZeroValue())
|
|
return true;
|
|
|
|
// For a vector, KnownZero will only be true if all values are zero, so check
|
|
// this per component
|
|
unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
|
|
for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
|
|
Constant *Elem = C->getAggregateElement(I);
|
|
if (isa<UndefValue>(Elem))
|
|
return true;
|
|
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
computeKnownBits(Elem, KnownZero, KnownOne, DL);
|
|
if (KnownZero.isAllOnesValue())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Lint::visitSDiv(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL, DT, AT),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitUDiv(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL, DT, AT),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitSRem(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL, DT, AT),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitURem(BinaryOperator &I) {
|
|
Assert1(!isZero(I.getOperand(1), DL, DT, AT),
|
|
"Undefined behavior: Division by zero", &I);
|
|
}
|
|
|
|
void Lint::visitAllocaInst(AllocaInst &I) {
|
|
if (isa<ConstantInt>(I.getArraySize()))
|
|
// This isn't undefined behavior, it's just an obvious pessimization.
|
|
Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
|
|
"Pessimization: Static alloca outside of entry block", &I);
|
|
|
|
// TODO: Check for an unusual size (MSB set?)
|
|
}
|
|
|
|
void Lint::visitVAArgInst(VAArgInst &I) {
|
|
visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
|
|
nullptr, MemRef::Read | MemRef::Write);
|
|
}
|
|
|
|
void Lint::visitIndirectBrInst(IndirectBrInst &I) {
|
|
visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
|
|
nullptr, MemRef::Branchee);
|
|
|
|
Assert1(I.getNumDestinations() != 0,
|
|
"Undefined behavior: indirectbr with no destinations", &I);
|
|
}
|
|
|
|
void Lint::visitExtractElementInst(ExtractElementInst &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
|
|
/*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
|
|
"Undefined result: extractelement index out of range", &I);
|
|
}
|
|
|
|
void Lint::visitInsertElementInst(InsertElementInst &I) {
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(findValue(I.getOperand(2),
|
|
/*OffsetOk=*/false)))
|
|
Assert1(CI->getValue().ult(I.getType()->getNumElements()),
|
|
"Undefined result: insertelement index out of range", &I);
|
|
}
|
|
|
|
void Lint::visitUnreachableInst(UnreachableInst &I) {
|
|
// This isn't undefined behavior, it's merely suspicious.
|
|
Assert1(&I == I.getParent()->begin() ||
|
|
std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
|
|
"Unusual: unreachable immediately preceded by instruction without "
|
|
"side effects", &I);
|
|
}
|
|
|
|
/// findValue - Look through bitcasts and simple memory reference patterns
|
|
/// to identify an equivalent, but more informative, value. If OffsetOk
|
|
/// is true, look through getelementptrs with non-zero offsets too.
|
|
///
|
|
/// Most analysis passes don't require this logic, because instcombine
|
|
/// will simplify most of these kinds of things away. But it's a goal of
|
|
/// this Lint pass to be useful even on non-optimized IR.
|
|
Value *Lint::findValue(Value *V, bool OffsetOk) const {
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
return findValueImpl(V, OffsetOk, Visited);
|
|
}
|
|
|
|
/// findValueImpl - Implementation helper for findValue.
|
|
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
|
|
SmallPtrSetImpl<Value *> &Visited) const {
|
|
// Detect self-referential values.
|
|
if (!Visited.insert(V))
|
|
return UndefValue::get(V->getType());
|
|
|
|
// TODO: Look through sext or zext cast, when the result is known to
|
|
// be interpreted as signed or unsigned, respectively.
|
|
// TODO: Look through eliminable cast pairs.
|
|
// TODO: Look through calls with unique return values.
|
|
// TODO: Look through vector insert/extract/shuffle.
|
|
V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
|
|
if (LoadInst *L = dyn_cast<LoadInst>(V)) {
|
|
BasicBlock::iterator BBI = L;
|
|
BasicBlock *BB = L->getParent();
|
|
SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
|
|
for (;;) {
|
|
if (!VisitedBlocks.insert(BB)) break;
|
|
if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
|
|
BB, BBI, 6, AA))
|
|
return findValueImpl(U, OffsetOk, Visited);
|
|
if (BBI != BB->begin()) break;
|
|
BB = BB->getUniquePredecessor();
|
|
if (!BB) break;
|
|
BBI = BB->end();
|
|
}
|
|
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (Value *W = PN->hasConstantValue())
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
|
if (CI->isNoopCast(DL))
|
|
return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
|
|
} else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
|
|
if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
|
|
Ex->getIndices()))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
// Same as above, but for ConstantExpr instead of Instruction.
|
|
if (Instruction::isCast(CE->getOpcode())) {
|
|
if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
|
|
CE->getOperand(0)->getType(),
|
|
CE->getType(),
|
|
DL ? DL->getIntPtrType(V->getType()) :
|
|
Type::getInt64Ty(V->getContext())))
|
|
return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
|
|
} else if (CE->getOpcode() == Instruction::ExtractValue) {
|
|
ArrayRef<unsigned> Indices = CE->getIndices();
|
|
if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
}
|
|
}
|
|
|
|
// As a last resort, try SimplifyInstruction or constant folding.
|
|
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
|
|
if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AT))
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
|
|
if (W != V)
|
|
return findValueImpl(W, OffsetOk, Visited);
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createLintPass() {
|
|
return new Lint();
|
|
}
|
|
|
|
/// lintFunction - Check a function for errors, printing messages on stderr.
|
|
///
|
|
void llvm::lintFunction(const Function &f) {
|
|
Function &F = const_cast<Function&>(f);
|
|
assert(!F.isDeclaration() && "Cannot lint external functions");
|
|
|
|
FunctionPassManager FPM(F.getParent());
|
|
Lint *V = new Lint();
|
|
FPM.add(V);
|
|
FPM.run(F);
|
|
}
|
|
|
|
/// lintModule - Check a module for errors, printing messages on stderr.
|
|
///
|
|
void llvm::lintModule(const Module &M) {
|
|
PassManager PM;
|
|
Lint *V = new Lint();
|
|
PM.add(V);
|
|
PM.run(const_cast<Module&>(M));
|
|
}
|